
1

1

Principles of Library Design:
The Eiffel Experience

Bertrand Meyer
ADFOCS Summer School, 2003

LECTURE 1

2

“Plan”

1: Intro to Eiffel and Principles of library design
2: Design by Contract
3: Trusted Components
4: Towards proofs



2

3

My background

Since 2001: Professor of Software 
Engineering at ETH Zürich

Since 1985: Founder (now Chief Architect) of 
Eiffel Software, in Santa Barbara. Produces 
Eiffel tools and services

Also adjunct professor at Monash University 
in Australia (since 1998)

4

Lesson 1: Principles of Library Design

Building effective libraries of reusable components



3

5

Background experience

Simula 67: O-O programming, a few reusable classes
Numerical libraries: IMSL, Linpack, NAG etc. 
Design and implementation of the ISE Eiffel libraries: 

EiffelBase – fundamental data structures and algorithms. About 180 
classes. 
EiffelVision – platform-independent graphics and GUI. About 550 
classes. 
EiffelLex, EiffelParse – Lexical analysis and parsing of formal 
languages. 
EiffelStore – Platform-independent database access and support for 
persistent objects.
EiffelMath: numerical computation.
EiffelNet: Client-server object exchange.

(About 3000 classes, heavily reused in numerous applications.) 
Also: application libraries developed in collaboration with customers. 

6

Eiffelbase hierarchy

CONTAINER

BOX

FINITE INFINITE

BOUNDED UNBOUNDED

FIXED RESIZABLE

COLLECTION

BAG SET

TABLE ACTIVE SUBSET

DISPENSERINDEXABLE CURSOR_
STRUCTURE SEQUENCE

TRAVERSABLE

HIERAR_
CHICAL LINEAR

BILINEAR

*

* * *

*

*

*

*

* *

* * * * * *

* * * * * *

COUNTABLE
*



4

7

Simplicity

Command-query separation principle:
• Clear, understandable interfaces

Systematic naming conventions

Operand-option separation: 
• Dramatically simplified feature interfaces

8

The view from a traditional library (NAG)

nonlinear_ode
(equation_count: in INTEGER;
epsilon: in out DOUBLE;
func: procedure

(eq_count: INTEGER; a: DOUBLE; 
eps: DOUBLE; b: ARRAY [DOUBLE];
cm: pointer Libtype);

left_count, coupled_count: INTEGER …)

[And so on. Altogether 19 arguments, including:
• 4 in out values;
• 3 arrays, used both as input and output;
• 6 functions, each with 6 or 7 arguments, of which 2 or 3 arrays!]



5

9

The EiffelMath routine

... Set up the non-default values ...

e.solve

... Solve the problem, recording the answer in x and y ...

10

Library design: the key issue

Facilitating the process of learning to use a class

Steps:
Finding out about the class
Deciding whether it’s useful
Deciding which features are initially useful
Learning to use these features



6

11

Library design

The Formula-1 racing of software development
Perfectionism is good!

12

Levels of reusability

0- Used in one system.

1. Used in several systems built by the same person.

2. Used in several systems built by the same group or 
company.

3. Used in several systems built by people that are in 
contact with the developers.

4. Used by groups unknown to the developers.



7

13

The Consistency Principle

All the components of a library should 
proceed from an overall coherent design, and 
follow a set of systematic, explicit and 
uniform conventions.

Two components: 
• Top-down and deductive (the overall design).
• Bottom-up and inductive (the conventions).

14

Abstraction and objects

Not all classes describe “objects” in the sense of real-world 
things. 

Types of classes:
• Analysis classes – examples: AIRPLANE, CUSTOMER, 

PARTICLE.
• Design classes – examples: STATE, COMMAND, HANDLE. 
• Implementation classes – examples: ARRAY, LINKED_LIST. 

More important than the notion of object is the concept of 
abstract data type (or “data abstraction”). 

Key to the construction of a good library is the search for the 
best abstractions. 



8

15

Avoiding improper classes

A few danger signals: 
• A class whose name is a verb in the imperative form, e.g. 

ANALYZE. (Exception: command classes.) 
• A class with no parent and just one exported routine. 
• A class that introduces or redeclares no feature. (Purely 

taxonomical role only.) TAXOMANIA

Names that warrant some attention: “er” names, 
e.g. ANALYZER. 

16

Active data structures

Old interface for lists:
l.insert (i, x)
l.remove (i)
pos := l.search (x)

l.insert_by_value (…)
l.insert_by_position (…)
l.search_by_position (…)

New interface:
Queries:

l.index l.item l.before l.after

Commands:
l.start l.forth l.finish l.back l.go (i)
l.search (x)
l.put (x) l.remove

-- Typical sequence:
j := l.search (x);
l.insert (j + 1, y)

Number 
of 
features

Perfect

Desirable

?

Number of (re)uses



9

17

A list seen as an active data structure

"Maurer"

Cursor

item

index

count1

forthback

finishstart

afterbefore

18

An object as machine

before after

item index

put_right

start
forth



10

19

An object is a machine

20

An object is a machine

before after

item index

put_right

start
forth



11

21

A list

"Maurer"

Cursor

item

index

count1

forthback

finishstart

afterbefore

22

An object has an interface

before after

item index

put_right

start
forth



12

23

An object has an implementation

start
forth

put_right before after

item index

24

Information hiding

start
forth

put_right before after

item index



13

25

Command-Query separation principle

Asking a question shouldn’t change the 
answer

26

Command-Query separation principle

A command (procedure) does something but does 
not return a result.

A query (function or attribute) returns a result but 
does not change the state.

This principle excludes many common schemes, 
such as using functions for input (e.g. C’s getint or 
equivalent).



14

27

Behind the principle:
Referential Transparency

If two expressions have equal value, one may be substituted for 
the other in any context where that other is valid.

If a = b, then f (a) = f (b) for any f. 
Prohibits functions with side effects. 
Also: 
• For any integer i, normally i + i = 2 x i; 
• But even if getint () = 2, getint () + getint () is usually not 

equal to 4.

28

Dijkstra (1968)

Our intellectual powers are rather geared to master 
static relations and our powers to visualize 
processes evolving in time are relatively poorly 
developed. For that reason we should do (as wise 
programmers aware of our limitations) our utmost to 
shorten the conceptual gap between the static 
program and the dynamic process, to make the 
correspondence between the program (spread out 
in text space) and the process (spread out in time) 
as trivial as possible. 



15

29

Command-query separation

Input mechanism (instead of n := getint ()):

io.read_integer
n := io.last_integer

30

Would you rather buy or inherit?

Inheritance is the “is-a” relation. 

In some cases “is-a” is clearly not applicable.

Implementation can be a form of “is-a”
• Example: the marriage of convenience. 



16

31

When inheritance won’t do

From: Ian Sommerville: Software Engineering, 4th edition, 
Addison-Wesley: 

Multiple inheritance allows several objects to act as base objects 
and is supported in object-oriented languages such as Eiffel 
(Meyer, 1988). The characteristics of several different object 
classes can be combined to make up a new object.
For example, say we have an object class CAR which 
encapsulates information about cars and an object class PERSON
which encapsulates information about people. We could use both 
of these to define a new object class CAR-OWNER which 
combines the attributes of CAR and PERSON.

Adaptation through inheritance tends to lead to extra functionality 
being inherited, which can make components inefficient and bulky.

Where is the “is-a”?

32

When inheritance won’t do (cont’d)

PERSON CAR

CAR_OWNER



17

33

The proper structure

PERSON CAR

CAR_OWNER

34

The car-owner

“He has a head like an Austin Mini with the doors open.”
(From: The Dictionary of Aussie Slang, 
Five-Mile Press, Melbourne, Australia.)



18

35

Would you rather buy or inherit?

Except for polymorphic uses, inheritance is never required:

Rather than having B inherit from A you can always have B
include an attribute of type A (or expanded A) – except if an 
entity of type A may have to represent values of type B.

(B) (A)

36

To be is also to have!

(1) Every software engineer is an engineer. 
(2) Every software engineer has a part of himself which is 
an engineer.

But:
TO HAVE IS NOT ALWAYS TO BE!



19

37

Would you rather buy or inherit?

A case in which having is not being (i.e. “client” is OK but not 
inheritance): 
• Every object of type B has a component of type A, BUT that 

component may need to be replaced during the object’s 
lifetime.

Use the client relation instead:
class WINDOW inherit

GENERAL_WINDOW

WINDOW_IMPLEMENTATION
feature

...
end

38

Handles

class WINDOW inherit

GENERAL_WINDOW

feature

handle: TOOLKIT
...
set_handle (t: TOOLKIT) is

do
handle := t

end
...

end

display is
do

handle.display (Current)
end

WINDOW TOOLKIT

MS_ 
WINDOWSGTK

handle.display (Current)

display+ display+

display*

…



20

39

Handles (continued)

class TOOLKIT_FACILITIES feature

impl: IMPLEMENTATION is
once

create Result
end

set_handle (t: TOOLKIT) is
do

impl.set_handle (t)
end

end

This is a class meant to be inherited by classes needing its facilities.


