
ADFOCS 2004

Prabhakar Raghavan

Lecture 2

Corpus size for estimates

Consider n = 1M documents, each with about 1K
terms.

Avg 6 bytes/term incl spaces/punctuation
6GB of data.

Say there are m = 500K distinct terms among
these.

Don’t build the matrix

500K x 1M matrix has half-a-trillion 0’s and 1’s.

But it has no more than one billion 1’s.
matrix is extremely sparse.

So we devised the inverted index
Devised query processing for it

Where do we pay in storage?

Where do we pay in storage?

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Pointers

Terms

Storage analysis

First will consider space for pointers

Basic Boolean index only
Devise compression schemes

Then will do the same for dictionary

No analysis for positional indexes, etc.

Pointers: two conflicting forces

A term like Calpurnia occurs in maybe one doc
out of a million - would like to store this pointer
using log2 1M ~ 20 bits.

A term like the occurs in virtually every doc, so
20 bits/pointer is too expensive.

Prefer 0/1 vector in this case.

Postings file entry

Store list of docs containing a term in increasing
order of doc id.

Brutus: 33,47,154,159,202 …

Consequence: suffices to store gaps.
33,14,107,5,43 …

Hope: most gaps encoded with far fewer than 20
bits.

Variable encoding

For Calpurnia, will use ~20 bits/gap entry.

For the, will use ~1 bit/gap entry.

If the average gap for a term is G, want to use
~log2G bits/gap entry.

Key challenge: encode every integer (gap) with ~
as few bits as needed for that integer.

γ codes for gap encoding

Represent a gap G as the pair <length,offset>
length is in unary and uses ⎣log2G⎦ +1 bits to specify the
length of the binary encoding of
offset = G - 2⎣log

2
G⎦

e.g., 9 represented as <1110,001>.
Encoding G takes 2 ⎣log2G⎦ +1 bits.

Length Offset

Exercise

Given the following sequence of γ−coded gaps,
reconstruct the postings sequence:

1110001110101011111101101111011

From these γ−decode and reconstruct gaps,
then full postings.

What we’ve just done

Encoded each gap as tightly as possible, to
within a factor of 2.

For better tuning (and a simple analysis) - need a
handle on the distribution of gap values.

Zipf’s law

The kth most frequent term has frequency
proportional to 1/k.

Use this for a crude analysis of the space used
by our postings file pointers.

Not yet ready for analysis of dictionary space.

Zipf’s law log-log plot

Rough analysis based on Zipf

Most frequent term occurs in n docs
n gaps of 1 each.

Second most frequent term in n/2 docs
n/2 gaps of 2 each …

kth most frequent term in n/k docs
n/k gaps of k each - use 2log2k +1 bits for each
gap;

net of ~(2n/k).log2k bits for kth most frequent term.

Sum over k from 1 to m=500K

Do this by breaking values of k into groups:
group i consists of 2i-1 ≤ k < 2i.

Group i has 2i-1 components in the sum, each
contributing at most (2ni)/2i-1.

Recall n=1M

Summing over i from 1 to 19, we get a net
estimate of 340Mbits ~45MB for our index.

Work out
calculation.

Caveats

This is not the entire space for our index:
does not account for dictionary storage;

as we get further, we’ll store even more stuff in the
index.

Assumes Zipf’s law applies to occurrence of
terms in docs.

All gaps for a term taken to be the same.

Does not talk about query processing.

More practical caveat

γ codes are neat but in reality, machines have
word boundaries – 16, 32 bits etc

Compressing and manipulating at individual bit-
granularity is overkill in practice

Slows down architecture

In practice, simpler word-aligned compression
(see Scholer reference) better

Dictionary and postings files
Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq

ambitious 1 1

be 1 1

brutus 2 2
capitol 1 1

caesar 2 3

did 1 1

enact 1 1

hath 1 1

I 1 2

i' 1 1

it 1 1

julius 1 1

killed 1 2

let 1 1

me 1 1

noble 1 1

so 1 1

the 2 2
told 1 1

you 1 1

was 2 2

with 1 1

Usually in memory
Gap-encoded,
on disk

Inverted index storage

Next up: Dictionary storage
Dictionary in main memory, postings on disk

This is common, especially for something like a search
engine where high throughput is essential, but can also
store most of it on disk with small, in-memory index

Tradeoffs between compression and query
processing speed

Cascaded family of techniques

How big is the lexicon V?

Grows (but more slowly) with corpus size

Empirically okay model:

m = kNb

where b ≈ 0.5, k ≈ 30–100; N = # tokens

For instance TREC disks 1 and 2 (2 Gb; 750,000
newswire articles): ~ 500,000 terms

V is decreased by case-folding, stemming

Indexing all numbers could make it extremely
large (so usually don’t*)

Spelling errors contribute a fair bit of size

Exercise: Can one
derive this from

Zipf’s Law?

Dictionary storage - first cut

Array of fixed-width entries
500,000 terms; 28 bytes/term = 14MB.

Terms Freq. Postings ptr.

a 999,712

aardvark 71

…. ….

zzzz 99

Allows for fast binary
search into dictionary

20 bytes 4 bytes each

Exercises

Is binary search really a good idea?

What are the alternatives?

Fixed-width terms are wasteful

Most of the bytes in the Term column are wasted
– we allot 20 bytes for 1 letter terms.

And still can’t handle supercalifragilisticexpialidocious.

Written English averages ~4.5 characters.
Exercise: Why is/isn’t this the number to use for
estimating the dictionary size?

Short words dominate token counts.

Average word in English: ~8 characters.

Explain this.

Compressing the term list

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Binary search
these pointers

Total string length =
500K x 8B = 4MB

Pointers resolve 4M
positions: log24M =

22bits = 3bytes

Store dictionary as a (long) string of characters:
Pointer to next word shows end of current word
Hope to save up to 60% of dictionary space.

Total space for compressed list

4 bytes per term for Freq.

4 bytes per term for pointer to Postings.

3 bytes per term pointer

Avg. 8 bytes per term in term string

500K terms ⇒ 9.5MB

⎫ Now avg. 11
⎬ bytes/term,
⎭ not 20.

Blocking

Store pointers to every kth on term string.
Example below: k=4.

Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

⎫ Save 9 bytes
⎬ on 3
⎭ pointers.

Lose 4 bytes on
term lengths.

Net

Where we used 3 bytes/pointer without blocking
3 x 4 = 12 bytes for k=4 pointers,

now we use 3+4=7 bytes for 4 pointers.

Shaved another ~0.5MB; can save more with larger k.

Why not go with larger k?

Exercise

Estimate the space usage (and savings
compared to 9.5MB) with blocking, for block
sizes of k = 4, 8 and 16.

Impact on search

Binary search down to 4-term block;

Then linear search through terms in block.

8 documents: binary tree ave. = 2.6 compares

Blocks of 4 (binary tree), ave. = 3 compares

= (1+2·2+4·3+4)/8 =(1+2·2+2·3+2·4+5)/8

3

7

5
7

432

8

6

4

2

8

1

65

1

Exercise

Estimate the impact on search performance (and
slowdown compared to k=1) with blocking, for
block sizes of k = 4, 8 and 16.

Total space

By increasing k, we could cut the pointer space in
the dictionary, at the expense of search time;
space 9.5MB → ~8MB

Adding in the 45MB for the postings, total 53MB
for the simple Boolean inverted index

Some complicating factors

Accented characters
Do we want to support accent-sensitive as well as
accent-insensitive characters?

E.g., query resume expands to resume as well as
résumé

But the query résumé should be executed as only
résumé

Alternative, search application specifies

If we store the accented as well as plain terms in
the dictionary string, how can we support both
query versions?

Index size

Stemming/case folding cut
number of terms by ~40%

number of pointers by 10-20%

total space by ~30%

Stop words
Rule of 30: ~30 words account for ~30% of all
term occurrences in written text

Eliminating 150 commonest terms from indexing
will cut almost 25% of space

Extreme compression (see MG)

Front-coding:
Sorted words commonly have long common prefix
– store differences only

(for last k-1 in a block of k)

8automata8automate9automatic10automation

→8{automat}a1◊e2◊ic3◊ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.

Extreme compression

Using perfect hashing to store terms “within” their
pointers

not good for vocabularies that change.

Partition dictionary into pages
use B-tree on first terms of pages

pay a disk seek to grab each page

if we’re paying 1 disk seek anyway to get the
postings, “only” another seek/query term.

Compression: Two alternatives

Lossless compression: all information is
preserved, but we try to encode it compactly

What IR people mostly do

Lossy compression: discard some information
Using a stoplist can be thought of in this way

Techniques such as Latent Semantic Indexing (TH)
can be viewed as lossy compression

One could prune from postings entries unlikely to
turn up in the top k list for query on word

Especially applicable to web search with huge numbers of
documents but short queries (e.g., Carmel et al. SIGIR
2002)

Top k lists

Don’t store all postings entries for each term
Only the “best ones”

Which ones are the best ones?

More on this subject later, when we get into
ranking

Index construction

Index construction

Thus far, considered index space

What about index construction time?

What strategies can we use with limited
main memory?

Somewhat bigger corpus

Number of docs = n = 40M

Number of terms = m = 1M

Use Zipf to estimate number of postings entries:

n + n/2 + n/3 + …. + n/m ~ n ln m = 560M entries

No positional info yet

Check for
yourself

Documents are parsed to extract words and
these are saved with the Document ID.

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall index construction
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

After all documents have
been parsed the inverted file
is sorted by terms

We focus on this sort step.

Index construction

As we build up the index, cannot exploit
compression tricks

parse docs one at a time. The final postings entry
for any term is incomplete until the end.

(actually you can exploit compression, but this
becomes a lot more complex)

At 10-12 bytes per postings entry, demands
several temporary gigabytes

System parameters for design

Disk seek ~ 1 millisecond

Block transfer from disk ~ 1 microsecond per
byte (following a seek)

All other ops ~ 10 microseconds
E.g., compare two postings entries and decide
their merge order

Bottleneck

Parse and build postings entries one doc at a
time

Now sort postings entries by term (then by doc
within each term)

Doing this with random disk seeks would be too
slow

If every comparison took 1 disk seek, and n items could be
sorted with nlog2n comparisons, how long would this take?

Sorting with fewer disk seeks

12-byte (4+4+4) records (term, doc, freq).

These are generated as we parse docs.

Must now sort 560M such 12-byte records by
term.

Define a Block = 10M such records
can “easily” fit a couple into memory.

Will sort within blocks first, then merge the blocks
into one long sorted order.

Sorting 56 blocks of 10M records

First, read each block and sort within:
Quicksort takes about 2 x (10M ln 10M) steps

Exercise: estimate total time to read each block Exercise: estimate total time to read each block
from disk and and from disk and and quicksortquicksort it.it.

56 times this estimate - gives us 56 sorted runs
of 10M records each.

Need 2 copies of data on disk, throughout.

Merging 56 sorted runs

Merge tree of log256 ~ 6 layers.

During each layer, read into memory runs in
blocks of 10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Merge tree

…

…

Sorted runs.

1 2 5655

28 runs, 20M/run

14 runs, 40M/run
7 runs, 80M/run
4 runs … ?
2 runs … ?
1 runs … ?

Merging 56 runs

Time estimate for disk transfer:

6 x (56runs x 120MB x 10-6sec) x 2 ~ 22hrs.

Disk block
transfer time.
Why is this an
Overestimate?

Work out how these
transfers are staged,
and the total time for
merging.

Exercise - fill in this table

TimeStep

56 initial quicksorts of 10M records each

Read 2 sorted blocks for merging, write back

Merge 2 sorted blocks

1

2

3

4

5

Add (2) + (3) = time to read/merge/write

56 times (4) = total merge time

?

Large memory indexing

Suppose instead that we had 16GB of memory
for the above indexing task.

Exercise: how much time to index?

Repeat with a couple of values of n, m.

In practice, spidering interlaced with indexing.
Spidering bottlenecked by WAN speed and many
other factors - more on this later.

Improvements on basic merge

Compressed temporary files
compress terms in temporary dictionary runs

How do we merge compressed runs to generate
a compressed run?

Given two γ-encoded runs, merge them into a new
γ-encoded run

To do this, first γ-decode a run into a sequence of
gaps, then actual records:

33,14,107,5… → 33, 47, 154, 159

13,12,109,5… → 13, 25, 134, 139

Merging compressed runs

Now merge:
13, 25, 33, 47, 134, 139, 154, 159

Now generate new gap sequence
13,12,8,14,87,5,15,5

Finish by γ-encoding the gap sequence

But what was the point of all this?
If we were to uncompress the entire run in
memory, we save no memory

How do we gain anything?

“Zipper” uncompress/decompress

When merging two runs, bring their γ-encoded
versions into memory

Do NOT uncompress the entire gap sequence at
once – only a small segment at a time

Merge the uncompressed segments

Compress merged segments again

Compressed
inputs

Compressed, merged outputUncompressed
segments

Improving on binary merge tree

Merge more than 2 runs at a time
Merge k>2 runs at a time for a shallower tree

maintain heap of candidates from each run

….

….

1 5 2 4 3 6

Dynamic indexing

Docs come in over time
postings updates for terms already in dictionary

new terms added to dictionary

Docs get deleted

Simplest approach

Maintain “big” main index

New docs go into “small” auxiliary index

Search across both, merge results

Deletions
Invalidation bit-vector for deleted docs

Filter docs output on a search result by this
invalidation bit-vector

Periodically, re-index into one main index

Resources

MG 3.3, 3.4, 4.2, 5
F. Scholer, H.E. Williams and J. Zobel. Compression of Inverted
Indexes For Fast Query Evaluation. Proc. ACM-SIGIR 2002.
http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

