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Acquisition

• Vision:  Images (2D)
• GIS:  Terrains (3D)
• Graphics:  Surfaces (3D)
• Medicine:  MRI (Volumetric 3D)



3

Simulation

• Folding @ Home
– ~1M CPUs, ~200K active
– ~200 Tflops sustained performance
– [Kasson et al. ‘06]
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Abstract Spaces

• Spaces with motion
• Each point in abstract space is a snapshot

• Robotics:  Configuration spaces (nD)

• Biology:  Conformation spaces (nD)
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A Thought Exercise

• Example:  1 x 106 points in 100 dimensions
• How to compress?

– Gzip?
– Zip?
– Better?

• Arbitrary compression not possible
• Knowledge:  Points are on a circle

– Fit a circle, parameterize it
– Store angles (≈ 100x compression)
– Run Gzip

• Insight:  Knowledge of structure allows compression
• Topology deals with structure
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• My view
• Input: Point Cloud Data

– Massive
– Discrete
– Nonuniformly Sampled
– Noisy
– Embedded in Rd, sometimes 

d >> 3

• Mission:  What is its shape?

Computational Topology
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Plan

• Today:
☺ Motivation
– Topology
– Simplicial Complexes
– Invariants
– Homology
– Algebraic Complexes

• Tomorrow
– Geometric Complexes
– Persistent Homology
– The Persistence Algorithm
– Application to Natural Images
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Outline

☺ Motivation
• Topology

– Topological Space 
– Manifolds
– Erlanger Programm
– Classification

• Simplicial Complexes
• Invariants
• Homology
• Algebraic Complexes
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Topological Space

• X:   set of points

• Open set:  subset of X
• Topology:  set of open sets T ⊆ 2X such that

1. If S1, S2 ∈ T, then S1 ∩ S2 ∈ T
2. If {SJ | j ∈ T}, then  ∪j ∈ J Sj ∈ T
3. ∅, X ∈ T

• X = (X, T) is a topological space
• Note:  different topologies possible
• Metric space:  open sets defined by metric
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Homeomorphism

• Topological spaces X, Y
• Map f : X→ Y
• f is continuous, 1-1, onto (bijective)
• f-1 also continuous

• f is a homeomorphism
• X is homeomorphic to Y
• X≈ Y
• X and Y have same topological type
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Examples

• Closed interval

• Circle S1

• Figure 8

• Annulus

• Ball B2

• Sphere S2

• Cube

• interval ≈ S1

• S1 ≈ Figure 8
• S1 ≈ Annulus
• Annulus ≈ B2

• S2 ≈ Cube
• Captures

– boundary
– junctions
– holes
– dimension

• Continuous ⇒ no gluing
• Continuous-1⇒ no tearing
• Stretching allowed!
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Erlanger Programm 1872

• Christian Felix Klein (1849-1925)
• Unifying definition:

1. Transform space in a fixed way
2. Observe properties that do not change

• Transformations
– Rigid motions: translations & rotations
– Homeomorphism: stretch, but do not tear or sew

• Rigid motions ⇒ Euclidean Geometry
• Homeomorphisms ⇒ Topology
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Geometry vs. Topology

• Euclidean geometry
– What does a space look like?
– Quantitative
– Local
– Low-level
– Fine

• Topology
– How is a space connected?
– Qualitative
– Global
– High-level
– Coarse
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The Homeomorphism Problem

• Given: topological spaces X and Y
• Question:  Are they homeomorphic?

• Much coarser than geometry
– Cannot capture singular points (edges, corners)
– Cannot capture size
– Classification system
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Manifolds

• Given X
• Every point x ∈ X has neighborhood ≈ Rd

• (X is separable and Hausdorff)
• X is a d-manifold (d-dimensional)

• X has some points with nbhd ≈Hd = {x ∈ Rd | x1≥ 0}
• X is a d-manifold with boundary
• Boundary ∂X are those points

S2

S1
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Compact 2-Manifolds

• d = 1:  one manifold

• d = 2:  orientable

• d = 2:  non-orientable

S2

Torus Double Torus Triple Torus

S1

Klein BottleProjective Plane P2

. . .

. . .
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Manifold Classification

• Compact manifolds
– closed
– bounded

• d = 1:  Easy
• d = 2:  Done [Late 1800’s]
• d ≥ 4:   Undecidable [Markov 1958]

– Dehn’s Word Problem 1912
– [Adyan 1955]

• d = 3:  Very hard
– The Poincaré Conjecture 1904
– Thurston’s Geometrization Program 1982:  

piece-wise uniform geometry
– Ricci flow with surgery [Perelman ’03]
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Outline

☺ Motivation
☺ Topology
• Simplicial Complexes

– Geometric Definition
– Combinatorial Definition

• Invariants
• Homology
• Algebraic Complexes
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Simplices

• Simplex:  convex hull of affinely independent points

• 0-simplex:  vertex
• 1-simplex:  edge
• 2-simplex:  triangle
• 3-simplex:  tetrahedron
• k-simplex:  k + 1 points

• face of simplex σ:  defined by subset of vertices
• Simplicial complex:  glue simplices along shared faces
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Simplicial Complex

• Every face of a simplex in a complex is in the complex

• Non-empty intersection of two simplices is a face of 
each of them

Edge is missing

Intersection not a vertexSharing half an edge
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Abstract Simplicial Complex

• Set of sets S such that if 
A ∈ S, so is every subset of A

• S = {∅, 
{a}, {b}, {a, b}, {c}, {b, c},
{d}, {c, d}, {e}, {d, e}, {f}, 
{e, f}, {g}, {d, g}, {e, g}, 
{d, e, g}, {h}, {d, h}, {e, h}, 
{g, h}, {d, g, h}, {d, e, h}, {e, g, h},
{d, e, g, h}, {i}, {h, i}, {j}, {i, j}, {k}, 
{i, k}, {j, k}, {i, j, k}, {l}, {k, l},
{m}, {a, m}, {b, m}, {l, m}

}

a
b

c d e

l

f

k

j

i

h
g

m

Geometric Visualization

Vertex Scheme
Abstract Geometric
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Outline

☺ Motivation
☺ Topology
☺ Simplicial Complexes
• Invariants

– Definition
– The Euler Characteristic
– Homotopy

• Homology
• Algebraic Complexes
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Invariants

• The Homeomorphism problem is hard
• How about a partial answer?

• Topological invariant:  a map f that assigns the same
object to spaces of the same topological type
– X≈ Y⇒ f(X) = f(Y)
– f(X) ≠ f(Y) ⇒ X≈ Y (contrapositive)
– f(X) = f(Y) ⇒ nothing

• Spectrum
– trivial: f(X) = one object,        for all X
– complete: f(X) = f(Y) ⇒ X≈ Y
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The Euler Characteristic

• Given:  (abstract) simplicial complex K
• si:  # of  i-simplices in K
• Euler characteristic ξ(K):

ξ(torus) = 9 – 27 + 18 = 0
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The Euler Characteristic

• Invariant, so complex does not matter
• ξ(sphere) = 2

– ξ(tetrahedron) = 4 – 6 + 4 = 2
– ξ(cube) = 8 – 12 + 6 = 2
– ξ(disk ∪ point) = 1 – 0 + 1 = 2

• ξ(g-torus) = 2 – 2g, genus g
• ξ(gP2) = 2 – g
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Homotopy

• Given:  Family of maps ft : X→ Y, t ∈ [0,1] 
• Define F : X × [0,1] → Y, F(x,t) = ft(x)

• If F is continuous, ft is a homotopy
• f0, f1 : X→ Y are homotopic via ft

• f0 ' f1

X
0

1

Y

F
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Homotopy Equivalence

• Given:  f : X→ Y
• Suppose ∃g : Y→ X such that

– f o g ' 1Y
– g o f ' 1X

• f is a homotopy equivalence
• X and Y are homotopy equivalent X' Y
• Comparison

– Homeomorphism:  g o f =  1X f o g = 1Y
– Homotopy: g o f ' 1X f o g ' 1Y

• (Theorem) X≈ Y⇒ X' Y
• Contractible: homotopy equivalent to a point

A
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Outline

☺ Motivation
☺ Topology
☺ Simplicial Complexes
☺ Invariants
• Homology

– Intuition
– Homology Groups
– Computation
– Euler-Poincaré

• Algebraic Complexes
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Intuition
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Overview

• Algebraic topology: algebraic images of topological 
spaces

• Homology
– How cells of dimension n attach to cells of dimension n – 1
– Images are groups, modules, and vector spaces

• Simplicial homology: cells are simplices

• Plan:
– chains:  like paths, maybe disconnected
– cycles:  like loops, but a loop can have multiple components
– boundary:  a cycle that bounds
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Chains

• Given:  Simplicial complex K
• k-chain:

– list of k-simplices in K
– formal sum ∑i ni σi, where ni ∈ {0, 1} and σi ∈ K

• Field Z2
– 0 + 0 = 0
– 0 + 1 = 1 + 0 = 1
– 1 + 1 = 0

• Chain vector space Ck:  vector space spanned by 
k-simplices in K

• rank Ck = sk, number of k-simplices in K



32

• ∂k : Ck → Ck-1

• homomorphism (linear)
• σ = [v0, ..., vk]
• ∂kσ = ∑i [v0, …, vi

0, …, vk],  
where vi

0 indicates that vi is deleted from the sequence
• ∂1ab = a + b
• ∂2abc = ab + bc + ac
• ∂1∂2abc = a + b + b + c + a + c = 0

• (Theorem) ∂k-1∂k = 0 for all k
∂

Boundary Operator

∂
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Cycles

• Let c be a k-chain
• If c has no boundary, it is a k-cycle
• ∂kc = 0, so c ∈ ker ∂k

• Zk = ker ∂k is a subspace of Ck

• ∂1(ab + bc + ac) = 
a + b + b + c + a + c = 0, 
so 1-chain ab + bc + ac is a 1-cycle
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Boundaries

• Let b be a k-chain
• If b bounds something, it is a k-boundary
• ∃d ∈ Ck+1 such that b = ∂k+1d
• Bk = im ∂k+1 is a subspace of Ck

• ∂2(abc) = ab + bc + ac,
so ab + bc + ac is a 1-boundary

• ∂kb = ∂k∂k+1 d = 0, so b is also a k-cycle!
• All boundaries are cycles
• Bk ⊆ Zk ⊆ Ck
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Homology Group

• The kth homology vector space (group) is 
Hk = Zk / Bk = ker ∂k / im ∂k+1

• (Theorem) X' Y⇒ Hk(X) ≅ Hk(Y)
• If z1 = z2 + b, where b ∈ Bk, z1 and z2 are homologous, 

z1∼ z2

z1

z2
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Betti Numbers

• Hk is a vector space
• kth Betti number βk = rank Hk

= rank Zk – rank Bk

• Enrico Betti (1823 – 1892)
• Geometric interpretation in R3

– β0 is number of components
– β1 is rank of a basis for tunnels
– β2 is number of voids

1, 2, 1
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Computation

• ∂k is linear, so it has a matrix Mk in terms of bases for 
Ck and Ck-1

• Zk = ker ∂k, so compute dim(null(Mk))
• Bk = im ∂k+1, so compute dim(range(Mk+1))

• Two Gaussian eliminations, so O(m3), m = |K|
• Same running time for any field

• Over Z, reduction algorithm and matrix entries 
can get large

• Common source of misunderstanding
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Euler-Poincaré

• Recall ξ(K) = ∑i (–1)i si

• si = # k-simplices in K
• si = rank Ci

• Rewrite:  ξ(K) = ∑i (–1)i rank Ci

• (Theorem) ξ(K) = ∑i (–1)i rank Hi = ∑i (–1)i βi

• Sphere:  2 = 1  – 0 + 1
• Torus :  0 = 1 – 2 + 1
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Outline

☺ Motivation
☺ Topology
☺ Simplicial Complexes
☺ Invariants
☺ Homology
• Algebraic Complexes

– Coverings
– The Nerve
– Cech complex
– Vietoris-Rips Complex
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Topology of Points
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Topology of Points

• Topological space X
• Underlying space

• Given:  set of sample points M from X

• Question:   How can we recover the topology of 
X from M?

• Problem:  M has no interesting topology.

M
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Open Covering
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• Cover U = {Ui}i ∈ I
– Ui, open
– M ⊆ U

i ∈ I
U

i

• Idea:  The cover approximates the 
underlying space X

• Question0:  What is the topology of U ?

• Problem:  U is an infinite point set

Open Covering

U
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The Nerve
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The Nerve

• X:  topological space
• U = Ui ∈ I Ui:  open cover of X

• The nerve N of U is
– ∅ ∈ N
– If ∩j ∈ j Uj ≠ ∅ for J ⊆ I, then J ∈ N

• Dual structure
• (Abstract) Simplicial complex

N
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The Nerve Lemma

• (Lemma [Leray])
If sets in the cover are contractible, and 
their finite unions are contractible, 
then N ' U.

• The cover should not introduce or eliminate topological 
structure

• Idea:  Use “nice” sets for covering
– contractible
– convex

• Dual (abstract) simplicial complex will be our 
representation

N
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Cech Complex



48

Cech Complex

• Set:  Ball of radius ε
Bε(x) = { y | d(x, y) < ε}

• Cover:  Bε at every point in M

• Cech complex is nerve of the union of ε-balls

• Cover satisfies Nerve Lemma
• Eduard Cech (1893 – 1960)
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Vietoris-Rips Complex
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Vietoris-Rips Complex

1. Construct ε-graph
2. Expand by add a simplex whenever all

its faces are in the complex
• Note:  We expand by dimension

• V2ε(M) ⊇ Cε(M)
• Not homotopic to union of balls
• Leopold Vietoris (1891 – 2002)
• Eliyahu Rips (1948 –)
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Plan

☺ Today:
– Motivation
– Topology
– Simplicial Complexes
– Invariants
– Homology
– Algebraic Complexes

• Tomorrow
– Geometric Complexes
– Persistent Homology
– The Persistence Algorithm
– Application to Natural Images
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