ADFOCS 2004

Prabhakar Raghavan
Lecture 2

Corpus size for estimates
-

s Consider n = 1M documents, each with about 1K
terms.

= Avg 6 bytes/term incl spaces/punctuation
= 6GB of data.

= Say there are m = 500K distinct terms among
these.

Don’t build the matrix
-
= 500K x 1M matrix has half-a-trillion O’s and 1’s.
= But it has no more than one billion 1’s.
= Mmaitrix is extremely sparse.
= S0 we devised the inverted index
= Devised query processing for it
= Where do we pay in storage?

= Where do we pay in storage?

Doc # Freq
Term
ambitious
be
brutus
capitol
caesar
did
enact
hath
|
i
it

julius
Term%: P ot

noble
so
the
told
you
was
with

Z
Q
o
o]
7]
—
o]
-
T
i
0]
to]

PNRPRPNRRRRRRRRRREPREPRENRNRR
PNRPREPNRRRRNRRRNRPRPRPOWRNRR
N NEFEPNMNNMNNEFEPFNMNNPEPNMNRPPRPNREPPRPNMNRERPNERERPNENDNN
P RRPRRRPRRPRRPRPRRPNRRPRPRNRPRRLPNRRRERRR

Pointers

Storage analysis

= First will consider space for pointers

= Basic Boolean index only
= Devise compression schemes

Then will do the same for dictionary
No analysis for positional indexes, etc.

Pointers: two conflicting forces

= A term like Calpurnia occurs in maybe one doc
out of a million - would like to store this pointer
using log, 1M ~ 20 bits.

= A term like the occurs in virtually every doc, so
20 bits/pointer is too expensive.
= Prefer 0/1 vector in this case.

Postings file entry

= Store list of docs containing a term in increasing
order of doc id.

s Brutus:[33,47,154,159,202 ...
0 Consequ,en{e: suffices to store gaps.

. 3314.107,5.43 ...

= Hope: most gaps encoded with far fewer than 20
bits.

Variable encoding

= For Calpurnia, will use ~20 bits/gap entry.

= For the, will use ~1 bit/gap entry.

= If the average gap for a term is G, want to use
~log,G bits/gap entry.

= Key challenge: encode every integer (gap) with ~
as few bits as needed for that integer.

vy codes for gap encoding

Length Offset

= Represent a gap G as the pair <length,offset>

= length is in unary and uses | log,G | +1 bits to specify the
length of the binary encoding of

= offset = G - 2llog,G.
= e.g., 9 represented as <1110,001>.
= Encoding G takes 2| log,G] +1 bits.

Exercise
T

= Given the following sequence of y—coded gaps,
reconstruct the postings sequence:

1110001110101011111101101111011

From these y—decode and reconstruct gaps,
then full postings.

What we’ve just done

= Encoded each gap as tightly as possible, to
within a factor of 2.

= For better tuning (and a simple analysis) - need a
handle on the distribution of gap values.

Zipf's law

= The kth most frequent term has frequency
proportional to 1/k.

= Use this for a crude analysis of the space used
by our postings file pointers.

= Not yet ready for analysis of dictionary space.

Zipf's law log-log plot

1000 10000 100000

i
0o

1

10

1 10 100 1000 10000 100000

Rough analysis based on Zipf
|
= Most frequent term occurs in n docs
= n gaps of 1 each.
= Second most frequent term in n/2 docs
= N/2 gaps of 2 each ...
= kth most frequent term in n/k docs

= N/k gaps of k each - use 2log,k +1 bits for each
gap;
= net of ~(2n/k).log,k bits for kth most frequent term.

Sum over k from 1 to m=500K

= Do this by breaking values of k into groups:
group i consists of 21 <k < 2,
= Group i has 2! components in the sum, each
contributing at most (2ni)/2"-1,
= Recall n=1M

= Summing over i from 1 to 19, we get a net
estimate of 340Mbits ~45MB for our index.

e

Work out
calculation.

Caveats
|
= This is not the entire space for our index:
= does not account for dictionary storage;

= as we get further, we’ll store even more stuff in the
index.

= Assumes Zipf's law applies to occurrence of
terms in docs.

= All gaps for a term taken to be the same.
= Does not talk about query processing.

More practical caveat

= y codes are neat but in reality, machines have
word boundaries — 16, 32 bits etc

= Compressing and manipulating at individual bit-
granularity is overkill in practice

» Slows down architecture

= In practice, simpler word-aligned compression
(see Scholer reference) better

Dictionary and postings files

V)
o
o
H*

Term Doc # Freq Term N docs Tot Freq ' 2
ambitious 2 1 ambitious 1 1 » 2
be 2 1 be 1 1‘% 1
brutus 1 1 brutus 2 2 2
brutus 2 1 capitol 1 1/ 1
capitol 1 1 / 1
caesar 1 1 caesar 2 8 ~ 2
caesar 2 2 did 1 1 f 1
did 1 1 enact 1 1 > 1
enact 1 1 hath 1 1 > 2
hath 2 1 I 1 2 > 1
| 1 2 i" 1 1 »

i 1 | —p it 1 1 > i
it 2 1 julius 1 1 = 1
julius 1 1 killed 1 2 > 2
killed 1 2 let 1 1 > 1
me Lo e Lo y
noble 2 1 noble 1 1 4 i
so 2 1 o) 1 1 e >
the 1 1 the 2 2<: >
the 2 1 told 1 e >
told 2 1 you 1 1 > 1
you 2 1 was 2 2 \i 2
was 1 1 with 1 1 - 2
was 2 1 £| ,>

with 2 1 Gap-encoded,

Usually in memory

on disk

T
L
o
PRPPRPPPRPPPPRPNRPRPRPNRPRPREPNRRERRPPRRERO

[

Inverted index storage

Next up: Dictionary storage

= Dictionary in main memory, postings on disk

= This is common, especially for something like a search
engine where high throughput is essential, but can also
store most of it on disk with small, in-memory index

= Tradeoffs between compression and query
processing speed

= Cascaded family of techniques

How big Is the lexicon V?

= Grows (but more slowly) with corpus size

= Empirically okay model: Exercise: Can one
_ b derive this from
m = kN Zipf's Law?

s Where b= 0.5, k=30-100; N = # tokens

= For instance TREC disks 1 and 2 (2 Gb; 750,000
newswire articles): ~ 500,000 terms

= V is decreased by case-folding, stemming

= Indexing all numbers could make it extremely
large (so usually don’t*)

= Spelling errors contribute a fair bit of size

Dictionary storage - first cut

= Array of fixed-width entries
= 500,000 terms; 28 bytes/term = 14MB.

Terms |Freq. Postings ptr.

a 999,712

©<:aardvark 71

e _ T
\©<ZZZZ 99
ke = N

Allows for fast binary| | 20 bytes 4 bytes each
search into dictionary

Exercises
T

= |s binary search really a good idea?
= What are the alternatives?

Fixed-width terms are wasteful
R

= Most of the bytes in the Term column are wasted

— we allot 20 bytes for 1 letter terms.
= And still can’t handle supercalifragilisticexpialidocious.

= Written English averages ~4.,5 characters.

= Exercise: Why is/isn’t this the number_to use for
estimating the dictionary size?

= Short words dominate token counts
= Average word in English: ~8 characters.

Explain this.

Compressing the term list

sStore dictionary as a (long) string of characters:

sPointer to next word shows end of current word
=sHope to save up to 60% of dictionary space.

....systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo... ..

Freq. Postings ptr. Term ptr. J ﬁ

Total string length =
> 500K x 8B = 4MB

29 S

5 Pointers resolve 4M

126 <‘,: positions: log,4M =

{} 22bits = 3bytes
Binary search
these pointers

Total space for compressed list

= 4 bytes per term for Freq.

4 bytes per term for pointer to Postings.

3 bytes per term pointer] Now avg. 11
Avg. 8 bytes per term in term string JF Egiezs(/)t.em’
500K terms = 9.5MB

Blocking

= Store pointers to every kth on term string.
= Example below: k=4.

= Need to store term lengths (1 extra byte)

....7systile9syzygetic8syzygial6syzygy1 1szaibelyite8szczecin9szomo. ...

Freq. Postings ptr. Term ptr.

33 S

ij] Save 9 bytes <’\: Lose 4 bytes on
' on 3 term lengths.
126 J pointers.

Net

= Where we used 3 bytes/pointer without blocking
s 3 X4 =12 bytes for k=4 pointers,

now we use 3+4=7 bytes for 4 pointers.

Shaved another ~0.5MB; can save more with larger k.

Why not go with larger k?

Exercise

= Estimate the space usage (and savings
compared to 9.5MB) with blocking, for block
sizes of k =4, 8 and 16.

Impact on search

Binary search down to 4-term block;

Then linear search through terms in block.

8 documents: binary tree ave. = 2.6 compares
Blocks of 4 (binary tree), ave. = 3 compares

@Y D2 @@

@)
|
—® & & @@
—®
= (1+2-2+4-3+4)/8 =(1+2-2+2-:3+2-4+5)/8
Exercise

= Estimate the impact on search performance (and
slowdown compared to k=1) with blocking, for
block sizes of k =4, 8 and 16.

Total space
-

= By increasing k, we could cut the pointer space in
the dictionary, at the expense of search time;
space 9.5MB — ~8MB

= Adding in the 45MB for the postings, total 53MB
for the simple Boolean inverted index

Some complicating factors
-

s Accented characters

= Do we want to support accent-sensitive as well as
accent-insensitive characters?

= E.g., query resume expands to resume as well as
réesume

= But the query résumé should be executed as only
resumeé

= Alternative, search application specifies
= |f we store the accented as well as plain terms in

the dictionary string, how can we support both
guery versions?

Index size

= Stemming/case folding cut
= number of terms by ~40%
= number of pointers by 10-20%
= total space by ~30%

= Stop words

» Rule of 30: ~30 words account for ~30% of all
term occurrences in written text

= Eliminating 150 commonest terms from indexing
will cut almost 25% of space

Extreme compression (see MG)

s Front-coding:

= Sorted words commonly have long common prefix
— store differences only

= (for last k-1 in a block of k)
8automata8automate9automaticl0automation

—8{automat}al®e20ic30ion

Extra length
beyond automat.

Encodes automat

Begins to resemble general string compression.

Extreme compression

= Using perfect hashing to store terms “within” their
pointers

= not good for vocabularies that change.
= Partition dictionary into pages
= Use B-tree on first terms of pages
= pay a disk seek to grab each page
= if we're paying 1 disk seek anyway to get the
postings, “only” another seek/query term.

Compression: Two alternatives

= Lossless compression: all information is
preserved, but we try to encode it compactly

= What IR people mostly do

m Lossy compression: discard some information
= Using a stoplist can be thought of in this way

= Techniques such as Latent Semantic Indexing (TH)
can be viewed as lossy compression

= One could prune from postings entries unlikely to
turn up in the top k list for query on word

« Especially applicable to web search with huge numbers of
documents but short queries (e.g., Carmel et al. SIGIR
2002)

Top k lists
|
= Don’t store all postings entries for each term
= Only the “best ones”
= Which ones are the best ones?

= More on this subject later, when we get into
ranking

Index construction

Index construction

= Thus far, considered index space
= What about index construction time?

= What strategies can we use with limited
main memory?

Somewhat bigger corpus

= Number of docs = n = 40M
Number of terms = m = 1M
Use Zipf to estimate number of postings entries:
m N+n/2+n/3+....+n/m~nlInm=560M entries
No positional info yet

{}

Check for
yourself

Recall index construction

Term
|
did

RN

= Documents are parsed to extract words and
these are saved with the Document ID.

Doc 1

Doc 2

julius
caesar
|

was
killed
i

the
capitol
brutus
killed
me

) SO

O
o
3]
H*

NNNVNNNNMNNNNNNNNNNRRPRPRRPREPRRERRERRRERRRR

let
it
be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious
Ke Ste Term Doc # Term Doc #
y p | 1 ambitious 2
—— I 2
enact 1-brutus 1
julius 1 brutus 2
= After all documents have caesar ! capitol !
been parsed the inverted file was 1 2
. killed 1 caesar 2
Is sorted by terms 1 1 did 1
_ the 1 enact 1
- - capitol 1 hath 1
brutus 1 | 1
killed 1 | 1
me 1 i 1
so 2 it 2
let 2 * julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 so 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2

Index construction
T

= As we build up the index, cannot exploit
compression tricks

= parse docs one at a time. The final postings entry
for any term is incomplete until the end.

= (actually you can exploit compression, but this
becomes a lot more complex)

= At 10-12 bytes per postings entry, demands
several temporary gigabytes

System parameters for design
-
= Disk seek ~ 1 millisecond

= Block transfer from disk ~ 1 microsecond per
byte (following a seek)
= All other ops ~ 10 microseconds

= E.g., compare two postings entries and decide
their merge order

Bottleneck
R

Parse and build postings entries one doc at a
time

Now sort postings entries by term (then by doc
within each term)

Doing this with random disk seeks would be too

slow

If every comparison took 1 disk seek, and n items could be
sorted with nlog,n comparisons, how long would this take?

Sorting with fewer disk seeks

12-byte (4+4+4) records (term, doc, freq).
These are generated as we parse docs.

Must now sort 560M such 12-byte records by
term.

Define a Block = 10M such records
= can “easily” fit a couple into memory.

Will sort within blocks first, then merge the blocks
into one long sorted order.

Sorting 56 blocks of 10M records

= First, read each block and sort within:
= Quicksort takes about 2 x (10M In 10M) steps

m EXxercise: estimate total time to read each block
from disk and and quicksort it.

= 56 times this estimate - gives us 56 sorted runs
of 10M records each.

= Need 2 copies of data on disk, throughout.

Merging 56 sorted runs

= Merge tree of log,56 ~ 6 layers.

= During each layer, read into memory runs in
blocks of 10M, merge, write back.

N/

Disk

Merge tree

lruns...?
2runs ... ?
4runs ... ?

7 runs, 80M/run

14 runs, 40M/run
/(/@\ 28 runs, 20M/run

Sorted runs.

1 2 55 56

Merging 56 runs

= Time estimate for disk transfer:
= 6 x (56runs x 120MB x 10-%sec) x 2 ~ 22hrs.

\
Work out how these

Disk block transfers are staged,
transfer time. and the total time for
Why is this an merging.
Overestimate?

Exercise - fill in this table

Step Time
1 56 initial quicksorts of 10M records each
2 Read 2 sorted blocks for merging, write back

3 | Merge 2 sorted blocks

? l;> 4 Add (2) + (3) = time to read/merge/write

5 56 times (4) = total merge time

Large memory indexing

= Suppose instead that we had 16GB of memory
for the above indexing task.

= Exercise: how much time to index?
= Repeat with a couple of values of n, m.

= |n practice, spidering interlaced with indexing.

= Spidering bottlenecked by WAN speed and many
other factors - more on this later.

Improvements on basic merge

= Compressed temporary files
= compress terms in temporary dictionary runs

= How do we merge compressed runs to generate
a compressed run?

= Given two y-encoded runs, merge them into a new
y-encoded run

= To do this, first y-decode a run into a sequence of
gaps, then actual records:

= 33,14,107,5... = 33, 47, 154, 159
= 13,12,109,5... - 13, 25, 134, 139

Merging compressed runs

= Now merge:
w 13, 25, 33,47, 134, 139, 154, 159
= Now generate new gap sequence
» 13,12,8,14,87,5,15,5
= Finish by y-encoding the gap sequence
= But what was the point of all this?

= If we were to uncompress the entire run in
memory, we save no memory

= How do we gain anything?

“Zipper” uncompress/decompress

= When merging two runs, bring their y-encoded
versions into memory

= Do NOT uncompress the entire gap sequence at
once — only a small segment at a time
= Merge the uncompressed segments
» Compress merged segments again

/

Compressed Uncom

Compressed, merged output

inputs Segllients
i =

Improving on binary merge tree

= Merge more than 2 runs at a time
= Merge k>2 runs at a time for a shallower tree
= maintain heap of candidates from each run

1| |5 2| |4] 3| |6

Dynamic indexing
-
= Docs come in over time
= postings updates for terms already in dictionary
= new terms added to dictionary
= Docs get deleted

Simplest approach

= Maintain “big” main index
New docs go into “small” auxiliary index
Search across both, merge results

Deletions
= Invalidation bit-vector for deleted docs

= Filter docs output on a search result by this
invalidation bit-vector

Periodically, re-index into one main index

Resources
T

» MG3.3,34,4.2,5

= F. Scholer, H.E. Williams and J. Zobel. Compression of Inverted
Indexes For Fast Query Evaluation. Proc. ACM-SIGIR 2002.
= http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

