
1

1

Principles of Library Design:
The Eiffel Experience

Bertrand Meyer
ADFOCS Summer School, 2003

LECTURE 2

2

“Plan”

1: Intro to Eiffel and Principles of library design
2: Design by Contract
3: Trusted Components
4: Towards proofs

2

3

Designing for consistency: An example

Describing active structures properly: can after also be before?

Symmetry:

For symmetry and consistency, it is desirable to have the invariant
properties.

after = (index = count + 1)
before = (index = 0)

start finish

forth back

after before

before

item

after

count

not before
not after

Valid cursor positions

A

4

Designing for consistency (continued)

Typical iteration:
from

start
until

after
loop

some_action (item)
forth

end
Conventions for an empty structure?

• after must be true for the iteration.
• For symmetry: before should be true too.

But this does not work for an empty structure (count = 0, see invariant
A): should index be 0 or 1?

3

5

A list

"Maurer"

Cursor

item

index

count1

forthback

finishstart

afterbefore

6

Designing for consistency (continued)

To obtain a consistent convention we may transform the invariant into:

after = (is_empty or (index = count + 1))
before = (is_empty or (index = 0)

-- Hence: is_empty = (before and after)

Symmetric but unpleasant. Leads to frequent tests of the form

if after and not is_empty then ...

instead of just

if after then ...

B

4

7

Introducing sentinel items

Invariant (partial):
0 <= index
index <= count + 1
before = (index = 0)
after = (index = count + 1)
not (after and before)

A

not after
before

not before
after

item count count + 10 1

not after; not before
1 <= index; index <= count

Valid cursor positions

8

The case of an empty structure

not after
before

not before
after

1 (i.e. count + 1)0

Valid cursor positions

5

9

Can after also be before?

Lessons from an example; General principles:

Consistency
• A posteriori: “How do I make this design decision compatible with

the previous ones?”.
• A priori: “How do I take this design decision so that it will be easy –

or at least possible – to make future ones compatible with it?”.

Use assertions, especially invariants, to clarify the issues.

Importance of symmetry concerns (cf. physics and mathematics).

Importance of limit cases (empty or full structures).

10

Handles

class WINDOW inherit

GENERAL_WINDOW

feature

handle: TOOLKIT
...
set_handle (t: TOOLKIT) is

do
handle := t

end
...

end

display is
do

handle.display (Current)
end

WINDOW TOOLKIT

MS_
WINDOWSGTK

handle.display (Current)

display+ display+

display*

…

6

11

Handles (continued)

class TOOLKIT_FACILITIES feature

impl: IMPLEMENTATION is
once

create Result
end

set_handle (t: TOOLKIT) is
do

impl.set_handle (t)
end

end

This is a class meant to be inherited by classes needing its facilities.

12

How big should a class be?

The first question is how to measure class size. Candidate metrics:
Source lines.
Number of features.

For the number of features the choices are:
With respect to information hiding:
• Internal size: includes non-exported features.
• External size: includes exported features only.

With respect to inheritance:
• Immediate size: includes new (immediate) features only.
• Flat size: includes immediate and inherited features.
• Incremental size: includes immediate and redeclared features.

7

13

The features of a class

Feature of a class

Immediate

Redeclared

Redefined

Effected

Inherited

Kept

New in class

From parent Changed

Unchanged

Was deferred

Had an
implementation

Most useful measure is incremental size. Easy to measure.

14

The features of a class

Feature of a class

Immediate

Redeclared

Redefined

Effected

Inherited

Kept

New in class

From parent Changed

Unchanged

Was deferred

Had an
implementation

Most useful measure is incremental size. Easy to measure.

8

15

The shopping list approach

If a feature may be useful, it probably is.

An extra feature cannot hurt if it is designed
according to the spirit of the class (i.e.
properly belongs in the underlying abstract
data type), is consistent with its other
features, and follows the principles of this
presentation.

No need to limit classes to “atomic” features.

16

11 to 15 features 11
16 to 20 features 9

Some statistics from EiffelBase

Percentages, rounded. (Includes EiffelLex and EiffelParse.)
149 classes, 1823 exported features.

0 to 5 features 45
6 to 10 features 17

21 to 40 features 13
41 to 80 features 4

81 to 142 features 1

9

17

Some statistics from EiffelVision

Percentages, rounded. 546 classes, 3666 exported features.

0 to 5 features
6 to 10 features
11 to 15 features
16 to 20 features
21 to 40 features
41 to 78 features

68
12

7
4
6
2

18

Including non-exported features

Percentage rounded. All features (about 7600).

Ratio of total features to exported features: 1.27 (EiffelBase), 1.44
(EiffelVision)

0 to 5 features
6 to 10 features
11 to 15 features
16 to 20 features
21 to 40 features
41 to 80 features
81 or more features

37
23

7
6

16
9
2

55
18

7
5

10
4

0.4

Base Vision

10

19

Minimalism revisited

The language should be small (ETL: “The language design should
provide a good way to express every operation of interest; it should
avoid providing two.”)

The library, in contrast, should provide as many useful facilities as
possible.

Key to a non-minimalist library:
Consistent design.
Naming.
Contracts.

Usefulness and power.

20

Average number of arguments to a feature

The size of feature interfaces

More relevant than class size for assessing complexity.

Statistics from EiffelBase, EiffelLex and EiffelParse (exported features):

Number of features
Percentage of queries
Percentage of commands

Maximum number
No argument
One argument
Two arguments
Three arguments

1823
59%
41%

0.4
3

60%
37%

3%
0.3%

11

21

The size of feature interfaces (cont’d)

Including non-exported features:

Average number of arguments to a feature

No argument
One argument
Two arguments
Three arguments

0.5
6

57%
36%

5%
1%

Maximum number

Four arguments 0.6%
Five or six arguments 0.2%

22

The size of feature interfaces (cont’d)

Statistics from EiffelVision 1 (546 classes, exported features):

Average number of arguments to a feature

No argument
One arguments
Two arguments
Three arguments

0.7
7

49%
32%
15%

3%

Maximum number

Four arguments 0.4%
Five to seven arguments 0.4%

Number of features
Percentage of queries
Percentage of commands

3666
39%
61%

12

23

Operands and options

Two possible kinds of argument to a feature:
Operands: values on which feature will operate.
Options: modes that govern how feature will operate.

Example: printing a real. The number is an operand; format
properties (e.g. number of significant digits, width) are options.

print (real_value, number_of_significant_digits,
zone_length, number_of_exponent_digits, ...)

my_window.display (x_position, y_position,
height, width, text, title_bar_text, color, ...)

24

Recognizing options from operands

Two criteria to recognize an option:

There is a reasonable default value.
During the evolution of a class, operands will normally remain
the same, but options may be added.

13

25

Operands and options

The Option Principle:
The arguments of a feature should only be operands.

Options should have default values, with procedures to set
different values if requested.

For example:

my_window.set_background_color ("blue")
...
my_window.display

26

Operands and options

Useful checklist for options:

Option

Window color

Hidden?

Default

White

No

Set

set_background_color

set_visible
set_hidden

Accessed

background_color

hidden

14

27

Naming (1)

Class

ARRAY

STACK

QUEUE

HASH_TABLE

enter

push

add

insert

entry

top

oldest

value

pop

remove_oldest

delete

Features

28

Naming (2)

Class

ARRAY

STACK

QUEUE

HASH_TABLE

put

put

put

put

item

item

item

item

remove

remove

remove

Features

15

29

Naming rules

Achieve consistency by systematically using a set of standardized
names.

Emphasize commonality over differences.

Differences will be captured by:
Signatures (number and types of arguments and result).
Assertions.
Comments.

30

Some standard names

Queries:
count
item, infix "@"
to_external, to_c, from_external

Commands:
make -- For creation
put, extend, replace, force
remove, prune, wipe_out

Boolean queries:
writable, readable, extendible, prunable
empty, full
capacity

-- Usual invariants:
-- empty = (count = 0)
-- full = (count = capacity)

-- Array access:
a.item (i) or a @ i

-- Rejected names:
if s.addable then

s.add (v)

if s.deletable then
s.delete (v)

end

end

16

31

Grammatical rules

Procedures (commands): verbs, infinitive form. Examples: make, put,
display.
Boolean queries: adjectives, e.g. full. Also (especially in case of
potential ambiguity) names of the form is_some_property. Example:
is_first.
• In all cases, you should usually choose the form of the property

that is false by default at initialization (making it true is an event
worth talking about). Example: is_erroneous.

Other queries: nouns or adjectives.Examples: count, error_ window.
Do not use verbs for queries, in particular functions; this goes with the
command-query separation principle (prohibition of side-effects in
functions).

32

Feature categories

class C inherit
…

feature -- Category 1

… Feature declarations

feature {A, B} -- Category 2

… Feature declarations

feature {NONE} -- Category n

… Feature declarations

invariant
…

end

17

33

Feature categories (cont’d)

Standard categories (the only ones in EiffelBase):

Initialization
Access
Measurement
Comparison
Status report
Status setting
Cursor movement
Element change
Removal
Resizing
Transformation

Conversion
Duplication
Basic operations
Obsolete
Inapplicable
Implementation
Miscellaneous

34

Obsolete features and classes

A central problem in IT: how to reconcile progress with the protection of
the installed base?

Obsolete features and classes support smooth evolution.

In class ARRAY:

enter (i: V; v: T) is
obsolete "Use `put (value, index)’"
do

put (v, i)
end

18

35

Obsolete classes

class
ARRAY_LIST [G]

obsolete
"[

Use MULTI_ARRAY_LIST instead
(same semantics, but new name
ensures more consistent terminology).
Caution: do not confuse with ARRAYED_LIST
(lists implemented by one array each).

]"
inherit

MULTI_ARRAY_LIST [G]

end

36

Eiffel

Method, language, environment
Object-oriented to the core
Design by Contract
Soon an ECMA standard
Used in mission-critical systems worldwide
Lots of platforms
Closely integrated with .NET
Also a key tool for education

19

37

The Eiffel method: some principles

Abstraction
Information hiding
Seamlessness
Reversibility
Design by Contract
Open-Closed principle
Single choice principle
Single model principle
Uniform access principle
Command-query separation principle
Option-operand separation principle
Style matters ... See next...

38

Environment: the two offerings from Eiffel
Software

EiffelStudio (“Classic Eiffel”)
Windows, Unix, Linux, VMS, .NET ...

ENViSioN! for Visual Studio .NET

Projects are compatible

20

39

EiffelStudio

Serialization

EiffelStore

EiffelStudio

Ansi C

Executable
system

IL

EiffelBase

WEL

EiffelVision

EiffelNet

EiffelWeb

EiffelMath

EiffelCOM

Persistent
objects

Eiffel
Runtime

Databases
(Rel, OO)

C compilation

Jitter
Eiffel compilation

User
classes

General library

Win32 GUI

Networking

Web scripting

Advanced numerics

External
C/C++/Java

.NET
Assemblies

EiffelBuild
GUI builder

Multiplatform GUI library

Browsing, fast compiling
(Melting Ice™), debugging,
diagrams, metrics...

40

EiffelStudio: Melting Ice™ Technology

Fast recompilation: time depends on size of change, not
size of program
Full type checking
“Freeze” once in a while
Optimized compilation: finalize.

21

41

Melting Ice Technology

MELTED

FROZEN

YOUR SYSTEM

EIFFELSTUDIOExecution,
browsing,
debugging,

documentation ...

MELTING

FREEZING
Machine code
(from C code)

42

Eiffel for .NET

One of the first languages to be available for .NET, right
from the time of first announcement
Full language, with multiple inheritance, Design by
Contract, genericity etc.
Full player: interoperability, consumer, producer, extender,
verifiable, CLS-compliant...
Choice between EiffelStudio and Visual Studio
(ENViSioN!)

22

43

Some Eiffel Software users

Chicago Board of Trade

AMP Investments Lockheed Martin

Hewlett Packard Cap Gemini Ernst & Young

CALFP

AXA Rosenberg

Environmental Protection Agency

EMC

Swedish National Health Board ENEA

Boeing

44

Levels of reusability

0- Used in one system.

1. Used in several systems built by the same person.

2. Used in several systems built by the same group or
company.

3. Used in several systems built by people that are in
contact with the developers.

4. Used by groups unknown to the developers.

23

45

The waterfall model of the lifecycle

FEASIBILITY STUDY

REQUIREMENTS
ANALYSIS

SPECIFICATION

GLOBAL DESIGN

DETAILED DESIGN

IMPLEMENTATION

DISTRIBUTION

VALIDATION &
VERIFICATION

PROJECT PROGRESS

46

The cluster model

Specification
Design

Implementation

V & V

Generalization

Specification

Specification
Design

Implementation

V & V

Generalization

Specification

Feasibility
study

Division
into
clusters

Specification
Design

Implementation

V & V

Generalization

Specification

PROJECT TIME

Cluster 1

Cluster 2

Cluster n

24

47

Development: the traditional view

Separate tools:
Programming environment
Analysis & design tools, e.g. UML

Consequences:
Hard to keep model, implementation, documentation
consistent
Constantly reconciling views
Inflexible, hard to maintain systems
Hard to accommodate bouts of late wisdom
Wastes efforts
Damages quality

48

Development: the Eiffel view

Seamless development:

Single set of notation, tools, concepts, principles throughout
Eiffel is as much for analysis & design as for implementation
& maintenance
Continuous, incremental development
Keep model, implementation and documentation consistent
Reversibility: can go back and forth
Saves money: invest in single set of tools
Boosts quality

25

49

Seamless development (1)

TRANSACTION, PLANE,
CUSTOMER, ENGINE...

Example classes

Specification

50

Seamless development (2)

TRANSACTION, PLANE,
CUSTOMER, ENGINE...

Example classes

Design

Specification

STATE, USER_COMMAND...

26

51

Seamless development (3)

Implementation

TRANSACTION, PLANE,
CUSTOMER, ENGINE...

Example classes

Design

Specification

STATE, USER_COMMAND...

HASH_TABLE,
LINKED_LIST...

52

Seamless development (4)

Implementation

V & V

TRANSACTION, PLANE,
CUSTOMER, ENGINE...

TEST_DRIVER, ...

Example classes

Design

Specification

STATE, USER_COMMAND...

HASH_TABLE,
LINKED_LIST...

27

53

Seamless development (5)

Implementation

V & V

TRANSACTION, PLANE,
CUSTOMER, ENGINE...

TEST_DRIVER, ...

Example classes

Design

Specification

STATE, USER_COMMAND...

HASH_TABLE,
LINKED_LIST...

Genera-
lization

AIRCRAFT, ...

54

deferred class VAT inherit
TANK

feature
in_valve, out_valve: VALVE
fill is

-- Fill the vat.
require

in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end

empty, is_full, is_empty, gauge, maximum, ... [Other features] ...

invariant
is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Eiffel for analysis

Precondition

Class
invariant

-- Specified only.

-- not implemented.

Postcondition

28

55

Seamless development

Implementation

V & V

TRANSACTION, PLANE,
CUSTOMER, ENGINE...

TEST_DRIVER, ...

Example classes

Design

Specification

STATE, USER_COMMAND...

HASH_TABLE,
LINKED_LIST...

Genera-
lization

AIRCRAFT, ...

56

Reversibility

S

V

D
I

S

G

29

57

EiffelStudio support for seamless
development

Diagram Tool
System diagrams can be produced automatically from
software text
Works both ways: update diagrams or update text – other
view immediately updated
No need for separate UML tool

Metrics Tool
Profiler Tool
Documentation generation tool
...

58

Inheritance structure (in EiffelStudio)

30

59

Design by Contract™

Get things right in the first place
Automatic documentation
Self-debugging, self-testing code
Get inheritance right
Give managers the right control tools

60

Applications of contracts
Analysis, design, implementation:

Get the software right from
the start

Testing, debugging, quality assurance

Management, maintenance/evolution

Inheritance

Documentation

31

61

A human contract

Client

Supplier

(Satisfy precondition:)
Bring package before
4 p.m.; pay fee.

(Satisfy postcondition:)
Deliver package by
10 a.m. next day.

OBLIGATIONS

(From postcondition:)
Get package delivered
by 10 a.m. next day.

(From precondition:)
Not required to do
anything if package
delivered after 4 p.m.,
or fee not paid.

BENEFITSdeliver

62

Properties of contracts

A contract:
Binds two parties (or more): supplier, client.
Is explicit (written).
Specifies mutual obligations and benefits.
Usually maps obligation for one of the parties into benefit for the
other, and conversely.
Has no hidden clauses: obligations are those specified.
Often relies, implicitly or explicitly, on general rules applicable to
all contracts (laws, regulations, standard practices).

32

63

A view of software construction

Constructing systems as structured collections of
cooperating software elements — suppliers and clients —
cooperating on the basis of clear definitions of obligations
and benefits.

These definitions are the contracts.

64

deferred class VAT inherit
TANK

feature
in_valve, out_valve: VALVE
fill is

-- Fill the vat.
require

in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end

empty, is_full, is_empty, gauge, maximum, ... [Other features] ...

invariant
is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Contracts for analysis

Precondition

Class
invariant

-- Specified only.

-- not implemented.

Postcondition

33

65

Contracts for analysis

Client

Supplier

(Satisfy precondition:)
Make sure input valve
is open, output valve is
closed.

(Satisfy postcondition:)
Fill the vat and close
both valves.

OBLIGATIONS

(From postcondition:)
Get filled-up vat, with
both valves closed.

(From precondition:)
Simpler processing
thanks to assumption
that valves are in the
proper initial position.

BENEFITSfill

66

Correctness in software

Correctness is a relative notion: consistency of implementation vis-à-vis
specification. (This assumes there is a specification!)

Basic notation: (P, Q: assertions, i.e. properties of the state of the
computation. A: instructions).

{P} A {Q}

“Hoare triple”

What this means (total correctness):
• Any execution of A started in a state satisfying P will terminate in a

state satisfying Q.

34

67

Hoare triples: a simple example

{n > 5} n := n + 9 {n > 13}

Most interesting properties:

Strongest postcondition (from given precondition).
Weakest precondition (from given postcondition).

“P is stronger than or equal to Q” means:
P implies Q

QUIZ: What is the strongest possible assertion? The weakest?

68

Specifying a square root routine

{x >= 0}

... Square root algorithm to compute y ...

{abs (y ^ 2 – x) <= 2 * epsilon * y}
-- i.e.: y approximates exact square root of x
-- within epsilon

35

69

Software correctness

Consider

{P} A {Q}

Take this as a job ad in the classifieds.

Should a lazy employment candidate hope for a weak
or strong P? What about Q?

Two special offers:
1. {False} A {...}
2. {...} A {True}

70

A contract (from EiffelBase)

extend (new: G; key: H)
-- Assuming there is no item of key key,
-- insert new with key; set inserted.

require
key_not_present: not has (key)

ensure
insertion_done: item (key) = new
key_present: has (key)
inserted: inserted
one_more: count = old count + 1

36

71

The contract

Client

Supplier

PRECONDITION

POSTCONDITION

OBLIGATIONS

POSTCONDITION

PRECONDITION

BENEFITSRoutine

72

A class without contracts

class ACCOUNT feature -- Access

balance: INTEGER
-- Balance

Minimum_balance: INTEGER is 1000
-- Minimum balance

feature {NONE} -- Implementation of deposit and withdrawal

add (sum: INTEGER) is
-- Add sum to the balance (secret procedure).

do
balance := balance + sum

end

37

73

Without contracts (cont’d)

feature -- Deposit and withdrawal operations

deposit (sum: INTEGER) is
-- Deposit sum into the account.

do
add (sum)

end

withdraw (sum: INTEGER) is
-- Withdraw sum from the account.

do
add (– sum)

end

may_withdraw (sum: INTEGER): BOOLEAN is
-- Is it permitted to withdraw sum from the account?

do
Result := (balance - sum >= Minimum_balance)

end
end

74

Introducing contracts

class ACCOUNT create

make

feature {NONE} -- Initialization

make (initial_amount: INTEGER) is
-- Set up account with initial_amount.

require
large_enough: initial_amount >= Minimum_balance

do
balance := initial_amount

ensure
balance_set: balance = initial_amount

end

38

75

Introducing contracts (continued)

feature -- Access

balance: INTEGER
-- Balance

Minimum_balance: INTEGER is 1000
-- Minimum balance

feature {NONE} -- Implementation of deposit and withdrawal

add (sum: INTEGER) is
-- Add sum to the balance (secret procedure).

do
balance := balance + sum

ensure
increased: balance = old balance + sum

end

76

With contracts (cont’d)

feature -- Deposit and withdrawal operations

deposit (sum: INTEGER) is
-- Deposit sum into the account.

require
not_too_small: sum >= 0

do
add (sum)

ensure
increased: balance = old balance + sum

end

39

77

With contracts (cont’d)

withdraw (sum: INTEGER) is
-- Withdraw sum from the account.

require
not_too_small: sum >= 0
not_too_big: sum <= balance – Minimum_balance

do
add (– sum)

-- i.e. balance := balance – sum
ensure

decreased: balance = old balance - sum
end

78

The contract

Client

Supplier

(Satisfy precondition:)
Make sure sum is
neither too small nor
too big.

(Satisfy postcondition:)
Update account for
withdrawal of sum.

OBLIGATIONS

(From postcondition:)
Get account updated
with sum withdrawn.

(From precondition:)
Simpler processing:
may assume sum is
within allowable
bounds.

BENEFITSwithdraw

40

79

The imperative and the applicative

do

balance := balance - sum

ensure

balance = old balance - sum

PRESCRIPTIVE DESCRIPTIVE

How?

Operational

Implementation

Command

Instruction

Imperative

What?

Denotational

Specification

Query

Expression

Applicative

80

On the Autobahn:

Licht!

Licht ?

41

81

With contracts (end)

may_withdraw (sum: INTEGER): BOOLEAN is
-- Is it permitted to withdraw sum from the
-- account?

do
Result := (balance - sum >= Minimum_balance)

end

invariant

not_under_minimum: balance >= Minimum_balance

end

82

The class invariant

Consistency constraint applicable to all instances of
a class.

Must be satisfied:
• After creation.
• After execution of any feature by any client.

(Qualified calls only: a.f (...))

42

83

The correctness of a class

For every creation procedure cp:

{precp} docp {postcp and INV}

For every exported routine r:

{INV and prer} dor {postr and INV}

The worst possible erroneous run-time situation
in object-oriented software development:
• Producing an object that does not satisfy

the invariant of its own class.

a.f (…)

a.g (…)

a.f (…)

create a.make (…)
S1

S2

S3

S4

84

The Uniform Access Principle

balance = deposits.total –withdrawals.total

deposits

withdrawals

balance

deposits

withdrawals
(A1)

(A2)

43

85

EiffelStudio documentation

Eiffel projects benefit from richest documentation,
produced automatically from the class text
Available in text, HTML, Postscript, RTF, FrameMaker and
many other formats
Numerous views, textual and graphical

86

Contracts as automatic
documentation

LINKED_LIST Documentation,
generated by EiffelStudio

Demo

44

87

deferred class VAT inherit
TANK

feature
in_valve, out_valve: VALVE
fill is

-- Fill the vat.
require

in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end

empty, is_full, is_empty, gauge, maximum, ... [Other features] ...

invariant
is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Contracts for analysis

Precondition

Class
invariant

-- Specified only.

-- not implemented.

Postcondition

88

Contracts for testing and debugging

Contracts express implicit assumptions behind code
A bug is a discrepancy between intent and code
Contracts state the intent!
In EiffelStudio: select compilation option for run-time
contract monitoring. Can be set a system, cluster,
class level.
May disable monitoring when releasing software
A revolutionary form of quality assurance

45

89

Example: inserting into a list

"Maurer"

Cursor

item

index

count1

forthback

finishstart

afterbefore
Demo

90

Trying to insert too far right

Cursor
(Already past last element)

count1

after

"Maurer"

46

91

Can’t insert!

Cursor
(Already past last element)

count1

after

"Maurer"

92

Query “before″ and command “forth″

47

93

Can’t insert!

Cursor
(Already after last element!)

count1

after

"Maurer"

94

A command and its contract

Precondition

Postcondition

48

95

Where the cursor may go

count+1

Valid cursor positions

item

count1

afterbefore

0

96

From the invariant of class LIST

Valid cursor
positions

49

97

Contract monitoring

A contract violation always signals a bug:
Precondition violation: bug in client
Postcondition violation: bug in routine

98

Contracts and inheritance

Issues: what happens, under inheritance, to
• Class invariants?
• Routine preconditions and postconditions?

50

99

Invariants

Invariant Inheritance rule:
• The invariant of a class automatically includes the

invariant clauses from all its parents,
“and”-ed.

Accumulated result visible in flat and
interface forms.

100

Contracts and inheritance

Correct call:

if a1.α then
a1.r (...)
-- Here a1.β holds.

end

r is
require

γ
ensure

δ

r is
require

α
ensure

β

C A

B

a1: A

a1.r (…)
…

D

51

101

Assertion redeclaration rule

When redeclaring a routine:
• Precondition may only be kept or weakened.
• Postcondition may only be kept or strengthened.

102

A simple language rule does the trick!

Redefined version may have nothing (assertions
kept by default), or

require else new_pre
ensure then new_post

Resulting assertions are:
• original_precondition or new_pre
• original_postcondition and new_post

Assertion redeclaration rule in Eiffel

