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2. Embedding a Metric into a (Single) Tree.

a. Minimum spanning tree.

b. View the cycle drawn as a regular polygon, and path as being wrapped along the cycle. What if for
every cycle node, the edges go to different “halves” of the cycle like this:

What if there is a node where the edges go to the same “half” of the cycle” (like this)?

Can you get a path with no larger distortion where nodes don’t have this property?

c. If there is a node with degree 3 or higher, show that you can do something similar to the second case
above.

d. The 3-cycle. In fact, any n-cycle — you can get about n/3 distortion.
e. Remove the Steiner nodes. Now use (c) above.

f. The outer cycle has length ¢ = 4(y/n — 1) and embeds with distortion 2 into Cy.
3. Tree Embeddings and Approximation Algorithms.

a. Any Euler tour of this graph.

b. Let L* = > d(n(i), (i + 1)) be the length of the optimal permutation 7* on the graph G. By
linearity of expectation, the expected length of this tour in the tree is at most aL*. Hence, the
expected cost Ly of the tour 77 optimal on the tree (which we can find using (a)) is at most aL*.

By the domination property, the length of the tour 77 is only smaller on G, and hence we have a
solution of expected cost a times the optimal TSP on G.
c. We used the “dominating” property when translating back the solution.

The proof fails with the weaker property. (Do you see a counterexample?)



4. A Better Padding Guarantee.

a. First, we assume that p < A/8—if not, then the probability is clearly at most 1, which is at most 8%
and the theorem clearly holds.

Now consider the same analysis as in the lecture: the probability that the j¢* node from z is “responsible
for” cutting the ball B(z, p) is A % However, the only nodes that can be responsible for cutting the
ball B(x, p) are those which are at distance at most A/2+ p < A from z. Similarly, none of the nodes
at distance < A/8 < A/4 — rho can be responsible for cutting the ball B(x, p). Hence, when we sum
over the relevant nodes, we get the probability is at most 8—" - B, where
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b. Let us say phase ¢ is when the tree-construction procedure is called with parameter i. The expected
distance between x,y in the random tree is:

Z Pr[z,y separated in phase i | they are not separated in phase > i] x 2°*!
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< 8d(z,y) (log [B(x,2°)| + log [B(x,2° )| + log [B(z,2°~%)|)
< 24d(z,y) logn.

5. A Lower Bounding Technique.

a.

b. The (expected) distortion for edge {u,v} when trees are drawn from the probability distribution q is

given by
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And hence we are interested in the distribution that minimizes the (expected) distortion
dr(u,v)
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By the above inequality, this is lower bounded by
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Le., for any probability distribution over the edges, if we can show that any tree T' € 7 incurs an
expected distortion least (3, that is a lower bound for embedding into distributions over trees.

c. Consider the uniform distribution over the edges of C,; i.e., w picks each of the n edges with probability
1/n. Then, for any tree T, there is at least one edge that incurs a distortion of n/3 — 1, and even if
the others incur a distortion of 1, we get

dr(u,v)
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d. The question basically outlines the answer. The sum giving the total distortion for the edges is
k=l (/3 1) 428 x (28 /3 —1) + ...

which is Q(k22*). Since we are taking the uniform distribution over the 4* edges, the average value is
~k/3—0().

The only worry is that we are counting the same edges repeatedly. However, for an edge with distortion
27 the above sum counts a distortion of 29 +2/~1 4 29=2 + | < 2.2/ hence all we have to do is to
divide the above value by 2, which still gives a lower bound of Q(k).

6. Covers.

a. Draw 2log, n random trees from the FRT distribution D. Consider any pair z,y € V; the probability
that one random tree drawn from D incurs a distortion of more than 2« is at most %; hence, the
probability that at least one of 2log, n trees incurs a distortion < 2« is at least 1 — # Now a union
bound over all (g) pairs suffices.

b. Use the S-padded decomposition procedure with parameter 20r for ¢t = O(logn) times, and take
the union of the clusters as the subsets. Each vertex lies in exactly t = O(logn) subsets, one for each
partitioning (giving property (b)); each subset has diameter at most 208r by the properties of the padded
decomposition (giving property (c)); finally, since B(x,r) is not split by one padded decomposition
with probability 578 = %, a union bound ensures that all the balls {B(z,r)},cv are not split in at
least one of the ¢ repetitions with constant probability.

7. Small Support Distributions. Consider the linear program which tries to find a distribution that
minimizes the expected distortion: there’s a variable zp > 0 for each tree T"in 7 (the set of trees T' = (V, Er)
that dominate M = (V,d)), that captures the probability of T' being output. Hence we have
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and for each {z,y} € (‘2/), we have a constraint

> ardr(a,y) < Ad(z,y)

finally, we want to minimize A. The FRT procedure implies that there is a feasible solution of value A =
O(logn). Since there are only (3) 4+ 1 = O(n?) constraints in this LP, there must be a solution of value
O(logn) that has only O(n?) non-zero variables, implying the existence of a distribution with small support.

(We claimed this LP was exponentially sized—not that it matters, but why can we consider only exponentially
many trees in 77 As defined, there could be infinitely many trees.)



