Topological Data Analysis - I

Afra Zomorodian
Department of Computer Science
Dartmouth College
September 3, 2007

Acquisition

- Vision: Images (2D)
- GIS: Terrains (3D)
- Graphics: Surfaces (3D)
- Medicine: MRI (Volumetric 3D)

Simulation

- Folding @ Home
- ~1M CPUs, ~200K active
- ~200 Tflops sustained performance

- [Kasson et al. ‘o6]

Abstract Spaces

- Spaces with motion
- Each point in abstract space is a snapshot
- Robotics: Configuration spaces (nD)

- Biology: Conformation spaces (nD)

A Thought Exercise

- Example: 1×10^{6} points in 100 dimensions
- How to compress?
- Gzip?
- Zip?
- Better?
- Arbitrary compression not possible
- Knowledge: Points are on a circle
- Fit a circle, parameterize it
- Store angles (\approx 100x compression)
- Run Gzip
- Insight: Knowledge of structure allows compression
- Topology deals with structure

Computational Topology

- My view
- Input: Point Cloud Data
- Massive
- Discrete
- Nonuniformly Sampled
- Noisy
- Embedded in \mathbb{R}^{d}, sometimes
 d >> 3
- Mission: What is its shape?

Plan

- Today:
() Motivation
- Topology
- Simplicial Complexes
- Invariants
- Homology
- Algebraic Complexes
- Tomorrow
- Geometric Complexes
- Persistent Homology
- The Persistence Algorithm
- Application to Natural Images

Outline

() Motivation

- Topology
- Topological Space
- Manifolds
- Erlanger Programm
- Classification
- Simplicial Complexes
- Invariants
- Homology
- Algebraic Complexes

Topological Space

- X: set of points
- Open set: subset of X
- Topology: set of open sets $T \subseteq 2^{X}$ such that

1. If $S_{1}, S_{2} \in T$, then $S_{1} \cap S_{2} \in T$
2. If $\left\{S_{J} \mid j \in T\right\}$, then $\cup_{j \in J} S_{j} \in T$
3. $\emptyset, X \in T$

- $\mathbb{X}=(X, T)$ is a topological space
- Note: different topologies possible
- Metric space: open sets defined by metric

Homeomorphism

- Topological spaces \mathbb{X}, \mathbb{Y}
- Mapf: $\mathbb{X} \rightarrow \mathbb{Y}$
- f is continuous, $1-1$, onto (bijective)
- f^{-1} also continuous
- f is a homeomorphism
- \mathbb{X} is homeomorphic to \mathbb{Y}
- $\mathbb{X} \approx \mathbb{Y}$
- \mathbb{X} and \mathbb{Y} have same topological type

Examples

- Closed interval

- Circle \mathbb{S}^{1}
- Figure 8
- Annulus
- Ball \mathbb{B}^{2}
- Sphere \mathbb{S}^{2}

- Cube
- interval $\not \approx \mathbb{S}^{1}$
- $\mathbb{S}^{1} \not \approx$ Figure 8
- $\mathbb{S}^{2} \not \approx$ Annulus
- Annulus $\not \approx \mathbb{B}^{2}$
- $\mathbb{S}^{2} \approx$ Cube
- Captures
- boundary
- junctions
- holes
- dimension
- Continuous \Rightarrow no gluing
- Continuous ${ }^{-1} \Rightarrow$ no tearing
- Stretching allowed!

Erlanger Programm 1872

- Christian Felix Klein (1849-1925)
- Unifying definition:

1. Transform space in a fixed way
2. Observe properties that do not change

- Transformations

- Rigid motions: translations \& rotations
- Homeomorphism: stretch, but do not tear or sew
- Rigid motions \Rightarrow Euclidean Geometry
- Homeomorphisms \Rightarrow Topology

Geometry vs. Topology

- Euclidean geometry
- What does a space look like?
- Quantitative
- Local
- Low-level
- Fine
- Topology
- How is a space connected?
- Qualitative
- Global
- High-level
- Coarse

The Homeomorphism Problem

- Given: topological spaces \mathbb{X} and \mathbb{Y}
- Question: Are they homeomorphic?
- Much coarser than geometry
- Cannot capture singular points (edges, corners)
- Cannot capture size
- Classification system

Manifolds

- Given \mathbb{X}
- Every point $x \in \mathbb{X}$ has neighborhood $\approx \mathbb{R}^{d}$

- (X \mathbb{X} is separable and Hausdorff)
- \mathbb{X} is a d-manifold (d-dimensional)

- \mathbb{X} has some points with nbhd $\approx \mathbb{H}^{d}=\left\{x \in \mathbb{R}^{d} \mid x_{1} \geq 0\right\}$
- \mathbb{X} is a d-manifold with boundary
- Boundary $\partial \mathbb{X}$ are those points

Compact 2-Manifolds

- $d=1$: one manifold
- $d=2$: orientable

Torus

Double Torus

Triple Torus

- d=2: non-orientable

Projective Plane $\mathbb{P}^{2} \quad$ Klein Bottle

Manifold Classification

- Compact manifolds
- closed
- bounded
- $d=1$: Easy
- $d=2$: Done [Late 180o's]
- $\mathrm{d} \geq 4$: Undecidable [Markov 1958]
- Dehn’s Word Problem 1912
- [Adyan 1955]
- $d=3$: Very hard

- The Poincaré Conjecture 1904
- Thurston's Geometrization Program 1982: piece-wise uniform geometry
- Ricci flow with surgery [Perelman '03]

Outline

() Motivation
© Topology

- Simplicial Complexes
- Geometric Definition
- Combinatorial Definition
- Invariants
- Homology
- Algebraic Complexes

Simplices

- Simplex: convex hull of affinely independent points
- o-simplex: vertex
- 1-simplex: edge
- 2-simplex: triangle
- 3-simplex: tetrahedron
- k-simplex: k+1 points
- face of simplex σ : defined by subset of vertices
- Simplicial complex: glue simplices along shared faces

Simplicial Complex

- Every face of a simplex in a complex is in the complex Edge is missing

- Non-empty intersection of two simplices is a face of each of them

Sharing half an edge

Intersection not a vertex

Abstract Simplicial Complex

- Set of sets \mathcal{S} such that if
$\mathrm{A} \in \mathcal{S}$, so is every subset of A
- $\mathcal{S}=\{\emptyset$,
$\{a\},\{b\},\{a, b\},\{c\},\{b, c\}$, $\{d\},\{c, d\},\{e\},\{d, e\},\{f\}$, $\{e, f\},\{g\},\{d, g\},\{e, g\}$, \{d, e, g\}, \{h\}, \{d, h\}, \{e, h\}, $\{\mathrm{g}, \mathrm{h}\},\{\mathrm{d}, \mathrm{g}, \mathrm{h}\},\{\mathrm{d}, \mathrm{e}, \mathrm{h}\},\{\mathrm{e}, \mathrm{g}, \mathrm{h}\}$, $\{d, e, g, h\},\{i\},\{h, i\},\{j\},\{i, j\},\{k\}$,
$\{i, k\},\{j, k\},\{i, j, k\},\{1\},\{k, l\}$, $\{m\},\{a, m\},\{b, m\},\{1, m\}$
\}

Outline

() Motivation
(-) Topology
(:) Simplicial Complexes

- Invariants
- Definition
- The Euler Characteristic
- Homotopy
- Homology
- Algebraic Complexes

Invariants

- The Homeomorphism problem is hard
- How about a partial answer?
- Topological invariant: a map fthat assigns the same object to spaces of the same topological type
$-\mathbb{X} \approx \mathbb{Y} \Rightarrow f(\mathbb{X})=f(\mathbb{Y})$
- $f(\mathbb{X}) \neq f(\mathbb{Y}) \Rightarrow \mathbb{X} \not \approx \mathbb{Y} \quad$ (contrapositive)
$-f(\mathbb{X})=f(\mathbb{Y}) \Rightarrow$ nothing
- Spectrum
- trivial:
- complete:

$$
\begin{aligned}
& f(\mathbb{X})=\text { one object, } \quad \text { for all } \mathbb{X} \\
& f(\mathbb{X})=f(\mathbb{Y}) \Rightarrow \mathbb{X} \approx \mathbb{Y}
\end{aligned}
$$

The Euler Characteristic

- Given: (abstract) simplicial complex K
- s_{i} : \# of i-simplices in K
- Euler characteristic $\xi(\mathrm{K})$:

$$
\xi(K)=\sum_{i=0}^{\operatorname{dim} K}(-1)^{i} s_{i}
$$

$$
\xi \text { (torus) }=9-27+18=0
$$

The Euler Characteristic

- Invariant, so complex does not matter
- ξ (sphere) $=2$
- ξ (tetrahedron) $=4-6+4=2$
- $\xi($ cube $)=8-12+6=2$
- $\xi($ disk \cup point $)=1-0+1=2$

- ξ (g-torus) $=2-2 \mathrm{~g}$, genus g
- $\xi\left(\underline{g} \mathbb{P}^{2}\right)=2-\mathrm{g}$

Homotopy

- Given: Family of maps $f_{t}: \mathbb{X} \rightarrow \mathbb{Y}, t \in[0,1]$
- Define $F: \mathbb{X} \times[0,1] \rightarrow \mathbb{Y}, F(x, t)=f_{t}(x)$

- If F is continuous, f_{t} is a homotopy
- $f_{o}, f_{1}: \mathbb{X} \rightarrow \mathbb{Y}$ are homotopic via f_{t}
- $f_{o} \simeq f_{1}$

Homotopy Equivalence

- Given: $f: \mathbb{X} \rightarrow \mathbb{Y}$
- Suppose $\exists \mathrm{g}: \mathbb{Y} \rightarrow \mathbb{X}$ such that

$$
\begin{aligned}
& -\mathrm{fog} \simeq 1_{\mathbb{X}} \\
& -\mathrm{gof} \simeq 1_{\mathbb{X}}
\end{aligned}
$$

- f is a homotopy equivalence
- \mathbb{X} and \mathbb{Y} are homotopy equivalent $\mathbb{X} \simeq \mathbb{Y}$
- Comparison
- Homeomorphism: \quad gof $=1_{\mathbb{X}} \quad$ fog $=1_{\mathbb{Y}}$
- Homotopy:

$$
g \circ f \simeq 1_{\mathbb{X}} \quad f \circ g \simeq 1_{\mathbb{Y}}
$$

- (Theorem) $\mathbb{X} \approx \mathbb{Y} \Rightarrow \mathbb{X} \simeq \mathbb{Y}$
- Contractible: homotopy equivalent to a point

Outline

() Motivation
(-) Topology
() Simplicial Complexes
(:) Invariants

- Homology
- Intuition
- Homology Groups
- Computation
- Euler-Poincaré
- Algebraic Complexes

Intuition

Overview

- Algebraic topology: algebraic images of topological spaces
- Homology
- How cells of dimension n attach to cells of dimension $n-1$
- Images are groups, modules, and vector spaces
- Simplicial homology: cells are simplices
- Plan:
- chains: like paths, maybe disconnected
- cycles: like loops, but a loop can have multiple components
- boundary: a cycle that bounds

Chains

- Given: Simplicial complex K
- k-chain:
- list of k-simplices in K
- formal sum $\sum_{i} n_{i} \sigma_{i}$, where $n_{i} \in\{0,1\}$ and $\sigma_{i} \in K$
- Field \mathbb{Z}_{2}
- $0+0=0$
- $0+1=1+0=1$
$-1+1=0$
- Chain vector space C_{k} : vector space spanned by k -simplices in K
- rank $\mathrm{C}_{\mathrm{k}}=\mathrm{s}_{\mathrm{k}}$, number of k-simplices in K

Boundary Operator

- $\partial_{\mathrm{k}}: \mathrm{C}_{\mathrm{k}} \rightarrow \mathrm{C}_{\mathrm{k}-1}$
- homomorphism (linear)
- $\sigma=\left[\mathrm{v}_{\mathrm{o}}, \ldots, \mathrm{v}_{\mathrm{k}}\right]$
- $\partial_{k} \sigma=\sum_{i}\left[v_{o}, \ldots, v_{i}^{\prime}, \ldots, v_{k}\right]$,
where v_{i} indicates that v_{i} is deleted from the sequence
- $\partial_{1} a b=a+b$
- $\partial_{2} a b c=a b+b c+a c$
- $\partial_{1} \partial_{2} a b c=a+b+b+c+a+c=0$
- (Theorem) $\partial_{\mathrm{k}-1} \partial_{\mathrm{k}}=\mathrm{o}$ for all k

Cycles

- Let c be a k-chain
- If c has no boundary, it is a k-cycle
- $\partial_{\mathrm{k}} \mathrm{c}=\mathrm{o}$, so $\mathrm{c} \in \operatorname{ker} \partial_{\mathrm{k}}$
- $Z_{k}=\operatorname{ker} \partial_{\mathrm{k}}$ is a subspace of C_{k}
- $\partial_{1}(a b+b c+a c)=$ $a+b+b+c+a+c=0$, so 1 -chain $a b+b c+a c$ is a 1-cycle

Boundaries

- Let b be a k-chain
- If b bounds something, it is a k-boundary
- $\exists \mathrm{d} \in \mathrm{C}_{\mathrm{k}+1}$ such that $\mathrm{b}=\partial_{\mathrm{k}+1} \mathrm{~d}$
- $\mathrm{B}_{\mathrm{k}}=\mathrm{im} \partial_{\mathrm{k}+1}$ is a subspace of C_{k}
- $\partial_{2}(a b c)=a b+b c+a c$, so $a b+b c+a c$ is a 1-boundary

- $\partial_{k} b=\partial_{k} \partial_{k+1} d=0$, so b is also a k-cycle!
- All boundaries are cycles
- $\mathrm{B}_{\mathrm{k}} \subseteq \mathrm{Z}_{\mathrm{k}} \subseteq \mathrm{C}_{\mathrm{k}}$

Homology Group

- The k th homology vector space (group) is $\mathrm{H}_{\mathrm{k}}=\mathrm{Z}_{\mathrm{k}} / \mathrm{B}_{\mathrm{k}}=\operatorname{ker} \partial_{\mathrm{k}} / \operatorname{im} \partial_{\mathrm{k}+1}$
- (Theorem) $\mathbb{X} \simeq \mathbb{Y} \Rightarrow H_{k}(\mathbb{X}) \cong H_{k}(\mathbb{Y})$
- If $z_{1}=z_{2}+b$, where $b \in B_{k}, z_{1}$ and z_{2} are homologous, $\mathrm{z}_{1} \sim \mathrm{z}_{2}$

Betti Numbers

- H_{k} is a vector space
- kth Betti number $\beta_{\mathrm{k}}=\operatorname{rank} \mathrm{H}_{\mathrm{k}}$ $=\operatorname{rank} Z_{k}-\operatorname{rank} B_{k}$
- Enrico Betti (1823-1892)
- Geometric interpretation in R3

- β_{o} is number of components
- β_{1} is rank of a basis for tunnels
- β_{2} is number of voids

1, 2, 1

Computation

- ∂_{k} is linear, so it has a matrix M_{k} in terms of bases for C_{k} and C_{k-1}
- $Z_{k}=\operatorname{ker} \partial_{\mathrm{k}}$, so compute $\operatorname{dim}\left(\operatorname{null}\left(M_{k}\right)\right)$
- $\mathrm{B}_{\mathrm{k}}=\operatorname{im} \partial_{\mathrm{k}+1}$, so compute $\operatorname{dim}\left(\right.$ range $\left.\left(M_{\mathrm{k}+1}\right)\right)$
- Two Gaussian eliminations, so $\mathrm{O}\left(\mathrm{m}^{3}\right), \mathrm{m}=|\mathrm{K}|$
- Same running time for any field
- Over \mathbb{Z}, reduction algorithm and matrix entries can get large
- Common source of misunderstanding

Euler-Poincaré

- Recall $\xi(K)=\sum_{i}(-1)^{i} s_{i}$
- $s_{i}=\# k$-simplices in K
- $s_{i}=\operatorname{rank} C_{i}$
- Rewrite: $\xi(K)=\Sigma_{i}(-1)^{i}$ rank C_{i}
- (Theorem) $\xi(K)=\sum_{i}(-1)^{i}$ rank $H_{i}=\sum_{i}(-1)^{i} \beta_{i}$
- Sphere: $2=1-0+1$
- Torus: $0=1-2+1$

Outline

() Motivation
(-) Topology
() Simplicial Complexes
() Invariants
(-) Homology

- Algebraic Complexes
- Coverings
- The Nerve
- Cech complex
- Vietoris-Rips Complex

Topology of Points

Topology of Points

- Topological space \mathbb{X}
- Underlying space
- Given: set of sample points M from \mathbb{X}

- Question: How can we recover the topology of \mathbb{X} from M ?
- Problem: M has no interesting topology.

Open Covering

Open Covering

- Cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in \mathrm{I}}$
- U_{i}, open
- $M \subseteq U_{i \in 1} U_{i}$
- Idea: The cover approximates the underlying space \mathbb{X}
- Question': What is the topology of \mathcal{U} ?
- Problem: \mathcal{U} is an infinite point set

The Nerve

The Nerve

- \mathbb{X} : topological space
- $\mathcal{U}=\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathrm{U}_{\mathrm{i}}$: open cover of \mathbb{X}
- The nerve N of \mathcal{U} is

- $\emptyset \in N$
- If $\cap_{j \in j} U_{j} \neq \emptyset$ for $J \subseteq I$, then $J \in N$
- Dual structure
- (Abstract) Simplicial complex

The Nerve Lemma

- (Lemma [Leray])

If sets in the cover are contractible, and their finite unions are contractible, then $\mathrm{N} \simeq \mathcal{U}$.

- The cover should not introduce or eliminate topological structure
- Idea: Use "nice" sets for covering
- contractible
- convex
- Dual (abstract) simplicial complex will be our representation

Cech Complex

Cech Complex

- Set: Ball of radius ε

$$
\mathrm{B}_{\varepsilon}(\mathrm{x})=\{\mathrm{y} \mid \mathrm{d}(\mathrm{x}, \mathrm{y})<\varepsilon\}
$$

- Cover: B_{ε} at every point in M

- Cech complex is nerve of the union of ε-balls

$$
C_{\epsilon}(M)=\left\{\operatorname{conv} T \mid T \subseteq M, \bigcup_{m \in T} B_{\epsilon}(m) \neq \emptyset\right\}
$$

- Cover satisfies Nerve Lemma
- Eduard Cech (1893-1960)

Vietoris-Rips Complex

Vietoris-Rips Complex

1. Construct ε-graph
2. Expand by add a simplex whenever all its faces are in the complex

- Note: We expand by dimension

$$
V_{\epsilon}(M)=\{\operatorname{conv} T \mid T \subseteq M, \mathrm{~d}(x, y)<\epsilon, \forall x, y \in T\}
$$

- $V_{2 \varepsilon}(M) \supseteq C_{\varepsilon}(M)$
- Not homotopic to union of balls
- Leopold Vietoris (1891-2002)
- Eliyahu Rips (1948-)

Plan

© Today:

- Motivation
- Topology
- Simplicial Complexes
- Invariants
- Homology
- Algebraic Complexes
- Tomorrow
- Geometric Complexes
- Persistent Homology
- The Persistence Algorithm
- Application to Natural Images

