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2. Embedding a Metric into a (Single) Tree.

a. Minimum spanning tree.

b. View the cycle drawn as a regular polygon, and path as being wrapped along the cycle. What if for
every cycle node, the edges go to different “halves” of the cycle like this:

What if there is a node where the edges go to the same “half” of the cycle” (like this)?

Can you get a path with no larger distortion where nodes don’t have this property?

c. If there is a node with degree 3 or higher, show that you can do something similar to the second case
above.

d. The 3-cycle. In fact, any n-cycle — you can get about n/3 distortion.

e. Remove the Steiner nodes. Now use (c) above.

f. The outer cycle has length t = 4(
√
n− 1) and embeds with distortion 2 into Ct.

3. Tree Embeddings and Approximation Algorithms.

a. Any Euler tour of this graph.

b. Let L∗ =
∑n
i=1 d(π(i), π(i + 1)) be the length of the optimal permutation π∗ on the graph G. By

linearity of expectation, the expected length of this tour in the tree is at most αL∗. Hence, the
expected cost LT of the tour πT optimal on the tree (which we can find using (a)) is at most αL∗.

By the domination property, the length of the tour πT is only smaller on G, and hence we have a
solution of expected cost α times the optimal TSP on G.

c. We used the “dominating” property when translating back the solution.

The proof fails with the weaker property. (Do you see a counterexample?)
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4. A Better Padding Guarantee.

a. First, we assume that ρ < ∆/8—if not, then the probability is clearly at most 1, which is at most 8 ρ
∆

and the theorem clearly holds.

Now consider the same analysis as in the lecture: the probability that the jth node from x is “responsible
for” cutting the ball B(x, ρ) is 8ρ

∆ ·
1
j . However, the only nodes that can be responsible for cutting the

ball B(x, ρ) are those which are at distance at most ∆/2 + ρ < ∆ from x. Similarly, none of the nodes
at distance < ∆/8 ≤ ∆/4− rho can be responsible for cutting the ball B(x, ρ). Hence, when we sum
over the relevant nodes, we get the probability is at most 8ρ

∆ · β, where

β = β(x,∆) = O

(
log

|B(x,∆)|
|B(x,∆/8)|

)
.

b. Let us say phase i is when the tree-construction procedure is called with parameter i. The expected
distance between x, y in the random tree is:∑

i

Pr[x, y separated in phase i | they are not separated in phase ≥ i]× 2i+1

≤
∑
i

d(x, y)
2i−1

· β(x, 2i−1)× 2i+2

= 8 d(x, y)
∑
i

β(x, 2i−1)

≤ 8 d(x, y)
(
log |B(x, 2δ)|+ log |B(x, 2δ−1)|+ log |B(x, 2δ−2)|

)
≤ 24 d(x, y) log n.

5. A Lower Bounding Technique.

a.

b. The (expected) distortion for edge {u, v} when trees are drawn from the probability distribution q is
given by

ET←q[
dT (u, v)
d(u, v)

]

And hence we are interested in the distribution that minimizes the (expected) distortion

min
q

max
{u,v}

ET [
dT (u, v)
d(u, v)

]

By the above inequality, this is lower bounded by

max
{u,v}∈p

min
T

E{u,v}[
dT (u, v)
d(u, v)

]

I.e., for any probability distribution over the edges, if we can show that any tree T ∈ T incurs an
expected distortion least β, that is a lower bound for embedding into distributions over trees.

c. Consider the uniform distribution over the edges of Cn; i.e., π picks each of the n edges with probability
1/n. Then, for any tree T , there is at least one edge that incurs a distortion of n/3 − 1, and even if
the others incur a distortion of 1, we get

E{u,v}[
dT (u, v)
d(u, v)

] ≥ 1
n
× (

n

3
− 1) + (1− 1

n
)× 1 =

4
3
− o(1).
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d. The question basically outlines the answer. The sum giving the total distortion for the edges is

2k−1 × (2k+1/3− 1) + 2k × (2k/3− 1) + . . .

which is Ω(k22k). Since we are taking the uniform distribution over the 4k edges, the average value is
≈ k/3−O(1).

The only worry is that we are counting the same edges repeatedly. However, for an edge with distortion
2j , the above sum counts a distortion of 2j + 2j−1 + 2j−2 + . . . ≤ 2 · 2j—hence all we have to do is to
divide the above value by 2, which still gives a lower bound of Ω(k).

6. Covers.

a. Draw 2 log2 n random trees from the FRT distribution D. Consider any pair x, y ∈ V ; the probability
that one random tree drawn from D incurs a distortion of more than 2α is at most 1

2 ; hence, the
probability that at least one of 2 log2 n trees incurs a distortion ≤ 2α is at least 1− 1

n2 . Now a union
bound over all

(
n
2

)
pairs suffices.

b. Use the β-padded decomposition procedure with parameter 2βr for t = O(log n) times, and take
the union of the clusters as the subsets. Each vertex lies in exactly t = O(log n) subsets, one for each
partitioning (giving property (b)); each subset has diameter at most 2βr by the properties of the padded
decomposition (giving property (c)); finally, since B(x, r) is not split by one padded decomposition
with probability r

2βrβ = 1
2 , a union bound ensures that all the balls {B(x, r)}x∈V are not split in at

least one of the t repetitions with constant probability.

7. Small Support Distributions. Consider the linear program which tries to find a distribution that
minimizes the expected distortion: there’s a variable xT ≥ 0 for each tree T in T (the set of trees T = (V,ET )
that dominate M = (V, d)), that captures the probability of T being output. Hence we have∑

T

xT = 1

and for each {x, y} ∈
(
V
2

)
, we have a constraint∑

T

xT dT (x, y) ≤ λ d(x, y)

finally, we want to minimize λ. The FRT procedure implies that there is a feasible solution of value λ =
O(log n). Since there are only

(
n
2

)
+ 1 = O(n2) constraints in this LP, there must be a solution of value

O(log n) that has only O(n2) non-zero variables, implying the existence of a distribution with small support.

(We claimed this LP was exponentially sized—not that it matters, but why can we consider only exponentially
many trees in T ? As defined, there could be infinitely many trees.)
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