TOPOLOGICAL DATA ANALYSIS - I

Afra Zomorodian Department of Computer Science *Dartmouth College* September 3, 2007

Acquisition

- Vision: Images (2D)
- GIS: Terrains (3D)
- Graphics: Surfaces (3D)
- Medicine: MRI (Volumetric 3D)

Simulation

- Folding @ Home
 - ~1M CPUs, ~200K active
 - ~200 Tflops sustained performance
 - [Kasson et al. '06]

Abstract Spaces

- Spaces with motion
- Each point in abstract space is a snapshot
- Robotics: Configuration spaces (nD)

• Biology: Conformation spaces (nD)

F. Ess

A Thought Exercise

- Example: 1 x 10⁶ points in 100 dimensions
- How to compress?
 - Gzip?
 - Zip?
 - Better?
- Arbitrary compression not possible
- Knowledge: Points are on a circle
 - Fit a circle, parameterize it
 - Store angles (pprox 100x compression)
 - Run Gzip
- Insight: Knowledge of structure allows compression
- Topology deals with structure

Computational Topology

- My view
- Input: Point Cloud Data
 - Massive
 - Discrete
 - Nonuniformly Sampled
 - Noisy
 - Embedded in R^d, sometimes
 d >> 3

• Mission: What is its shape?

Plan

- Today:
 - ③ Motivation
 - Topology
 - Simplicial Complexes
 - Invariants
 - Homology
 - Algebraic Complexes
- Tomorrow
 - Geometric Complexes
 - Persistent Homology
 - The Persistence Algorithm
 - Application to Natural Images

Outline

③ Motivation

- Topology
 - Topological Space
 - Manifolds
 - Erlanger Programm
 - Classification
- Simplicial Complexes
- Invariants
- Homology
- Algebraic Complexes

Topological Space

- X: set of points
- Open set: subset of X
- Topology: set of open sets $T \subseteq 2^X$ such that
 - 1. If $S_1, S_2 \in T$, then $S_1 \cap S_2 \in T$
 - 2. If {S_J | $j \in T$ }, then $\cup_{j \in J} S_j \in T$
 - 3. \emptyset , $X \in T$
- X = (X, T) is a topological space
- Note: different topologies possible
- Metric space: open sets defined by metric

Homeomorphism

- Topological spaces \mathbb{X}, \mathbb{Y}
- Map $f: \mathbb{X} \to \mathbb{Y}$
- f is continuous, 1-1, onto (bijective)
- f⁻¹ also continuous
- f is a homeomorphism
- X is homeomorphic to Y
- $\mathbb{X} \approx \mathbb{Y}$
- X and Y have same topological type

Examples

- Closed interval
- Circle \mathbb{S}^1
- Figure 8
- Annulus
- Ball \mathbb{B}^2
- Sphere \mathbb{S}^2
- Cube

- interval ≈ S¹
- $\mathbb{S}^1 \approx \text{Figure 8}$
- S¹ ≉ Annulus
- Annulus $\approx \mathbb{B}^2$
- $\mathbb{S}^2 \approx \text{Cube}$
- Captures
 - boundary
 - junctions
 - holes
 - dimension
- Continuous \Rightarrow no gluing
- Continuous⁻¹ \Rightarrow no tearing
- Stretching allowed!

Erlanger Programm 1872

- Christian Felix Klein (1849-1925)
- Unifying definition:
 - *1. Transform* space in a fixed way
 - 2. Observe properties that do not change
- Transformations
 - Rigid motions: translations & rotations
 - Homeomorphism: stretch, but do not tear or sew
- Rigid motions \Rightarrow Euclidean Geometry
- Homeomorphisms \Rightarrow Topology

Geometry vs. Topology

- Euclidean geometry
 - What does a space look like?
 - Quantitative
 - Local
 - Low-level
 - Fine
- Topology
 - How is a space connected?
 - Qualitative
 - Global
 - High-level
 - Coarse

The Homeomorphism Problem

- Given: topological spaces $\mathbb X$ and $\mathbb Y$
- Question: Are they homeomorphic?
- Much coarser than geometry
 - Cannot capture singular points (edges, corners)
 - Cannot capture size
 - Classification system

Manifolds

- Given \mathbb{X}
- Every point $x \in \mathbb{X}$ has neighborhood $\approx \mathbb{R}^d$
- (X is separable and Hausdorff)
- X is a d-manifold (d-dimensional)
- X has some points with nbhd $\approx \mathbb{H}^d = \{x \in \mathbb{R}^d \mid x_1 \ge 0\}$
- X is a d-manifold with boundary
- Boundary $\partial \mathbb{X}$ are those points

 \mathbb{S}^1

S2

Compact 2-Manifolds

Manifold Classification

- Compact manifolds
 - closed
 - bounded
- d = 1: Easy
- d = 2: Done [Late 1800's]
- $d \ge 4$: Undecidable [Markov 1958]
 - Dehn's Word Problem 1912
 - [Adyan 1955]
- d = 3: Very hard
 - The Poincaré Conjecture 1904
 - Thurston's Geometrization Program 1982: piece-wise uniform geometry
 - Ricci flow with surgery [Perelman '03]

Outline

- ③ Motivation
- © Topology
- Simplicial Complexes
 - Geometric Definition
 - Combinatorial Definition
- Invariants
- Homology
- Algebraic Complexes

Simplices

- Simplex: convex hull of affinely independent points
- o-simplex: vertex
- 1-simplex: edge
- 2-simplex: triangle
- 3-simplex: tetrahedron
- k-simplex: k + 1 points
- face of simplex σ : defined by subset of vertices
- Simplicial complex: glue simplices along shared faces

Simplicial Complex

• Every face of a simplex in a complex is in the complex

Edge is missing

Sharing half an edge

Intersection not a vertex

Abstract Simplicial Complex

Set of sets S such that if
 A ∈ S, so is every subset of A

Outline

- ③ Motivation
- © Topology
- © Simplicial Complexes
- Invariants
 - Definition
 - The Euler Characteristic
 - Homotopy
- Homology
- Algebraic Complexes

Invariants

- The Homeomorphism problem is hard
- How about a partial answer?
- Topological invariant: a map f that assigns the *same* object to spaces of the *same* topological type
 - $\hspace{0.1cm} \mathbb{X} \approx \mathbb{Y} \Rightarrow \mathsf{f}(\mathbb{X}) = \mathsf{f}(\mathbb{Y})$
 - $f(\mathbb{X}) \neq f(\mathbb{Y}) \Rightarrow \mathbb{X} \approx \mathbb{Y} \qquad (contrapositive)$
 - $f(X) = f(Y) \Rightarrow nothing$
- Spectrum
 - trivial: f(X) = one object, for all X
 - complete: $f(X) = f(Y) \Rightarrow X \approx Y$

The Euler Characteristic

- Given: (abstract) simplicial complex K
- s_i: # of i-simplices in K
- Euler characteristic ξ(K):

$$\xi(K) = \sum_{i=0}^{\dim K} (-1)^i s_i$$

The Euler Characteristic

- Invariant, so complex does not matter
- $\xi(\text{sphere}) = 2$
 - ξ (tetrahedron) = 4 6 + 4 = 2
 - $-\xi(cube) = 8 12 + 6 = 2$
 - − ξ (disk ∪ point) = 1 − 0 + 1 = 2
- ξ(g-torus) = 2 2g, genus g
- $\xi(g\mathbb{P}^2) = 2 g$

Homotopy

- Given: Family of maps $f_t : \mathbb{X} \to \mathbb{Y}$, $t \in [0,1]$
- Define $F : \mathbb{X} \times [0,1] \to \mathbb{Y}$, $F(x,t) = f_t(x)$

- If F is continuous, f_t is a homotopy
- $f_o, f_1 : \mathbb{X} \to \mathbb{Y}$ are homotopic via f_t
- $f_o \simeq f_1$

Homotopy Equivalence

- Given: $f: \mathbb{X} \to \mathbb{Y}$
- Suppose $\exists g : \mathbb{Y} \to \mathbb{X}$ such that
 - fog \simeq 1 $_{\mathbb{Y}}$
 - g o f $\simeq 1_{\mathbb{X}}$
- f is a homotopy equivalence
- \mathbb{X} and \mathbb{Y} are homotopy equivalent $\mathbb{X} \simeq \mathbb{Y}$
- Comparison
 - Homeomorphism: $g \circ f = 1_X$ $f \circ g = 1_Y$
 - Homotopy: $g \circ f \simeq 1_{\mathbb{X}}$ $f \circ g \simeq 1_{\mathbb{Y}}$
- (Theorem) $\mathbb{X} \approx \mathbb{Y} \Rightarrow \mathbb{X} \simeq \mathbb{Y}$
- Contractible: homotopy equivalent to a point

Outline

- ③ Motivation
- © Topology
- © Simplicial Complexes
- ③ Invariants
- Homology
 - Intuition
 - Homology Groups
 - Computation
 - Euler-Poincaré
- Algebraic Complexes

Intuition

Overview

- Algebraic topology: algebraic images of topological spaces
- Homology
 - How cells of dimension n attach to cells of dimension n 1
 - Images are groups, modules, and vector spaces
- Simplicial homology: cells are simplices
- Plan:
 - chains: like paths, maybe disconnected
 - cycles: like loops, but a loop can have multiple components
 - boundary: a cycle that bounds

Chains

- Given: Simplicial complex K
- k-chain:
 - list of k-simplices in K
 - formal sum $\sum_i n_i \, \sigma_i$, where $n_i \in$ {0, 1} and $\sigma_i \in K$
- Field \mathbb{Z}_2
 - 0 + 0 = 0
 - 0 + 1 = 1 + 0 = 1
 - -1+1=0
- Chain vector space C_k: vector space spanned by k-simplices in K
- rank $C_k = s_k$, number of k-simplices in K

Boundary Operator

- $\partial_k : C_k \to C_{k-1}$
- homomorphism (linear)
- $\sigma = [\mathbf{v}_o, ..., \mathbf{v}_k]$
- $\partial_k \sigma = \sum_i [v_o, ..., v'_i, ..., v_k],$ where v'_i indicates that v_i is deleted from the sequence
- $\partial_1 ab = a + b$
- $\partial_2 abc = ab + bc + ac$
- $\partial_1 \partial_2 abc = a + b + b + c + a + c = o$
- **(Theorem)** $\partial_{k-1}\partial_k = 0$ for all k

Cycles

- Let c be a k-chain
- If c has no boundary, it is a k-cycle
- $\partial_k c = o$, so $c \in \ker \partial_k$
- $Z_k = \ker \partial_k$ is a subspace of C_k
- $\partial_1(ab + bc + ac) =$ a + b + b + c + a + c = 0, so 1-chain ab + bc + ac is a 1-cycle

Boundaries

- Let b be a k-chain
- If b bounds something, it is a k-boundary
- $\exists d \in C_{k+1}$ such that $b = \partial_{k+1} d$
- $B_k = im \partial_{k+1}$ is a subspace of C_k
- $\partial_2(abc) = ab + bc + ac$, so ab + bc + ac is a 1-boundary

- $\partial_k b = \partial_k \partial_{k+1} d = 0$, so b is also a k-cycle!
- All boundaries are cycles
- $B_k \subseteq Z_k \subseteq C_k$

Homology Group

- The kth homology vector space (group) is $H_k = Z_k / B_k = \ker \partial_k / \operatorname{im} \partial_{k+1}$
- (Theorem) $\mathbb{X} \simeq \mathbb{Y} \Rightarrow H_k(\mathbb{X}) \cong H_k(\mathbb{Y})$
- If $z_1 = z_2 + b$, where $b \in B_k$, z_1 and z_2 are homologous, $z_1 \sim z_2$

Betti Numbers

- H_k is a vector space
- kth Betti number β_k = rank H_k = rank Z_k - rank B_k
- Enrico Betti (1823 1892)
- Geometric interpretation in R³
 - β_o is number of components
 - β_1 is rank of a basis for tunnels
 - β_2 is number of voids

Computation

- ∂_k is linear, so it has a matrix M_k in terms of bases for C_k and C_{k-1}
- $Z_k = \ker \partial_k$, so compute dim(null(M_k))
- $B_k = im \partial_{k+1}$, so compute dim(range(M_{k+1}))
- Two Gaussian eliminations, so O(m³), m = |K|
- Same running time for any field
- Over $\mathbb{Z},$ reduction algorithm and matrix entries can get large
- Common source of misunderstanding

Euler-Poincaré

- Recall $\xi(K) = \sum_{i} (-1)^{i} s_{i}$
- s_i = # k-simplices in K
- $s_i = rank C_i$
- Rewrite: $\xi(K) = \sum_{i} (-1)^{i} \operatorname{rank} C_{i}$
- **(Theorem)** $\xi(K) = \sum_{i} (-1)^{i} \operatorname{rank} H_{i} = \sum_{i} (-1)^{i} \beta_{i}$
- Sphere: 2 = 1 0 + 1
- Torus : 0 = 1 2 + 1

Outline

- ③ Motivation
- © Topology
- © Simplicial Complexes
- ☺ Invariants
- © Homology
- Algebraic Complexes
 - Coverings
 - The Nerve
 - Cech complex
 - Vietoris-Rips Complex

Topology of Points

Topology of Points

- Topological space $\mathbb X$
- Underlying space

- Given: set of sample points M from $\mathbb X$
- Question: How can we recover the topology of $\mathbb X$ from M?
- Problem: M has no interesting topology.

Open Covering

Open Covering

- Cover $\mathcal{U} = \{U_i\}_{i \in I}$
 - U_i, open
 - $M \subseteq U_{i \in I} U_{i}$
- Idea: The cover approximates the underlying space $\mathbb X$
- Question': What is the topology of \mathcal{U} ?
- Problem: ${\boldsymbol{\mathcal U}}$ is an infinite point set

The Nerve

The Nerve

- X: topological space
- $\mathcal{U} = U_{i \in I} U_i$: open cover of X
- The nerve N of \mathcal{U} is
 - $\quad \emptyset \in \mathsf{N}$
 - If $\cap_{j\,\in\, j} U_j \,{\neq}\, \emptyset$ for $J\subseteq I,$ then $J\in N$
- Dual structure
- (Abstract) Simplicial complex

N	

The Nerve Lemma

• (Lemma [Leray])

If sets in the cover are contractible, and their finite unions are contractible, then $N \simeq U$.

- The cover should not introduce or eliminate topological structure
- Idea: Use "nice" sets for covering
 - contractible
 - convex
- Dual (abstract) simplicial complex will be our representation

Cech Complex

Cech Complex

- Set: Ball of radius ε B_ε(x) = { y | d(x, y) < ε}
- Cover: B_{ϵ} at every point in M

• Cech complex is nerve of the union of ε -balls

$$C_{\epsilon}(M) = \left\{ \operatorname{conv} T \mid T \subseteq M, \bigcup_{m \in T} B_{\epsilon}(m) \neq \emptyset \right\}$$

- Cover satisfies Nerve Lemma
- Eduard Cech (1893 1960)

Vietoris-Rips Complex

Vietoris-Rips Complex

- 1. Construct ε-graph
- 2. Expand by add a simplex whenever all its faces are in the complex
- Note: We expand by dimension

 $V_{\epsilon}(M) = \{\operatorname{conv} T \mid T \subseteq M, \operatorname{d}(x, y) < \epsilon, \forall x, y \in T\}$

- $V_{2\epsilon}(M) \supseteq C_{\epsilon}(M)$
- Not homotopic to union of balls
- Leopold Vietoris (1891 2002)
- Eliyahu Rips (1948 –)

Plan

- © Today:
 - Motivation
 - Topology
 - Simplicial Complexes
 - Invariants
 - Homology
 - Algebraic Complexes
- Tomorrow
 - Geometric Complexes
 - Persistent Homology
 - The Persistence Algorithm
 - Application to Natural Images