
Metric Techniques for Approximation Algorithms Exercises 1
Date: August 18, 2008

Notes: As usual, if M = (V, d) and M′ = (V ′, d′) are two metric spaces, then M1 ↪
D−→ M2 implies that

there exists a map f : V → V ′ with distortion at most D. When we write M1 ↪
≥D−−→ M2, this is a lower bound

statement: every map f : V → V ′ has distortion at least D.

This naturally extends to the case when G is a family of metrics or graphs, then M ↪
D−→ G implies that

there exists M′ ∈ G such that M ↪
D−→ M′; similarly, M ↪

≥D−−→ G implies that for all M′ ∈ G, it holds that
M ↪

D−→ M′

1. Tree Metrics and a 4-point Inequality. A result of Bandelt says that a metric (V, d) is a tree-metric,
if for any four points i, j, k, l ∈ V ,

dij + dkl ≤ max{dik + djl, dil + djk}

(where we write d(i, j) as dij , etc.) Infer that the two largest of the three sums dij + dkl, dik + djl, dil + djk
are equal. Use this to give another proof that the shortest-path metric of C4 is not a tree metric.

2. Embedding a Metric into a (Single) Tree. In this exercise, we investigate the distortion incurred
when embedding graphs into (single) trees.

a. Show that any metric M = (V, d) can be embedded into a tree with distortion at most n− 1.

b. Show that any embedding of the (unweighted) n-cycle Cn into 1-dimensional space R1 incurs a distor-
tion of at least n − 1. Equivalently, show that any embedding of Cn into a (weighted) path P must
incur a distortion of at least n− 1.

c. Show that given any embedding of Cn = (Vn, En) into any tree T = (Vn, E)—where the tree has
exactly the same node set as the cycle—with distortion D, there exists a path P such that Cn ↪

D−→ P .

Infer that Cn ↪
≥(n−1)−−−−−→ the family of trees on n nodes.

d. Give an example to show that there are trees T = (V,E) such that Vn ( V where Cn ↪
<n−1−−−−→ T : that

is, having Steiner nodes does help. (Hint: think small cycles.)

e. However, it is still known that Cn ↪
Ω(n)−−−→ trees. A result of Rabinovich and Raz (1998) proves that

any embedding of the n-cycle into a tree (regardless of number of Steiner nodes) incurs a distortion of
n
3 − 1. (So, Steiner nodes don’t help too much.)

We’ll prove a weaker result here. Gupta (2000) shows that given any (weighted) tree T = (X ∪ Y,E),
there is a (weighted) tree TX = (X,EX) only on the nodes in X such that for any x, x′ ∈ X, 1 ≤
dT (x,x′)
dTX

(x,x′) ≤ 8. Use this result, and the above parts, to show a lower bound of > n−1
8 for embedding

cycles into trees.

f. Finally, show that the
√
n×
√
n-square grid greph �n incurs a distortion of Ω(

√
n) when embedded into

trees. (Can you find a subset of t = Θ(
√
n) points in �n which embed into a cycle Ct with constant

distortion?)

Open question: is it possible to somehow use the 4-point results from Problem 1 to give the lower bounds
proved in this problem?
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3. Tree Embeddings and Approximation Algorithms. Given a metric space M = (V, d) on |V | = n
points, let T be the set of trees T = (V,ET ) with edge lengths ` : ET → R such that for each u, v ∈ V ,
dT (u, v) ≥ d(u, v)—i.e., these are trees whose distances dominate those in M. A probability distribution D
on this set of “dominating” trees T is said to α-approximate the metric M if for every u, v ∈ V ,

ET←D[dT (u, v)] ≤ α · d(u, v). (1)

We saw the tree-embedding results of Bartal (FOCS 1996 ) and Fakcharoenphol, Rao, & Talwar (STOC 2003 )
that given any metric M on n points, one can find a distribution D = D(M) such that α = αFRT = O(log n).
In fact, this embedding is efficient: in poly-time one can output a random tree from this distribution π.

In this exercise, we give details on how to use this result to design approximation algorithms for problems
defined on general metric spaces by first designing exact or near-optimal solutions to the same problem on
trees, and then using the Bartal/FRT results to translate such an algorithm to arbitrary metrics with a loss
of α = O(log n) in the performance ratio.

a. Consider the traveling salesman problem (TSP): given an n-point metric (X, d), find a permutation
of the points to minimize the TSP tour induced by this permutation. Suppose you are given a tree T
with nonnegative edge lengths as your TSP input, show how to solve the TSP problem in polynomial
time for this class of input graphs.

b. To solve TSP on a general metric, we apply above embedding result to the input metric to derive a
probability distribution over tree metrics. We then sample a tree from this distribution and apply your
polynomial time algorithm (from the previous part) to it, and output the resulting permutation. Show
that this is an α-approximation to the TSP on the original metric.

c. Where in your proof do you use the fact that distances in the random tree T dominate those in dG
(with probability 1)? If you just had the property that

d(u, v) ≤ ET←D[dT (u, v)] ≤ α · d(u, v),

would your proof still go through?

n.b. It is well-known how to get a 1.5-approximation for TSP, and the O(log n) approximation given here
is just for ease of explanation. However, there are several problems for which the best approximation known
is still via such a randomized reduction to trees.
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4. An Optimal Embedding into Trees. Recall the padded decomposition procedure given in the notes:
Given a metric M = (V, d),

1. Pick a random permutation π on V .
2. Pick a random radius R uniformly from the interval (∆/4,∆/2].
3. Create a “cluster” Cv for each v ∈ V : assign x ∈ V to Cv

if v is the first vertex (according to π) such that d(v, x) ≤ R.
4. Output all the non-empty clusters Cv.

Clearly, all the clusters had diameter ≤ ∆; moreover, we saw that for any x ∈ V ,

Pr[B(x, ρ) split by partitioning ] ≤ β ρ
∆

for β = O(log n).

Recap of the proof: we named the vertices in V as v1, v2, . . . , vn in increasing distance from x, and
defined vj as “responsible for splittingB(x, ρ)” if (i) the random valueR ∈ [d(x, vj)−ρ, d(x, vj)+ρ]
and (ii) the node vj came before v1, v2, . . . , vj−1 in the random order π. We claimed that if B(x, ρ)
was split, then at least one of the nodes was responsible for the split, and hence

Pr[B(x, ρ) split ] ≤
∑
j

Pr[vj responsible ]

Since the two requirements (i) and (ii) depend on independent random choices, we got that
Pr[vj responsible ] = 2ρ

∆/4 ×
1
j . Summing this up gave the bound.

a. We claimed (without proof) a stronger result, where

β = β(x,∆) = O

(
log

|B(x,∆)|
|B(x,∆/8)|

)
.

Prove this claim.

b. Recall the randomized recursive tree construction procedure as in the lecture:

Procedure FRT(X, i) (Invariant: X ⊆ V , diameter(X) ≤ 2i.)

1. If |V | = 1, return X.
2. Use β-padded decomposition procedure on X with diameter bound 2i−1

to get random partition X1, X2, . . . , Xk.
3. For each j, recursively call FRT(Xj , i− 1) to get tree Tj with root vj .
4. For each j ≥ 2, attach edges (r1, rj) of length 2i to get connected tree T .
5. Return resulting tree T with root r = r1.

Recall that we initiate the process with X = V and i = dlog2 diameter(V )e.

Show that using the above more sophisticated bound on β, and this same procedure, the random tree
T created satisfies:

ET [dT (x, y)] ≤ O(log n)× d(x, y)

for any x, y ∈ V .
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5. A Lower Bounding Technique. We will now give details on how to prove lower bounds on embeddings
into distributions over trees; the same idea is used to give lower bounds on randomized algorithms and hence
is of some interest.

a. For any real-valued m× n-matrix M , show that

min
j

max
i
Mij ≥ max

i
min
j
Mij .

Now suppose we consider probability distributions p and q over the rows and columns of the matrix
M , then one can show that

min
J←q

max
i

E[MiJ ] ≥ max
I←p

min
j

E[MIj ]. (2)

It is not hard to prove, but you can skip this for the time being. (This is the easy part of the von
Neumann Minimax Theorem, which says that the above inequality is actually an equality.)

b. Given a metric M = (V, d), imagine it to be a weighted graph M = (V,E =
(
V
2

)
) with edge lengths

w{u,v} = d(u, v). Consider the family T of trees that dominate distances in M, and construct a
|E| × |T |-matrix A which has one row for each edge, and one column for each tree in T . Given the ith

edge {u, v} and jth tree Tj , set

Aij =
dTj

(u, v)
d(u, v)

;

this is the distortion incurred by edge {u, v} when we use tree Tj .

Now use (2) and show that to derive a lower bound of β for the distortion incurred in embedding M
(or equivalently, G) into any distribution over dominating trees, it suffices to do the following: Give a
probability distribution p over the edge set E so that given any tree T ∈ T , the expected distortion

Ee={u,v}←p[
dT (u, v)
d(u, v)

]

is at least β. (Note that this last expectation was taken over the probability distribition on edges.)

c. You already saw that the cycle Cn embeds into distributions over (sub)trees with α = 2(1 − 1
n ). Use

the above technique to show a lower bound of 4
3 − o(1) on the distortion of any such embedding of

(unweighted) Cn into trees.

Useful fact: given the unweighted n-cycle Cn and any tree T such that dT ≥ dCn
—that is, T dominates

distances in Cn, there is an edge {u, v} of Cn such that the tree distance dT (u, v) ≥ n
3 − 1.

d. Consider the diamond graphs defined in the Handout: in the graph Gk, the distance between the left
and right ends is 2k, and the min-cut between them is also 2k. To show a lower bound for embedding
this graph into a distribution over trees, let us use the above framework, and set the edge-distribution
to be uniform over the 4k edges in this graph Gk.

Fix any tree T : since we have chosen the uniform distribution, the goal is now to show that the
expected distance in the tree T between the endpoints of a random edge of Gk is Ω(k). Note there are
2k−1 edge-disjoint copies of C2k+1 in this graph, and use the above parts to show that there are 2k−1

edges which will suffer a distortion of at least 2k+1/3− 1. Now, since there are 2k edge-disjoint copies
of C2k in the graph, there are 2k edges which will suffer a distortion of at least 2k/3− 1. Continuing
this way, infer that the expected distance between the endpoints of a random edge is Ω(k). (Be careful
about possible over-counting!)

4



6. Covers. Here are two definitions that are often used in routing and distributed computing. The
procedures we’ve seen today give us simple constructions, for some setting of the parameters:

a. Given a metric M = (V, d), an (α, k)-tree cover is a collection of trees T = {T1, T2, . . . , Tk} such that
for any pair of nodes x, y ∈ V , there exists a tree Tj ∈ T such that

d(x, y) ≤ dTj
(x, y) ≤ α · d(x, y).

Show that, given the FRT result showing a probability distribution D that α-approximates the metric
M, one can obtain a (2α,O(log n))-tree cover from it via a randomized algorithm.

b. Given a metric M = (V, d), an (c, r, t)-neigborhood cover is a collection S = {S1, S2, . . .} of subsets
Si ⊆ V of points such that (a) for each point x ∈ V , there is a subset Sj that contains the r-ball
B(x, r) = {x′ ∈ V | d(x, x′) ≤ r}, (b) each point x ∈ V is contained in at most t of the subsets in S,
and (c) each subset Si has diameter at most cr.

Given a β-padded decomposition procedure, show how to get an (2β, r,O(log n))-neighborhood cover
for any r > 0.

7. Small Support Distributions. Given a metric M, if there exists a distribution D over trees that
achieves a distortion of α, show that there exists a distribution on only

(
n
2

)
trees that achieves the same

distortion. (Hint: write an exponential-size linear program, and use elementary facts about vertex solutions
of linear programs.)

Note: The construction of FRT from the lecture can be derandomized to give a family of polynomially
many trees TFRT such that the uniform distribution on this family also O(log n)-approximates the metric M.
Details can be found in the paper of Fakcharoenphol Rao and Talwar.

7. MultiCut. Recall that in multicut, you were given a graph G = (V,E) and pairs {si, ti} ⊆ V . The
goal was to delete a minimum cardinality set of edges so that no si lies in the same connected component
as ti.

a. Show that the multicut problem even on star graphs is NP-hard by showing a reduction from the vertex
cover problem.

b. Give a better padded decomposition for tree metrics, and use that to give a constant-factor approxi-
mation for the multicut problem on trees.
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