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Machine Learning

» Modern version of statistics
» Statistical inference and model building

» Supervised learning: predicting the value of a response
variable given predictor variables (or co-variates)

» Classification or pattern recognition: binary or
categorical response variable

= Regression: numerical response variable

¥

Unsupervised learning (a.k.a. data mining)

» Probabilistic modeling and density estimation
» Exploratory data analysis and structure detection
» Data representations (e.g. dimension reduction)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Matrix decomposition

Information Retrieval

» Deals with methods that enable efficient access to
information

» Paradigmatic application: search engines

» Spectrum of problems and tasks in IR

= search, hypertext, filtering, categorization, visualization,
cross-lingual, distributed IR, personalization, recommender
systems, multimedia, etc.

L 4

Problems covered in this tuturial

= Concept-based information retrieval
= Hypertext link analysis (HITS, PageRank)
= Recommender systems, collaborative filtering

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Matrix decomposition
Machine Learning

ADFOCS 2004, Thomas Hofmann



Latent Structure

» Given a matrix that “encodes” data ...

2
DN

» Potential problems

a11 aij A1m
= too large
. to.o (?ompllca‘ted A=|a; aij Qim
= missing entries
" noisy entries an1 Unj Cnm

= lack of structure

» |s there a simpler way to explain entries?

» There might be a latent structure underlying the data.

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

» How can we “find” or “reveal” this structure?

© Thomas Hofmann,Department of Computer Science, Brown University

Matrix Decomposition

» Common approach: approximately factorize matrix
A~A=L-R

T T

approximation left factor right factor

» Factors are typically constrained to be “thin”

m —q— m
- [RE ¢

n-m->>mn-qg+m-q
factors = latent structure (?)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

n A ~ N reduction
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“ Overview of Tutorial

1. Principal Component Analysis t

g

Linear algebra background, general background, o

PCA, kernel PCA, non-negative matrix decomposition g
ai 2. Continuous Latent Variable Model ‘E
a Probabilistic PCA, maximum likelihood factor 4
£8 . .

analysis, Independent Component Analysis -
2 3. Latent Semantic Analysis & Applications %
L Latent Semantic Analysis, other SVD-based methods, |
£ probabilistic LSA, latent Dirichlet allocation

§:§ i . i L 4
E 4. Spectral Clustering & Link Analysis 5
“ Spectral clustering, manifold learning, HITS, g
= PageRank, probabilistic HITS o

1.

Principal Component
Analysis

© Thomas Hofmann,Department of Computer Science, Brown University & \ it
5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken N[

ADFOCS 2004, Thomas Hofmann



o
R I
NGy

\
MUK

versity

of Computer Science, September 6-10 2004, Saarbriicken

ce, Brown Uni

on the Foundations

© Thomas Hofmann,Department of Computer Scient
5th Max-Planck Advanced Course

1.1

Linear Algebra

Background

nce, September 6-10 2004, Saarbriicken \L. iy

of Computer Sciel

on the Foundations

© Thomas Hofmann,Department of Computer Science, Brown University

5th Max-Planck Advanced Course

Eigenvalues & Eigenvectors

Sv = v

(right) eigenvector
veR™#£0

N

eigenvalue

XER

» Eigenvector equation (for a square mxm matrix S)

Example

(G 0)6)-6)-20)

» How many eigenvalues are there at most?
Sv=Xxv <= (S—A)v=0
only has a non-zero solution if |S — AI| =0

this is a m-th order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial)

ADFOCS 2004, Thomas Hofmann
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Eigenvalues & Eigenvectors

» For symmetric matrixes, eigenvectors for distinct
eigenvalues are orthogonal

Svii2} = Af1,2)V{1,2}, and Ay # A2 = (v, va) =0

» All eigenvalues of a real symmetric matrix are real.

for N\eC,if|S=AM[|=0andS=S" =) R

» All eigenvalues of & positive semidefinite matrix are
non-negative

w'Sw >0, Vw € R™, thenif Sv =\v = A\ >0

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Eigen Decomposition

» Let S € R™*™ be a square matrix with m linearly
independent eigenvectors (a non-defective matrix)

» Theorem: Exists a (unique) eigen decomposition
(cf. matrix diagonalization theorem)
diagonal

. 1
S =UAU T similarity transform

» Columns of Uare eigenvectors of S

» Diagonal elements of A are eigenvalues of §
A =diag(A1, ..., Am), A > Ay

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Symmetric Eigen Decomposition

» If S € R™*™ is a symmetric matrix:

» Theorem: Exists a (unique) eigen decomposition

S = UAU’

ions of Computer Science, September 6-10 2004, Saarbriicken

ce, Brown University

» where U ¢ R™*™ is orthogonal
UI — U—l

(u;, uy) = y;

© Thomas Hofmann,Department of Computer
5th Max-Planck Advanced Course on the Foul

columns are orthogonal
and length normalized

Spectral Decomposition

¥

Spectral decomposition theorem (finite dimensional,
symmetric case, in general: normal matrices/operators)

¥

Eigenvalue subspaces

Uy ={u:Su=Au} =ker (S — Al)

L

Direct sum representation

R™ = @ Uy

AEA(S)

Projection matrix representation

S = E PA <—— commuting orthogonal projection matrices
AEA(S)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Singular Value Decomposition

» For an arbitrary matrix A there exists a factorization
(Singular Value Decomposition = SVD) as follows:

A=UXV eR™™

CWhere O\

) Uc §Rnxk DR= szxk V € Rm,xk’,

.. ! . / o orthonormal
= (i) Uu =1 VvV =I columns
= (i) X = diag(oy,..., oK), 05 = Tiq1 singular
) values
(ordered)

« (iv) Kk =rank(A)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Singular Value Decomposition

» Illustration of SVD dimensions and sparseness

» Full SVD (padded with zeros) vs. reduced SVD

* * * E kS L]
* * * W W L E I
* * * = E & L ks E A
* * * E & & E .
L+ & * * % T "
VT
" "
A U E

T 1
* ¥
» ¥ =
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—
L
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P

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Low-rank Approximation

» SVD can be used to compute optimal low-rank
approximations.

» Approximation problem:

X* = argmin || X —X||z
X:rank(X)=q

Frobenius norm

IAllr =

» Solution via SVD
KT = W @@, o c o @i U e o o, DAV

.
set small singular
values to zero

q
* ’
X* = E OrUyV, column notation: sum
r=1 of rank 1 matrices

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

C. Eckart, G. Young, The approximation of a matrix by another of lower rank.
Psychometrika, 1, 211-218, 1936.

1.2

General
Background

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann



b
™

i
X

(;311 ‘

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Pattern Matrix

» Statistics and machine learning typically starts from
data given in the form of observations, feature
vectors or patterns

» Feature vectors (in some m-dimensional Euclidean space)
x;€eXCR™, i=1,...,n

» Patterns can be summarizes into the pattern matrix

(Xl 11 19 ... Tim
X eRnXm: X = LX{ ) = | i1 T ... Tim

i
/
transposed i-th pattern Xn) Tnl Tn2 -+ Tnm

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Examples: Pattern Matrices

X € Rnxm
» Measurement vectors
- measurement
= |: instance number, e.g. a house gl [ - /:\]Jesu,t of
" j: measurement, e.g. the area of a house ~ Zy | .. .  measurem.
» Digital images as gray-scale vectors el
" |: image number gl o [\1» _
. . . . g s *a . intensity
= |: pixel value at location j=(k,I) Eolio i
» Text documents in bag-of-words representation
®* i: document number o _term
- ] o .
= J: term (word or phrase) in a vocabulary 51 [-\]*frequency
. ©
» User rating data
. item
® |: user number N
.. . gl F.-\]*rating
= |: item (book, movie) T P

ADFOCS 2004, Thomas Hofmann
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Sample Covariance Matrix

» Mean pattern and centered patterns

X

1 « %!
}_{E—E X, X=X;—-%X, X=|"?|=X-1,%

i=1 =/

Xn

» Sample covariance matrix measures (empirical)
correlations between different features or dimensions

mxm I~
S € R™* ) S = (S'rs)lg?‘,sgms S’r‘s = E E TirTis
i=1

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

: . 1l ore
in terms of the pattern matrix 8§ = —XI'X
n

© Thomas Hofmann,Department of Computer Science, Brown University

1.3

Principal Component
Analysis

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Principal Component Analysis

» The central idea of principal component analysis (PCA) is to
reduce the dimensionality of a data set consisting of a large
number of interrelated variables, while retaining as much as
possible of the variation present in the data set. This is achieved
by transforming to a new set of variables, the principal
components, which are uncorrelated and which are ordered such
that the first few retain most of the variation present in all of the
original variables.

[.T. Jolliffe, Principal Component Analysis m

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

1. T. Jolliffe, Principal Component Analysis, Springer, 2", 2002.

Principal Component Analysis

— eigen patterns

patterns > o— A
———— —
S = ~ — low-dimensional
—_ m=m —> representation

¥

Data matrix: pattern matrix

¥

Latent structure: low-dimensional (affine) subspace

v

Decomposition: eigen-decomposition

¥

Applications: workhorse in machine learning, data
mining, signal processing, computer vision, etc.

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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PCA: Derivation

» Retaining a maximal amount of variation

» Formula for the variance of a linear combination of the
original variables:
_ '
W“(X) = <u’ X> e Var[ﬂ“] =uXu covariance matrix
(may be approximated
» Constrained maximization problem by sample cov. mat.)

ions of Computer Science, September 6-10 2004, Saarbriicken

ce, Brown University

u* = max u'Xu

u:{[uf|=1
» Lagrange multiplier technique
L(u,\) = (W'Zu+ A({u,u) — 1)

l differentiation

© Thomas Hofmann,Department of Computer
5th Max-Planck Advanced Course on the Foul

(E — /\I) u = () «—= eigenvalue/vector equation

PCA: Derivation

» The solution must be an eigenvector. Which one?

var[{(u,x)] = u'3Zu = ANu,u) =
) — length one
eigenvector

» The solution is the principal eigenvector (i.e. the one with
the largest eigenvalue)

» To ensure that subsequent PCs are uncorrelated,
search in the orthogonal complement of the directions
identified so far. Spanned by remaining eigenvectors.

Span(uy,...,u;_1) L Span(uy,...,u,,)

» k-th principal component thus corresponds to

eigenvector with k-th largest eigenvalue (glossing over
issues with multiplicities)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Dimension Reduction via PCA

1.
n

q

j=1

S=-X'X

S = U'diag(Aq, - . -
~ U'diag(\1, . . .

low-dimensional representation

X = Z (uj,x)u;

Ags Agats - Am)U
Ag,0,...,0)U

principal component

» Apply eigen-decomposition to covariance matrix

» Project data onto g principal eigenvectors
(corresponding to largest eigenvalues)

» |ldea: Recover latent low-dimensional structure

AU

x: original points
o: projected points

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

J

PCA & Optimal Reconstruction

m
+ Z ¢Vi, q=m
j=q+1

preserved
directions

projected
away

» Theorem (Pearson, 1901): PCA = Orthogonal linear
projection with minimal reconstruction error in the
least squares sense

» Express patterns in orthonormal basis {vi,-..,va}

X =) wigVis wi = (X0 vy) Bkv- vj) =0
. ry Y3/ T

]

» Low-dimensional approximation (linear projection)

q
X; = E wl-jvj
j=1

ADFOCS 2004, Thomas Hofmann

14
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PCA & Optimal Reconstruction

) - v
low-dimensional 2

representation

CaVa \(Xi, V2>V2

)

low-dimensional space embedded in original space

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

PCA & Optimal Reconstruction

¥

Reconstruction error (sum of squares)

% ki3 i 4

3 1 1l

£ . = R | - A . 4.0\2
E=§S:||xi—x;|| =§§: (e — wy)
b_g =1 =1 j=l+1
- s Solve for optimal “shift”
3; cj = (%, vj) i.e. for centered data=0
i » Plugging back in yields for the reconstruction error
é% 1 m n n m
i =3 DD vixi—x) = 5 > (v5,8vy)
£2 j=q+1 =1 j=q+1

v

E is minimized by the eigenvectors of S with smallest
eigenvalues ( )

ADFOCS 2004, Thomas Hofmann

15
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5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

= orthogonal projection

columns are
orthogonal

x =Un(x) +x

PCA & Optimal Reconstruction

» Optimal linear reconstruction (alternative view)
7(x) =U'(x — x)

U e Rqu, (lli,llj> = 6,'j

= formula for optimal reconstruction

patterns —
e — |

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

cese
e

PCA via SVD

n

=1

.
]
~ —
_=>

» SVD of the pattern matrix can be used to compute PCA
X=UxV' =
S

lo,e 1 1
= - X'X = —(VEU)(UZV') = - V2V’
n — n

» This shows: the rows of V are the eigenvectors of S

» On the other hand XV = UX which are just the PC
scores (inner products between data and eigenvectors)

— eigenpatterns

low-dimensional
representation

ADFOCS 2004, Thomas Hofmann
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Application: Eigenfaces

» Example: application to face images

= pattern vector encodes image pixel values in row scan

» Eigenfaces

average
face from www.cs.princeton.edu/

~cdecoro/eigenfaces

from [Lee & Seung 1999]

<
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£
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g
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£
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E
=
=
%
3
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3

© Thomas Hofmann,Department of Computer Science, Brown University

B. Moghaddam and A. Pentland. Face recognition using view-based and modular
eigenspaces. In SPIE, volume 2277, pages 12--21, 1994.

PCA: Applications

» Applications of PCA:

= Dimension reduction as a preprocessing step for other learning
algorithms or analysis steps (e.g. face detection & recognition)

= Recovering data manifolds: finding affine data manifolds

= Data visualization and exploration by plotting data in low-
dimensional space

= Data denoising and reconstruction

» Some Limitations

= Linearity -> nonlinear and kernel PCA

= Uncorrelated is not independent -> independent CA (ICA)

= Probabilistic model/interpretation -> probabilistic PCA

= Least squares approximation may be inappropriate ->
probabilistic Latent Semantic Analysis (pLSA)

= Constraints on sign of loadings -> nonnegative matrix
decomposition

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

1.4

Kernel Principal

Component Analysis

Non-linear PCA

» Sometimes original input features are insufficient or
not powerful enough

» Idea: Non-linear Principal Component Analysis

= Re-represent patterns by extracting non-linear features
(feature space representation)
= Usually a large (potentially infinite) number of non-linear
features will be extracted
= Use PCA in feature space to project down to a smaller number
of features

x ®(x)
, P [r—
Input | map~. feature pca~
Space space

low-dim.
subspace

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

nonlinear PCA

B

ADFOCS 2004, Thomas Hofmann

18



i)
&

i
X

(‘:315 !

Kernel PCA

» Explicit computation of non-linear features is often
prohibitive or even impossible (infinite number of features)

» |dea:
= Computation of PCA can be performed using inner products
between feature vectors

= |mplicit computation of inner products in feature space using
(Mercer) kernels

ions of Computer Science, September 6-10 2004, Saarbriicken

ce, Brown University

» Kernels

= higher order features (polynomial kernels)
k(x,y) = ({(x,y) + 1)’ = monomials of degree < p
= localized features

k(x,y) = exp (=[x — y|I*)

© Thomas Hofmann,Department of Computer
5th Max-Planck Advanced Course on the Foul

Kernel PCA

(P(x;),Su) = AN®(x;),u), Vi=1,...,n

= » Assume for simplicity data is centered in feature space
¢ » Sample covariance matrix in feature space
2 n
§ 1
%-g =1
-~ e Eigenvector equation in feature space
’ 1 ,
4 - Z O(x;)P(x;)'u=Au .
g5 =1 rTEsrens .
gs ¢ projects onto span of = 3 = Z ai(I)(Xi); with a; € R
£3 feature vector sample T
©= » Equations projected onto feature vectors (sufficient)

B. Scholkopf, A. Smola, and K.-R. Miller. Kernel principal component analysis. In:
Advances in Kernel Methods - SV Learning, pages 327-352. MIT Press, Cambridge, MA, 1999.

ADFOCS 2004, Thomas Hofmann
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Kernel PCA

» Introducing the Gram or kernel matrix
K e Rnxng K;‘_j = ((I)(xi),q)(xj)) = k(xi,xj)

» One gets ...

< ,ZQ) x;)P(x;) Zak{)(xk)> < X;) Za]i)(x]>

o
1 e

EK2a = AKo

» Relevant solutions can be found by solving

Ko = nia = eigen decomposition of Gram matrix

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Normalization & Pre-image Problem

» Normalization of eigenvectors in feature space

Zoz a; (O(x;), P(x;)) = (o, Ka) = AN, o) =1

[ —)

> =

» Computing projections of new test patterns
Z Oéz Z 7 u= Z a; P Xz

» Reconstruction in original space leads to pre-image
problem

X = argmin | ®(z) — P®(x)||*  find pattern z who’s feature
z representation is close to the
PCA projection PCA projection

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Example: Kernel PCA

» Example: Kernel PCA on a synthetic data set

» Gaussian kernel

k(x,y) =exp (=[x — y|I*)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

(courtesy of Bernhard Schélkopf)

Example: Kernel PCA
» Application of kernel PCA for de-noising

» Perform non-linear PCA with Gaussian kernel on noisy
images of handwritten digits

[ Gaussian noise |

i
%,-
=
2
[

PP ey
POOOHNABOH K

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

S. Mika, B. Scholkopf, A. Smola, K.-R. Miiller, M. Scholz, and G. Ratsch. Kernel PCA and de-
noising in feature spaces, NIPS 11, pp. 536 - 542, Cambridge, MA, 1999. MIT Press.

ADFOCS 2004, Thomas Hofmann
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1.5

Non-Negative Matrix
Decomposition

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Non-negative Matrix Decomposition

» Approximate low-rank matrix decomposition by non-
negative factors

X~X=LR, LeRX? ReR"

>0

non-negativity constraints

» Motivation

= Applied for non-negative matrices (e.g. pattern matrices with
non-negative measurements such as counts)

= Encode prior knowledge that latent factors are non-negative

= Effect of factors is accumulative (i.e. no cancellations due to
negative contributions)

= Probabilistic interpretation (to come...)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature 401, 788-791 (1999).

ADFOCS 2004, Thomas Hofmann
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NMF: Approximation Criterion

» One needs a suitable approximation criterion to
quantify the approximation error X = LR

» Squared error criterion or Frobenius norm
T

m
Y=N "N a2
/ YAy AASY 1y il

. -
E s5q \‘!{-a X
i=1 j=1

» Divergence criterion (generalized Kullback-Leibler divergence)

. "X Tii .
Edw(X’ X) = Z Z (:,r:?;j log f—j — T + Z‘a‘j)
r.?"}

i=1 g=1

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Reduces to KL divergence, if matrices are normalized ' #;; = const.
i

NMF: Multiplicative Update Rule

» Non-convex optimization problem (Frobenius norm)

(L*,R") = argmin||X — LR|| ¢

L.R>0

= Convex in L given R and in R given L, but not convex in both
simultaneously. (Resort to approximation algorithms.)

» Multiplicative updating

LX), (XRT);

F o WP (. O S o e L Jik

v YT THMITLR),, Lik l“k(LRBT)ik
X X

Convergence analysis: Frobenius norm criterion is non-increasing,
fixed point corresponds to extremal point of criterion.

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, NIPS 13, pp.
556-562, 2001.

ADFOCS 2004, Thomas Hofmann
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5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Non-negative Matrix Decomposition

patterns —»
S —
e — |

O |

non-negative

— factors

I
~ I

_=

» Data matrix: pattern matrix

non-negative
components

» Latent structure: low-dimensional (affine) subspace

spanned by non-negative basis vectors

» Decomposition: non-convex decomposition problem

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

NMF: Application to Face Images

» Prominent application of NMF to automatically detect

parts in images

» |dea:

= Digital images can be represented as matrices with non-
negative luminance values
= Without cancellations, intensities will add up, hence factors
may correspond to localized parts

HLad
NMF

1 1 ] ] []
B i
+ni Rl
"t-j-*."*.-ﬂ“---h-
P
b B N
j~i‘ P«
MR D

Original

ADFOCS 2004, Thomas Hofmann
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2.

Continuous Latent
Variable Models

nce, September 6-10 2004, Saarbricken \{; )

© Thomas Hofmann,Department of Computer Science, Brown University
on the Foundations of Computer Sciel

5th Max-Planck Advanced Course

2.1

Probabilistic Principal
Component Analysis

ADFOCS 2004, Thomas Hofmann
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Probabilistic PCA

» Generative probabilistic model (density model)

x Wz |

observed _— R — \
variables / \

matrix of

latent

mean

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

factor loadings variables parameters
% to be estimated

» Distributional assumptions (normality)

z ~ N(0,I), z € R? ¢~ N(0,0%1), e € R™

» Induced distribution on observables
x ~ N(u, WWT +5°T), x € R™

M. Tipping and C. Bishop, Probabilistic principal component analysis, Journal of the Royal

Statistical Society, Series B 61(3), pp. 611-622, 1999

constrained
Gaussian model

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Probabilistic PCA: Illustration

.-/\'\
/ I‘\
{ \
/ A
Z determinsitic
J/
AR
A\
W\ N
N
N /
\ ""\.;.;._,,,
HIN .
* additive

< isotropic noise
P

ADFOCS 2004, Thomas Hofmann

26



i)
&

i
X

(‘:315 !

latent variable

» General ideas:

p(x,2)

ions of Computer Science, September 6-10 2004, Saarbriicken

ce, Brown University

gL m

p(xlz) =] olaslz) ”

© Thomas Hofmann,Department of Computer
5th Max-Planck Advanced Course on the Foul

»

N’
»
N
L
N

Latent Variable Models

» Probabilistic PCA is a special case of a continuous

model

Define a joint probability model for
observables and latent variables

Latent variables are smaller in number (e.g. low
dimensional) or have a reduced state space
Conditional distribution of observables given
latent variables is assumed to be simple,
typically based on conditional independence
Integrating out latent variables yields a
probabilistic model for the observables

Posterior probabilities recover latent structure

B. S. Everitt, An introduction to latent variable models. Chapman & Hall, London, 1982.

» Maximum likeli

(simple derivation)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Probabilistic PCA: Solution

hood estimation

2= —g (dlog(27) +log |C| + trace(C'S))

N
//

\/,,/
C=WW7 ++°1 S—

» MLE for offset u is the mean C= UquU:;

ﬂ:%in

» MLE for loadings matrix W is
given by (involved derivation)

W =Ug(A, — c’I)3R
/'

g principal eigenvectors/values arbitrary rotation
of S matrix

ADFOCS 2004, Thomas Hofmann
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© Thomas Hofmann,Department of Computer Scient
5th Max-Planck Advanced Course

Probabilistic PCA: Solution

» One can also compute a MLE for the noise variance

» Simple interpretation: lost variance averaged over
dimensions

nce, September 6-10 2004, Saarbriicken \L. iy

of Computer Sciel

on the Foundations

© Thomas Hofmann,Department of Computer Science, Brown University

5th Max-Planck Advanced Course

Probabilistic PCA: Discussion

» Advantages of Probabilistic PCA

True generative model of the data

Ability to deal with missing values in a principled
way

Combination with other statistical modeling
techniques, e.g. mixture models = mixture of PCA

Standard model selection methods for computing
optimal number of retained PCs

Extension to Bayesian PCA

ADFOCS 2004, Thomas Hofmann
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2.2

Maximum Likelihood
Factor Analysis

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Factor Analysis

» Generative probabilistic model (density model)

x=Wz+u+te

observed / \
variables

matrix of latent mean
factor loadings variables parameters
% to be estimated

» Distributional assumptions (normality)
z ~ N(0,1) e~ N(0,®), ® = diag(d1, ..., dm)

» Induced distribution on observab‘les\

~ T m only difference to
x ~ Ny, WW5 + @), x € R probabilistic PCA

B. Rubin and D. T. Thayer, EM algorithms for ML factor analysis, Psychometrika, vol. 47,
no. 1, pp. 69--76, 1982.

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Factor Analysis and PPCA

» PPCA is a constrained factor analysis model

e ~N(0,diag(d1....,0m)) Vs, ¢~ N(0, 0'21)

\/

Or = U2> vr

» Major difference: Factor analysis models variance of
observed variables separately (via @), identified factors
explain co-variance structure

» Other difference:

= computationally more involved (EM algorithm or quasi-Newton)
» no nested structure of factors
= original axis matter in factor analysis, scaling is unimportant

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

2.3

Canonical Correlation
Analysis

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Canonical Correlation Analysis

» Canonical correlation analysis: finding basis vectors
for two sets of variables such that the correlation
between the projections of the variables onto these
basis vectors are mutually maximised

x € RP y € R?
! !
Zy = (WJHX) Zy = <Wy7Y>

~

maximize correlation

_ Wi Say Wy —, (generalized)
\/ (W, Szzwm)(w; S,y Wy) eigenvalue problem

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

2.4

Independent
Component Analysis

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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¥

v

© Thomas Hofmann,Department of Computer
5th Max-Planck Advanced Course on the Foul

Non-Gaussian PCA

Probabilistic model

componentwise

7

nonlinearity

€~ lin%N(O, o°T)

x = Wy(z)+ ¢

~ N(O’ I)
Latent variables g(z): non-Gaussian prior distribution

Independence of z-components is preserved by
componentwise non-linearity

Classical Independent Component Analysis (ICA)
W € R™*™ rank(W) =m

invertible case

noise free case

A. J. Bell and T. J. Sejnowski, An information-maximisation approach to blind separation
and blind deconvolution, Neural Computation, 7(6), 1995.

i

microph 1

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

i

microph 2

S— %Z@(xi)cp(xj)’

mixing
matrix

ICA

~~

m independent

source components

» BSS = “cocktail party problem”

= m microphones and m speakers
= Each microphone measures a linear supposition of signals
= Goal: recover original signals (voices)

speaker 1

speaker 2

ICA & Blind Source Separation

» ICA is a method to solve the Blind Source Separation
(BSS) problem

/

observed
mixed signal

(courtesy of
Tee-Won Lee)

ADFOCS 2004, Thomas Hofmann
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PCA vs ICA: Example

» Simple synthetic data example:

ICA

» PCA aims at de-correlating observables (second order
statistics)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

» ICA aims at independence (including higher order
moments)

Maximizing Non-Gaussianity

» Linearly mixing independent random variables makes
them “more Gaussian” (Central Limit Theorem)

» Linear combination:

(v,x) = (v, Ws) = (W'v s) = (z,8), z=W'yv

combination weights induced combination weights
for observables for independent components

» Find combination weights that make combination
appear “as non-Gaussian as possible”

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

» Will recover one of the independent components (up to
scale and sign)

ADFOCS 2004, Thomas Hofmann
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Measures of Non-Gaussianity

» Different measures of non-Gaussianity have been
proposed (contrast functions)

» kurtosis (4t order cumulant):
kurt(z) = E[z?] — 3(E[2?])?

> 0: super-Gaussian
< 0: sub-Gaussian

super | sub

= negentropy
N . exploits maximum entropy
J('C) - H(zgmm-*) H(Z) property of Gaussian
Gaussian with

same variance

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

= approximation: zero mean,
J(Z) — (E[G(z)] - E[G(Zgauss)])2 unit variance assumed

G: non-quadratic function

ICA Algorithms: FastICA

» Preprocessing:

= Centering (mean = zero)
= Whitening (covariance matrix = unit matrix)

» FastICA (for simplicity: one component case)

= 1. Chose initial random vector w
= 2. Let (approximate Newton iteration)

= E [xg((w,x))] — E[g'({w, x)w]
9(z) = dG(z) g’(,z) _ d*G(z)

dz dz?

_ ow
[lwl|

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

A. Hyvarinen and E. Oja, Independent component analysis: a tutorial, Neural Computation,
13(4-5), pp. 411-420, 2000

ADFOCS 2004, Thomas Hofmann
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Maximum Likelihood ICA

» ICA algorithms can also be based on maximizing the
likelihood of the generative non-Gaussian factor model

» Noisefree, invertible case: )
independent
x = Ws sources

p(x W) = [ [[6(z; = > wiksin) [ [ pi(s)ds
: _ AN

change of variables

logp(x; W) = —log |[W| + Zlogpj (Z wwlx,) ‘/
j i

» Log-likelihood

L(W) = —nlog|W|+ Z Z log p; (Z w,;jlxik)
i k

= optimized with gradient descent procedure

Application of ICA to Images

» ICA on patches of 12-by-12 pixels from pictures of
natural scenes.

» Components are similar to Gabor filters (oriented edge
detectors)

ADFOCS 2004, Thomas Hofmann



)
NI
N

i
X

S

Application of ICA to Brain Signals

» Unmixing multichannel EEG recordings, e.g. to remove
artifacts

ICA decompaosition

Independent Components
g8
LI (9]

|20
W

H v
EEG Scalp Charnels el wv)fn‘ww«w’w % HZE Ic2

0z

ufmstepiond Hi ic3
: Iy -
W H o

™ rw%"w fﬂvr-'vfw'«r

%
z
s

1sec

activations  scalp maps
(u=WX) W

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

T.-P. Jung, S. Makeig, M. J. McKeown, A.J.. Bell, T.-W. Lee, and T. J. Sejnowski, Imaging
Brain Dynamics Using Independent Component Analysis, Proceedings of the IEEE,
89(7):1107-22, 2001.

ICA & Matrix Decomposition

» ICA equations can be written in matrix notation (noise-
free, invertible case), patterns in rows

%

2 7

3 X =SW

£

s

patterns —»
23 mixin

8 [ —]
.§§ ———) X = . g
52 ves matrix
£8 | —
2
1 =
53 — independent
55 reconstructed features
53 ] | ===
£3 “sources” w —
£3 e
g5 e
23
5%
EB
©

ADFOCS 2004, Thomas Hofmann
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Latent Semantic

Analysis
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5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

] Google
Ad Hoc Retrieval

» Search a document collection to find the ones that

satisfy an immediate information need

» Information need is expressed in terms of a query

» Magic: Identify relevant documents based on short,

ambiguous, and incomplete query
) 4’7‘}??9\
7]

K
Search ‘_fx

» By far the most popular form of information access:

= 85% of American Internet users have ever used an online search engine
to find information on the Web (Fox, 2002)

= 29% of Internet users rely on a search engine on a typical day (Fox,
2002)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Document-Term Matrix

‘ D = Document collection ‘ ‘ W= LexiconNocabuIary‘

intelligence Wj

Texas Instruments said it has developed (| Document-Term Matrix ‘
the first 32-bit computer chip designed
specifically for artificial intelligence A
applications [...]
. d Wil W | Wy
S i d
YE SL 1
& § 8
& £&
v @ £ S t D
@ -[.Jof].]2]0]..] 0 [ e SO
X
’ term weighting ‘ d,

ADFOCS 2004, Thomas Hofmann
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A 100 Million®™s of a Typical
Document-term Matrix

Typical:

o Number of documents =~ 1.000.000
» Vocabulary ~ 100.000

e Sparseness < 0.1%
 Fraction depicted ~ le-8

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Vector Space Model

(d, 4

similarity between

sim(d, q) = COS(l(CZ q)) =

document and query 7
Il ll¢1|>
» Retrieval method cosine of angle between
= Rank documents according to query and document(s)

similarity with query
= Term weighting schemes, for
example, TFIDF

= Used in SMART system and
many successor systems, high
popularity

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Vocabulary Mismatch & Robustaess

“labour immigrants Germany”

4, Saarbriicken

que

2} CNM.com - Analysis: Germany tackles labour shortage - July = /
m G2 PRINTTHIS match
; i “German job market for
C’\]\.I.C()m. ‘& immigrants”

/ CHM.com -
? Falmanjub market f F\NDI

& Click to Print SAVE THIS | EMAIL THIS | Close:
Analysis: Germany tackles labour outrage uery “foreian workers in Germany|
) HM, camn -
By ChIV's Beftina Luscher \7> P wermsin e (D
BERLIN, Germany -- With Germany's population expected to Sin/{, by
one tfiere over the next half century, economic experts see its economy
and social warfaresystem in danger if the country does not Anchorage query “German green card”
more immigrants. -
-| \7-> ZNN.com =

Corrupted

5th Max-Planck Advanced Ct

transcription
Automatic Speech Acoustic
Recognizer (ASR) Signal

© Thomas Hofmann,Department of Computer Science, Brown University

Vector Space Model: Pros

» Automatic selection of index terms

» Partial matching of queries and documents (dealing with
the case where no document contains all search terms)

» Ranking according to similarity score (dealing with large
result sets)

» Term weighting schemes (improves retrieval performance)

» Various extensions

= Document clustering
= Relevance feedback (modifying query vector)

» Geometric foundation

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann



i)
I

i
X

(‘:335 !

Problems with Lexical Semantics

» Ambiguity and association in natural language

= Polysemy: Words often have a multitude of meanings and
different types of usage (more urgent for very heterogeneous
collections).

= The vector space model is unable to discriminate between
different meanings of the same word.

$imee (d, ¢) < cos(£(d, 7))

ions of Computer Science, September 6-10 2004, Saarbriicken

ce, Brown University

= Synonymy: Different terms may have an identical or a similar
meaning (weaker: words indicating the same topic).

= No associations between words are made in the vector space
representation.

Sim, .. (d, ) > cos(£(d, 7))

© Thomas Hofmann,Department of Computer
5th Max-Planck Advanced Course on the Foul

Polysemy and Context

» Document similarity on single word level: polysemy and

context
ring
jupiter
_——"| space
meaning 1 voyager

saturn

pl&.l-l‘.let

car
company

dodge
ford

meaning 2

contribution to similarity, if
used in 1st meaning, but not
if in 2nd

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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3.2

Latent Semantic
Analysis via SVD

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Latent Semantic Analysis

» Perform a low-rank approximation of document-term
matrix (typical rank 100-300)

» General idea

= Map documents (and terms) to a low-dimensional
representation.

= Design a mapping such that the low-dimensional space reflects
semantic associations (latent semantic space).

= Compute document similarity based on the inner product in
the latent semantic space

» Goals

= Similar terms map to similar location in low dimensional space
= Noise reduction by dimension reduction

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

M. Berry, S. Dumais, and G. O'Brien. Using linear algebra for intelligent information
retrieval. SIAM Review, 37(4):573--595, 1995.

ADFOCS 2004, Thomas Hofmann
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© Thomas Hofmann,Department of Computer Science, Brown University

Latent Semantic Analysis

» Latent semantic space: illustrating example

O Doc1

Laptop |:|
Portable [] Computer []

O Doc3

=
o
]
=
[=]
o

Display []

LS| Dimension 2

O Doc2

LS| Dimension 1

courtesy of Susan Dumais
© Bellcore

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

LSA Decomposition

» The LSA decomposition via SVD can be summarized as
follows:

) X s ) —» Vectors
! =
|
terms LSA document
vectors

» Document similarity <|,|>

» Folding-in queries 4= 2; Viq

ADFOCS 2004, Thomas Hofmann
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Probabilistic Latent
Semantic Analysis

ce, Brown Uni
on the Foundations

ced Course

© Thomas Hofmann,Department of Computer Scient
5th Max-Planck Advan

Search as Statistical Inference
» Document in bag-of-words representation

China US trade relations

nce, September 6-10 2004, Saarbriicken \k (i}

relations Search
Disney

economic

of Computer Sciel

P(’China’|all other words)
Beijing

intellectual P(’trade’|all other words)

on the Foundations

property negotiations

How probable is it that terms like

human “China‘“ or “trade‘ might occur?

free rights

inced Course

imports
us P

5th Max-Planck Advar

Additional index terms can be added
automatically via statistical inference!

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Probabilistic Latent Semantic Analysis

» Concept-based information retrieval: matching based on
concepts, not terms/words
= E.g. terms like ‘Bejing’, ‘China’, ‘chinese’, or ‘Hong Kong’ refer to the
concept “‘CHINA’
= E.g. terms like ‘economic’ or ‘imports’ refer to the concept ‘TRADE’

» Design goals of pLSA:

= Statistical technique to extract concepts (vs. traditional:
utilization of thesauri, semantic networks, ontologies = high manual
costs, limited adaptivity)

= Domain-specific extraction of concepts based on given
document collection

= Quantitative model for word prediction in documents (concept-
based language model)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

T. Hofmann. Probabilistic latent semantic indexing. In Proceedings 22nd ACM SIGIR, 1999.

Estimation Problem

Documents Terms

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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Term Frequency Estimation

number of occurrences
of term w in document d

/

M ijL(wM) = Z?’L’(gj(;))wf)

Zero frequency problem: terms
not occurring in a document get
zero probability

(does not solve the vocabulary
mismatch problem)

Documents Terms

Maximum Likelihood Estimation

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

Conclusion: = Matching on term level,
not concepts; no semantic repre-
sentation, no content understanding

© Thomas Hofmann,Department of Computer Science, Brown University

Estimation via pLSA

Documents Terms

Concept expression proba-
bilities are estimated based
on all documents that are

2t K dealing with a concept.

N

A'l$ A“:‘v N

ZET o<
JLN N

/17

NN

“Unmixing” of superimposed
concepts is achieved by
statistical learning

Latent algorithm.

Concepts

Conclusion: = No prior knowledge
about concepts required, context and
term co-occurrences are exploited

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University
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pPLSA - Latent Variable Model

» Structural modeling assumption (mixture model)

ﬁLsA(/de)

Document

Document-specific
mixture proportions

language model /

Concept expression

Latent concepts
probabilities

or topics

Model fitting

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

PLSA: Matrix Decomposition

» Mixture model can be written as a matrix factorization

» Equivalent symmetric (joint) model
Prsald,w) =) p(d|z) p(z) p(w]z)
| _ -

X - concept
probabilities pLSA term

—— probabilities
_ﬂ pLSA document

== ' probabilities

» Contrast to LSA/SVD: non-negativity and normalization
(intimate relation to non-negative matrix factorization)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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pLSA via Likelihood Maximization

» Log-Likelihood

L(O,7m5¢) = Y _c(d,w)log | > plw|z; 0)p(z|d; 7)

d,w Z
a - ~ ~
argmax Observed P (w \d)
word frequencies LSA
(9" ’fT) Predictive probability
Y

of pLSA mixture model

» Goal: Find model parameters that maximize the log-
likelihood, i.e. maximize the average predictive
probability for observed word occurrences (non-convex
problem)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Expectation Maximization Algorithm

» E step: posterior probability of latent variables (“concepts”)

eptember 6-10 2004, Saarbriicken \L. L

p(2‘|d; W}p(w|z; 9) Probability that the occurence
p(z|d,w) =

- NUr: ot of term w in document d can be
sz p(2'|d; m)p(wl2'; 6) “explained* by concept z

Foundations of Computer Sciel

» M step: parameter estimation based on “completed”
statistics

p(w|z;0) Zc(d, w)p(zld,w), p(z|d;7) Zc(d, w)p(z|d, w)

rtment of Gefip
ed Courg€ gp

£\ a w

w M )

Y how often is term w how often is document d
EE associated with concept z ? associated with concept z ?

ADFOCS 2004, Thomas Hofmann
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» Concepts (3 of 100) extracted from AP news

g

g Concept 1 Concept 2 Concept 3

2 securities | 94.96324 109.41212 india 91.74842

% firm 88.74591 coast 93.70902 singh 50.34063

& drexel 78.33697 guard 82.11109 militants 49.21986
»E investment = 75.51504 77.45868 gandhi 48.86809
g% bonds 64.23486 75.97172 sikh 47.12099
ssg sec 61.89292 fishing 65.41328 indian 44.29306
§§ bond 61.39895 vessel 64.25243 peru 43.00298
2s junk 61.14784 62.55056 hindu 42.79652
53 milken 58.72266 spill 60.21822 lima 41.87559
;g firms 51.26381 exxon 58.35260 kashmir 40.01138
22 investors 48.80564 54.92072 tamilnadu 39.54702
3¢ lynch 44.91865 waters 53.55938 killed 39.47202
4 insider 44.88536 51.53405 india's 39.25983
§§ shearson 43.82692 alaska 48.63269 punjab 39.22486
g5 boesky 43.74837 46.95736 delhi 38.70990
£2 lambert | 40.77679 46.56804 temple 38.38197
%’_g merrill 40.14225 hazelwood 44.81608 shining 37.62768
0% brokerage | 39.66526 vessels 43.80310 menem 35.42235
52 corporate | 37.94985 42.79100 hindus 34.88001
°” burnham 36.86570 fishermen 41.65175 violence 33.87917
j

7 e— =

= » Concepts (100f 128) extracted from Science Magazine

articles (12K)

é uriwerse 00439 |drug 00672 cells 0.0675 sequence 0.0818 years 0.156

g galasies 0.0375| |patients 00453 stem. 0.0478 sequences  0.0433 millicn 00556

g clusters 00279 |drugs 00444 | | human 0.0421 genome 0.033 ago 0.045
Qg ’I\T matter 0.0233| | clinical 0.0348 cell 0.0309 dna 0.0257 tirne 00317
§ fg‘ E salay 0.0232 | |treatment 0.028 gene 0.025 sequencing 00172 age 0.0243
é g E: clister 00214 | | trials 0.0z77 fissue 0.0185 map 0.0123 vear 0.024
Eg Eestic 0.0137| |therapy 0.0213 cloning 00169 genes 0.0122 record 0.0238
g_é dark 0.0131| | trial 0.0164 transfer 00155 chromesome 0.011% early 0.0233
25 fiht 00103 | |disease  0.0157 | | blosd 0.0113 | | regions 0.0115 || bition 0.0177
g é density 0.01 medical 0.00997| | embtyos 00111 human 00111 history 0.0148
§ g bactetia 00983 male 0.0558 theory 0.0811 immune 00909 | | stars 0.0524
z % bacterial 0.0561 females 0.0541 physice 0.0782 || response 00375 | star 0.0458
é% —_ resistance 0.0431 female 0.052% physicists 0.0146 systerm 0.0358 | | astrophys 0.0237
g'g N coli 0.0381 males 0.0477 cinsteit 0.0142 || responses  0.0322| | mass 0.021
%E E stramns 0.025 sEX 0.033% university 0.01% antigen 00263 | disk 0.0173
EE o microbicl 0.0214 reproductive 0.0172 gravity 0.01% antigens 00184 | | black 0.0161
% é microbial 00156 offspring 0.0168 black 0.0127 || iomunity 00176 | gas 0.0149
EE strain 0.0165 sexual 0.0166 theories 0.01 immunology 00145 | | stellar 0.0127
® salmonella  0.0163 reproduction 0.0143 aps 0.00987| | antibody 0.014 astron 0.0125

resistant 0.0145 eggs 0.0138 matter 0.00954| | autownmune  0.0128 | | hole 0.00824

ADFOCS 2004, Thomas Hofmann
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Live Implementation

2 MedlinePlus Health Information from the National Library of Medicin

File Edt Wiew Favorites Tools Help

@ - () [x] [Z] D DOsewtn Slrrswones @hreds £2) - &

licrosoft Internet Explorer

addess €] http:fjmedineplus.govf

Ship navigation

MedlinePlus

Trusted Health Information for You

Search MedlinePlus,

A service of the U.S. NATIONAL LIBRARY OF MEDICINE
and the NATIONAL INSTITUTES OF HEALTH

About MedlinePlus | Site Map | FAQs | Contact Us

I3 Health Topics

Start here with over 650 topics on
conditions, diseases and wellness

3 Drug Information

About your prescription and over-the-
counter medicines

I3 Medical Encyclopedia
Includes pictures and diagrams

4 Dictionary

Spellings and definitions of medical words

3 News
Health News from the past 30 days

4 Directories
Find doctors, dentists and hospitals
<

Current Health News
» Radioth Mot Meeded for Sorne Breast
Cancers

¥ Soy, Fish Qil May Protect Against
Alzheimer's Disease

¥ Study Finds Immune Therapy for M
Breast Cancer Possible
b More newis

Featured Site

September is Mational Cholesteral
Education hanth from the Mational
Heart, Lung, and Blood Institute

In the Spotliaht ¥

Interactive Tutorials
Quer 165 T
slideshows with L@
sound and picturess

ClinicalTrials.gov
Studies for new

drugs and treatments

NIHSeniorHealt

Health[hHseniorHealth: Health information
for older adults’

b WYyhat's new on MedlinePlus?

Sign up nowl @

£4

(&) hitp: wmy.nlm.nih .o egijmedineplusleavemedplus. pl?theURL=http: rihseriorheakth. gov

@ Internet

, September 6-10 2004, Saarbriicken \

© Thomas Hofmann,Department of Computer Science, Brown University

5th Max-Planck Advanced Course on the Foundations of Computer Science.

3.4

Latent Dirichlet
Allocation

ADFOCS 2004, Thomas Hofmann
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Hierarchical Bayesian Model

» Latent Dirichlet Allocation (LDA) defines a generative
model (for documents) in the following way

= 1. Choose document length

N ~ Poisson(§)

= 2. Choose topic distribution
6 ~ Dirichlet(a)

PLSA

= 3. For each of the N words
e choose a topic 2z; ~ Multinomial(#) p(z|d)
e generate aword  w; ~ P(-|z;, ) p(w|z)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Latent Dirichlet Allocation

» Joint probabilistic model

p(0,2 wla, B) = p(0ler) | | (=il 0)p(wilzi; 6)

/ =1
k

F(Z'—l Oél') —1 —1 Dirichlet
= == g ek
p(fc) TT—ye T(c) 01 k density

» Marginal distribution of a document

e — / p(010) [T 3 p(z410)p(wil=4; 6) do

i—1 z;

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

D. M. Blei and A. Y. Ng and M. |. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res.,
vol 3, 993—1022, 2003.

ADFOCS 2004, Thomas Hofmann
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Topic and Word Simplex

» The geometry of the LDA model (and the pLSA model) can
be sketched as follows:

topic simplex

word simplex

topic 3

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

courtesy of David Blei

Variational Approximation

¥

Computing the marginal distribution is intractable,
hence exact Maximum Likelihood Estimation is not
possible

¥

Instead: Convex variational approximation

¥

Introduce factorizing variational distribution
(parametrized)

n

neglects direct couplings
1(0,27.6) = a(0l) [T a6 — poveen 6w 5 T

=1

¥

Variational EM algorithm: optimize variational
parameters and model parameters in an alternating
fashion (details beyond the scope of this tutorial)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University
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3.5

Recommender
Systems

Users/
Customers

nce, September 6-10 2004, Saarbriicken \L. iy

Judgement/
Selection

of Computer Sciel

on the Foundations

Objects

© Thomas Hofmann,Department of Computer Science, Brown University

5th Max-Planck Advanced Course

Personalized Information Filtering:

“likes”
“has seen”

ADFOCS 2004, Thomas Hofmann
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5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Predicting Preferences and Actions

User Profile

Dr. Strangeloves *****

Three Colors: Blue ****

O Brother, Where Art Thou? *****

Pretty Woman *

Movie? Rating? *

- Tk

*kkk

*kkkk

the Piano

Ea

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Collaborative & Content-Based Filtering

» Collaborative/social filtering

» Properties of persons or similarities between
persons are used to improve predictions.

» Makes use of user profile data

= Formally: starting point is sparse matrix with user
ratings

» Content-based filtering
» Properties of objects or similarities between objects
are used to improve predictions
» Problem: predictive attributes may not exist

ADFOCS 2004, Thomas Hofmann
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Rating Matrix

» Rating matrix is typically a large matrix with many
(mostly) missing values

_
2
]
£
2
8
<
8
g
3
3
F
H .
item
g
g
i5 3
£8
£S
& ©°
5 2
&= .
32
i 4]: |1
22 .
§‘;
user
Es missing ratings
<2 1 1
£5
g
4 1 3
13
©

pLSA-like Decomposition
» Generalization of pLSA (additional rating variable)

Pusa(r,ylu) = > p(rly, 2; p)p(yl2; 0)p(2lu; )

extension to standard pLSA model to
predict ratings explain sparseness pattern

= Explicit decomposition of user preferences (each user can have
multiple interests)

= Probabilistic model can be used to optimize specific objectives
= Data compression and privacy preservation

» Details

= multinomial or Gaussian sampling model for rating variable
= EM algorithm for (approximate) model fitting

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

T. Hofmann, Latent Semantic Models for Collaborative Filtering, ACM Transactions on
Information Systems, 2004, Vol 22(1), pp. 89-115.

ADFOCS 2004, Thomas Hofmann
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Trterest Group 1, *4 5+

Example

» High rating factors:

Trterest Group 2, *4 64

Tterest Group 3, *4 5%

Tterest Group 4,*4 4%

Trterest Group 5, *4 4+

Twister Batman (19207 Trainspotting Dead Win Walking The Zanta Clause
[4.67] [0.054] [4.17] [0.0G6] [&67] [0.032] [&6%] [0.0582] [4.57] [0.014]
Independence D3y (... Apolls 13 Fargo The Tnoth about Ca...  Casper

[F4.07] [0.061] [*57] [0.D&5] [&67] [0.033] [4.37] [0.039] [4.57] [0.014]

Tovy Story True Lies Pulp Fiction Get Shorty Eobin Hood: hdenin ...
[F4.97] [0.057] .77 [0.054] F&7] [0.025] [a67] [0.036] .37 [0.013]

Broken Amow Batman Forewer Clerks Sense and Sensibil...  Tommy Boy

.47 [0.054] [F.17] [0.054] Fa.77] [0.023] 5] [0.035] [ .57 [0.013]
Trerest Grongp o, ¥4 5% Ferect Grouap 7, *4 5% Tterest Gronp 8, *4 2% Tterest Group 9, 44+ Trerest Gronp 10, *39*
The Remainz of the... The Empire Strkes... Pretty \Wlfoman Sleepers A Clockwork Orange. ..
[ .57] [0.047] [4.77] [0.033] P57 [0.058] [4.27] [0.015] [4.37] [0.01]

The Piana Raiders of the Los... hirs. Doubtfire Jermy hEgquine Amadeus (19847
[4.77] [0.043] [4.77] [0.03] P57 [0.058] [a67] [0.013] [F4.27] [0.009]

Like Yigter For Cho... Star Wiars Ghost The First Wives Cl...  Psweho (19603

[4.77] [0.043] [F4.97] [0.036] P47 [0.057] [a.87] [0.013] [F4.37] [0.009]

huch Ado Sbout Mot... Indiana Jones and ... Sleepless in Seatt... illiam &hakespear... One Flew Overthe ..
[4.67] [0.041] [4.57] [0.0245] [4.47] [0.055] [4.57] [0.011] [4.57] [0.0095]

7

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Example

» Low rating factors:

Trterest Group 2, *2+

Triterest Gooup 31, #2234
ET.: The Extrater... Lord of Musions
[F2.67] [0.01] [1.67%] [0.011]

The Sound of hbusic...

Tales From the Hoo. ..

[2.37] [0.0036]

Top Gun (1926
F2.37] [0003E]

ary Poppins (1964,

[1.67] [0.0057]

hallrats
F2.47] [0.0083]

Mizs Craven's Hew W

[F2.37] [0.0083]

Triterest Gooup 26, #1.1+*

Super hiria Bros.

P27 [0.0082]

Trterest Group 27, *0 65+
hfighty hdarphin Pow...

[0.117] [0.017]
The Bevery Hillbi...

[FO.017%] [0.023]
The Brady Bunch hio...

Tterect Groap 33, %18 Rterect Group 34, *18%  Buterest Groap 35,4174
Sleepless in Seatt... Toy Story Striptease

[F1.2%] [0.017] [F2.47] [0.08] [F0.0257] [0.033]

The Fim hdiz=ion: Impossibl... Independence Oay (...
[1.57] [0.015] [F1.87] [0.049] [0.277] [0.029]

Pretty Yivoman Independence Day (... The Cable Guy

[1.67] [0.015] [2.17] [0.04] FO.167] [0.025]

Dawe Tuister Barh Wiire

7] [0.015] 157 [0.045] [ Se-0057] [00:25]

Triterest Group 35, 030+
Dumb and Oumber
[0.00257] [0.038]

Foe ventura: Pet O

Trerest Group 29, *0.16+

Kazaam
[0.0287] .014]

Children of the Co...

Traterest Group 400, *0.16*
Tales From the Hoo. .
[0.0227] [D.0074]

hampire in Broakly ...

[0.347] [0.016]
Richie Rich
[F0.227] [0.014]

The Meat Karate B
FO.217] [014]

[0.287] [0.024]
hortal Kembat
FO.217] [0.01%]

The Bridoes of higd...
FO.0157] [0.013]

[O.016%] [0.034]
Foe Wentura: When ...

[0k [001]
Ahbry Brady Seque...

[*1.3e-0057] [0.007]
The Baby-Sitters C..

0000677 [0.033]

Wigtennard
[O.0347] [0 023]

00837 [0.012]

Halloween: The Cur...
0035 [0.012]

[0 D063 [0.007]

Candyman: Farewell...
[FO.00357] [0 006S]

ADFOCS 2004, Thomas Hofmann
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SVD-based Modeling Approach

» Model: matrix entries have been omitted randomly
unobserved complete ratings

{7“2‘ ; with probability p;;

“ 717 _ with probability 1 — p;;

ions of Computer Science, September 6-10 2004, Saarbriicken

ce, Brown University

omitted ratings

» Two step procedure for predicting missing entries

=
Ei Pij = 9 —.. Tij = PP 1T .
;5 | 1 otherwise 0 otherwise
zi rank k approximation (SVD) rank g approximation (SVD)
Y Y

Pk Rq

SVD-based Modeling Approach

» Theoretical guarantees for reconstruction accuracy (if
omission probabilities are correct)
» Rank of P-approximation:

= Low rank (e.g. 2): “completely random” omission probabilities
= High rank: accurate omission model

» Applicable as a more general data mining technique

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis of data. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), 2001

ADFOCS 2004, Thomas Hofmann
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4.

Spectral Clustering &
Link Analysis

© Thomas Hofmann,Department of Computer Science, Brown University & . it
5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken N[

4.1

Spectral Clustering

ADFOCS 2004, Thomas Hofmann
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Data Clustering

» Goal of data clustering is to automatically discover
grouping structure (clusters)

» Different definition of what a good cluster is exist:

= compactness (e.g. pairwise distances, distance from center or
diameter is small) -> K-means and relatives

— = denseness (i.e. clusters are regions of relatively high density)

’f’m"‘% =1y % fﬂ‘

:: :'%{w?kg =__U."‘h...¢
Ny i

St

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

» Many applications: data mining, document clustering,
computer vision, etc.

Affinity Matrix

» Assumption: distance function (metric) is given

» 1. Compute affinity matrix

A € R™*", a;; = exp [—fnyi - xj||2] ,v>0

= between 0 and 1, exponentially decaying with squared distance
» 2. Normalization (differs for different algorithms)
L=D"3AD"%, D =diag(dy, ..., dn), di = ¥  ay
J

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

d; 1% 0
lij = —==
d. E “degree normalization”
(3

ADFOCS 2004, Thomas Hofmann
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Decomposition & Clustering

» 3. Eigen decomposition and low-rank approximation

L = UAU ~ UAU,

» 4, Row-normalization

ions of Computer Science, September 6-10 2004, Saarbriicken

ce, Brown University

- . Uij
0] = e fi; = g

V 2k U,

» 5. Clustering: cluster rows of U (e.g. using k-means)

© Thomas Hofmann,Department of Computer
5th Max-Planck Advanced Course on the Foul

|Ideal Case Analysis

» Ideal case: perfectly separated cluster, i.e. a;; =0
for data points in different clusters

» Block diagonal (normalized) affinity matrix

LY o ... 0

(2)
L_| 0 L .0
0 0 ... LW

» Eigenvectors: union of the zero-padded eigenvectors of
the individual blocks (clusters)

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

A. Y. Ng, M. |. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In
NIPS 14, 2001.

ADFOCS 2004, Thomas Hofmann
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Ideal Case Analysis

» Spectral graph theory:

= Each block has exactly one strictly positive eigenvector with
eigenvalue 1 (principal eigenvector)

= All other eigenvalues are strictly less than 1.

» Picking k dominant eigenvectors, where k equals the
true number of clusters, one gets:

u 0 ... 0 10 ... 0
U=| 0 u® ... o and U=1|01 .. 0
0o 0 ... u® 00 ... 1

= |n fact one may get UR for some orthogonal matrix R

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

» Clusters correspond to (orthogonal) points on unit
sphere (=well separated)

4.2

The Web as Graph

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

ADFOCS 2004, Thomas Hofmann
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The Web as a Graph

» |deas from spectral graph theory can also be applied to
analyze link structure on the Web (e.g.)

» Web graph: Directed graph

= Web pages/documents correspond to nodes in the graph
= Hyperlinks correspond to directed edges

Based on an AltaVista crawl
with 200M pages and 1.5B links
[Broder et al, 2000, WWW9]

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

S
0RO

~—— Disconnerted components

Degree Distributions

» The Web graph exhibits characteristic power-law
distributions for the in-and out-degree of nodes
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A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J.
Wiener, Graph structure in the Web, WWW9, 2000

ADFOCS 2004, Thomas Hofmann

62



o
R I
NGy

\
MUK

The Web as a Matrix

» Form adjacency matrix of Web graph

= Extremely sparse
= Extremely huge

versity

of Computer Science, September 6-10 2004, Saarbriicken

» Analysis of Web matrix:
» Determine importance of a Web page: Google
(PageRank)
» Find authoritative pages on particular topics: HITS
= |dentify Web communities
e “Bipartite cores”
e Decomposition

ce, Brown Uni

on the Foundations

© Thomas Hofmann,Department of Computer Scient
5th Max-Planck Advanced Course

4.3

nce, September 6-10 2004, Saarbriicken \L. (i

Hypertext Induced
Topic Search

of Computer Sciel

on the Foundations

© Thomas Hofmann,Department of Computer Science, Brown University

5th Max-Planck Advanced Course

ADFOCS 2004, Thomas Hofmann
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Authority from Hyperlinks

» Motivation: different types of queries in IR & search

= specific questions: “in which city lived Kant most of his life?”
= broad-topic queries: “find information on Nietzsche”
= similarity queries: “find pages similar to www.....de/hegel”

» Abundance problem for broad-topic queries

= “Abundance Problem: The number of pages that could reason-
ably be returned as relevant is far too large for a human user
to digest.” [Kleinberg 1999]

= Goal: identify those relevant pages that are the most
authoritative or definitive ones.

» Hyperlink structure

= Page content is insufficient to define authoritativeness

= Exploit hyperlink structure as source of latent/implicit human
judgment to assess and quantify autoritativeness

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Hubs & Authorities

» Associate two numerical scores with each document in
a hyperlinked collection: authority score and hub score

= Authorities: most definitive information sources (on a specific
topic)

= Hubs: most useful compilation of links to authoritative
documents

» Basic presumptions

= Creation of links indicates judgment: conferred authority,
endorsement

= Authority is not conferred directly from page to page, but
rather mediated through hub nodes: authorities may not be
linked directly but through co-citation

= Example: major car manufacturer pages will not point to each other,
but there may be hub pages that compile links to such pages

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

J. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM
Symposium on Discrete Algorithms, 1998

ADFOCS 2004, Thomas Hofmann
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Hub & Authority Scores

» “Hubs and authorities exhibit what could be called a mutually
reinforcing relationship: a good hub is a page that points to
many good authorities; a good authority is a page that is pointed
to by many good hubs” [Kleinberg 1999]

» Notation
Directed Graph G=(V,E), ECVxV
Authority score of page i T, 1€V
Hub score of page i v, i€V

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

J:(Gi)eE

J(ij)eE

» Consistency relationship between two scores

T X Z y; and y; E r;, VieV

equations

;z’E” o Z -yvgf'_l)

3:(GA)EE

yft) ox Z ;;:‘E!_”

J:(i.4)EE
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(t)

Iterative Score Computation (1)

» Translate mutual relationship into iterative update

(t-1)
&

OO
]

M
N

fam =t

W
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Iterative Score Computation (2)

» Matrix notation

Adjacency matrix

1, if(i,j) e B

0, otherwise

Score vectors
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x = (x1,..., 27

y= (yla .. -:y|‘»"|)T

Iterative Score Computation (3)
» Condense into a single update equation (e.g.)

x() o (ATA) x({t—1)

» Question of convergence (ignore absolute scale)

xW— AT1, 1=(,...,1)7

3

Existence ?
(t)
) . X
x(>®) = fhln /

—oo [x®] T Uniqueness ?

» Notice resemblance with eigenvector equations
u = ALu

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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coocococo

AAT =

Example

» Simple example graph e

O ®
@

(= == =
o~RoOo OO
== N=1"
coococeoe

» Hub & authority matrices

20101 1 10000 0
01000 0 00000 0
10100 1 002110
00000 O ATA:001100
100020 001030
to100 1 00000 0

» Authority and Hub weights

x'=(0 0 3660 .1340 .5 0),

yT =(.3660 0 2113 0 2113 .2113).
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©

Convergence

Notation: enumeration of eigenvalues of ATA

Al > )k2 > > /\n > 0, n — |V| note: symmetric and

positive semi-definite

Pick orthonormal basis of eigenvectors
w; = )\%' (ATA) Wi, (wé,wj) = 53'3'

Technical assumption

A1 > Ao i.e. largest (abs.) eigenvalue is of multiplicity 1

Theorem: (using the above definitions and assumptions)

x{() — +wy

i.e. authority score is dominant eigenvector of AT A
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Convergence

» Follows from standard linear algebra result (e.g. Golub
and Van Loan [1989]) = power method

» Requires that x!) = AT'1 is not orthogonal to w;
» Follows from ...

» Corollary: If a matrix M has only non-negative
entries, then w;(M) has only non-negative entries as
well.

» If matrix AT A is not irreducible, then solution will
depend on initialization, otherwise initialization is
basically irrelevant.
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Focused Web Graph

» The above analysis applied to a subgraph of the Web
graph = focused subgraph

» Subgraph should be determined based on a specific
query
= should include most of the authoritative pages
= use simple key-word matching plus graph expansion

» Use text-based search engine to create a root set of
matching documents

» Expand root set to form base set

= context graph of depth 1
= additional heuristics

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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Hypertext Induced Topic Search irs)

» Step 1: Generate focused subgraph G=(V,E)

= retrieve top r result pages for query and add results to V
= for each result page p: add all pages to V to which p points to
= for each result page p:

e add all pages to V which point to p, if their number is less
or equal to s
e otherwise randomly select a set of s pages of the pages
pointing to p
= define E to be the subset of links within VV

» Step 2: Hub-and-Authority Computation

= form adjacency matrix A
= compute authority and hub scores x and y using the iterative
power method with k iterations

= return authority and hub result lists with the top g pages
ranked according to the authority and hub scores, respectively

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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HITS: Discussion

» Pros

= Derives topic-specific authority scores
= Returns list of hubs in addition to authorities
= Computational tractable (due to focused subgraph)

» Cons

= Sensitive to Web spam (artificially increasing hub and authority
weight)

= Query dependence requires expensive context graph building
step

» Topic drift: dominant topic in base set may not be the
intended one

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

» Off-line: Serge Brin and Larry Page are soon-to-become-billionaires, Jon Kleinberg
probably not. One reason for this is that HITS is less well-suited as the basis for a
Web search engine.
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HITS & Matrix Decomposition

» Several densely linked collections of hubs and
authorities may exist:

» multiple meanings of query
» multiple communities dealing with same topic

» Non-principal eigenvectors may carry important
information

» Solution: Pairs of left/right singular vectors in SVD

]
) —>

hub scores

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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4.4

Probabilistic HITS
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Probabilistic HITS

» Probabilistic model of link structure
Probabilistic graph model, i.e., predictive model for additional
links/nodes based on existing ones
Centered around the notion of “Web communities”
Probabilistic version of HITS

Enables to predict the existence of hyperlinks: estimate the
entropy of the Web graph

» Combining with content

Text at every node ...

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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D. Cohn and T. Hofmann. The missing link - a probabilistic model of document content and
hypertext connectivity. In NIPS 13, 2001.

Finding Latent Web Communities

» Web Community: densely connected bipartite
subgraph

» Probabilistic model pHITS (cf. pLSA model)

P(s—t)= ZP(S — 2)P(t — 2)P(z)

Source nodes
P(s — z)

Target nodes
P(t « z)

probability that a random
in-link from t is part of the
community z

probability that a random
out-link from s is part of
the community z

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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identical
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Decomposing the Web Graph

Web subgraph

J
-
J

Community 1

J
g4

J

Links (probabilistically)
belong to exactly one
community.

Nodes may belong to
multiple communities.

Community 2

J

Community 3 D
g
y
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Example: Ulysses

» Decomposition of a base set generated from Altavista with query
“Ulysses” (combined decomposition based on links and text)

ulysses 0.022082
space 0.015334
page 0.013885
home 0.011904
nasa 0.008915
science 0.007417
solar 0.007143
esa 0.006757
mission 0.006090

ulysses.jpl.nasa.gov/
0.028583
helio.estec.esa.nl/ulysses
0.026384
www.sp.ph.ic.ak.uk/
Ulysses 0.026384

grant 0.019197
S 0.017092
ulysses 0.013781
online  0.006809
war 0.006619
school  0.005966
poetry  0.005762
president 0.005259
civil 0.005065
www.lib.siu.edu/projects
/usgrant/ 0.019358
www.whitehouse.gov
/WH/glimpse /presidents
/ug18.html 0.017598
saints.css.edu/mkelsey
/gppg.html 0.015838

page 0.020032
ulysses 0.013361

new 0.010455

web 0.009060

site 0.009009
joyce 0.008430

net 0.007799
teachers 0.007236
information 0.007170
http://www.purchase.edu
/Joyce/Ulysses.htm 0.008469
http://www.bibliomania.com
/Fiction/joyce/ulysses
/index.html 0.007274
http://teachers.net
/chatroom/ 0.005082

ADFOCS 2004, Thomas Hofmann

72



i)
&

i
X

(;311

4.5

PageRank & Google

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken

© Thomas Hofmann,Department of Computer Science, Brown University

Google

» Exploit link analysis to derive a global “importance”
score for each Web page (PageRank)

» Crucial to deal with “document collections” like the
Web which exhibit a high degree of variability in
document quality

» Assumptions:

= Hyperlinks provide latent human annotation

= Hyperlinks represent an implicit endorsement of the page
being pointed to

» In-degree alone is not sufficient

= Can be artificially inflated
= In-links from important documents should receive more weight

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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PageRank

» Recursive definition (models intuition of propagation of
importance score)

=
J
T = 2

rank — 18 : Z d; «——— out-degree

j:(g,0er J
» Matrix notation 7 = (ry,...,7r,)
1/d; if (i) € E

P c R"™", p;i =
> Pij 0 otherwise

7= Pn

\—> eigenvector with eigenvalue of 1

dominant eigenvector of a stochastic
or Markov matrix

5th Max-Planck Advanced Course on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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Random Surfer

» The P-matrix is the transition matrix of a Markov chain

» This models a memoryless stochastic surfer:
= At every page, randomly chose one of the links and follow the
link to the next page
= Repeat ad infinitium

= PageRanks should correspond to the probabilities of a
stationary distribution

» In order to ensure irreducibility of chain (avoid getting
trapped in subgraphs): teleportation probability

- 1
P=aP+(1—a)-11
n

\—. teleportation probability

to random page/node
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PageRank Computation

» Use power method to compute principal eigenvector of
the irreducible stochastic matrix P

» Multiplicity of dominant eigenvalue is 1, all other
eigenvalues have modulus strictly less than 1

iversity

» Convergence speeds depends on separation between
dominant and sub-dominant eigenvalues (can be
controlled by a)

ce, Brown Uni

on the Foundations of Computer Science, September 6-10 2004, Saarbriicken
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