Metric Techniques for	Approximation Algorithms
Date: August 20, 2008	

Exercises 2

- 1. Simple Bounds for ℓ_2 .
 - **a**. Show that all 3-point metrics embed into ℓ_2 isometrically (i.e., without changing the distances).
 - **b**. Show the metric generated by the 4-node star graph $K_{1,3}$ cannot be embedded into ℓ_2 isometrically.

Hint: suppose we are given vectors x_1, x_2, x_3 representing the three leaves such that $||x_i - x_j|| = 2$ for $1 \le i < j \le 3$. If y is the vector representing the center of the star, where would y be mapped such that $||x_i - y|| = 1$ for all i?

c. Show that the 4-cycle C_4 cannot be embedded into ℓ_2 isometrically.

2. Cut Metrics and ℓ_1 . Given a point set V, a cut metric δ_S corresponding to the subset $S \subseteq V$ is defined as $\delta_S(x, y) = 1$ if $|S \cap \{x, y\}| = 1$, and $\delta_S(x, y) = 0$ otherwise.

a. (Convex Cone) For any $D \ge 1$, if $(V, d) \stackrel{D}{\longrightarrow} \ell_1$ and $c \in \mathbb{R}_{\ge 0}$ then $(V, c \times d) \stackrel{D}{\longrightarrow} \ell_1$. Also, if $(V, d_1) \stackrel{D}{\longrightarrow} \ell_1$ and $(V, d_2) \stackrel{D}{\longrightarrow} \ell_1$ then $(V, d_1 + d_2) \stackrel{D}{\longrightarrow} \ell_1$. (Hence, the set of metrics embeddable into ℓ_1 with distortion D forms a convex cone— a special case of this is the set of ℓ_1 -embeddable metrics, i.e., those with D = 1.)

Do the set of ℓ_2 -embeddable metrics form a convex cone? Prove or give a counterexample.

What about the set of ℓ_{∞} -embeddable metrics?

b. (Sum of Cut Metrics) One can show that the *n*-point metric (V, d) is isometrically embeddable into ℓ_1 if and only if it can be represented as a non-negative linear combination of cut metrics; that is, if and only if there are values $\alpha_S \ge 0$ for all $S \subseteq V$ such that

$$d(x,y) = \sum_{S \subseteq V} \alpha_S \cdot \delta_S(x,y).$$

- (a) To show one direction, note that a single cut metric embeds into ℓ_1 , and hence any non-negative linear combination of them does.
- (b) For the converse, show that a 1-dimensional ℓ_1 metric (i.e., \mathbb{R} equipped with the distance d(x, y) = |x y|) can be written as a non-negative combination of cut metrics. (Hint: take prefixes of the line.)

Now since any *n*-point ℓ_1 metric *d* is a sum of 1-dimensional metrics, infer that it can be written as a non-negative linear combination of cut metrics.

c. We saw that because any tree metric embeds isometrically into ℓ_1 , hence given any distribution \mathcal{D} over tree metrics, the metric $\mathbf{E}_{T \leftarrow \mathcal{D}}[d_T(x, y)]$ embeds into ℓ_1 . And the results of FRT, gave us that any *n*-point metric embeds into ℓ_1 with distortion $O(\log n)$.

Question: Matousek showed that any *n*-point tree embeds into ℓ_2 with distortion $O(\sqrt{\log \log n})$. Is it possible to use this fact with the argument about to infer that general metrics embed into ℓ_2 with distortion $O(\log n \sqrt{\log \log n})$?

d. (Cycles into ℓ_1) Show that the (unweighted) cycles C_3 and C_4 embed into ℓ_1 isometrically. Extend the argument to show that any cycle embeds into ℓ_1 isometrically.

3. Simple Lower Bounds for ℓ_1 . A metric space $\mathsf{M} = (V, d)$ satisfies the *(pure) pentagonal inequalities* if for every subset $X \subseteq V$ of five points, where $X = L \cup R$ with |L| = 3, |R| = 2,

$$\sum_{u,v\in L} d(u,v) + \sum_{u,v\in R} d(u,v) \leq \sum_{(u,v)\in L\times R} d(u,v)$$

I.e., the total length of the dotted edges in the figure must be at most that of the solid edges. (If |L| = 2, |R| = 1, you'd get the triangle inequality.)

- a. Show that any *n*-point subset of ℓ_1 satisfies the (pure) pentagonal inequalities. Do this by showing that (a) any cut metric δ_S satisfies the inequalities, and (b) this property is maintained under taking positive linear combinations.
- b. Show that the metric induced by the (unweighted) graph $K_{2,3}$ does not satisfy the inequalities. In fact, show that any embedding of $K_{2,3}$ into ℓ_1 incurs a distortion of at least 4/3.

4. Optimal Lower Bounds for ℓ_1 . To show lower bounds for embedding metrics into ℓ_1 , we do this: Given a metric (V, d), and non-negative values p_{ij} and q_{ij} for all $i, j \in \binom{V}{2}$, consider the bilinear form:

$$R(d) = \frac{\sum_{i,j} p_{ij} d(i,j)}{\sum_{i,j} q_{ij} d(i,j)}$$

Given a metric d, the goal is to find p, q such that for any ℓ_1 -embeddable metric d', the bilinear form take very different values for R(d) and R(d').

- **a**. Observe that the pentagonal-inequality lower bound can be cast in this framework: consider setting $p_{ij} = 1$ for the dotted edges, and $q_{ij} = 1$ for the solid edges.
- **b**. We show a lower bound for embedding expander graphs into ℓ_1 using this framework. Given a constant-degree expander graph G = (V, E), just set $p_{ij} = 1$ for every edge $\{i, j\} \in E$, and $q_{ij} = 1$ for all $\{i, j\} \in \binom{V}{2}$.

(a) First we show that $R(d) \leq O(\frac{1}{n \log n})$.

i. Recall the fact that $\Omega(\binom{n}{2})$ pairs of vertices in the expander graph are at distance $\Omega(\log n)$ from each other.

ii. Show that $\sum_{ij} p_{ij} d_{ij} = rn/2$, where r is the degree.

iii. Also show that
$$\sum_{ij} q_{ij} d_{ij} = \Omega(\binom{n}{2} \log n)$$
.

Hence $R(d) = O(\frac{r}{n \log n}).$

- (b) Now we show that $R(d') \ge \Omega(1/n)$ for every ℓ_1 metric.
 - i. Use problem **2(b)** to say that $d' = \sum_{S} \alpha_S \delta_S$ with $\alpha_S \ge 0$ (and remember that δ_S is the cut metric for set $S \subseteq V$). Hence show that

$$R(d') = \frac{\sum_{ij \in E} \sum_{S} \alpha_S \delta_S(i,j)}{\sum_{i,j} \sum_{S} \alpha_S \delta_S(i,j)}$$

ii. Now invert the order of summation, and use the fact that for $a_i, b_i \ge 0$,

$$\frac{a_1 + a_2 + \ldots + a_l}{b_1 + b_2 + \ldots + b_l} \ge \min_i \frac{a_i}{b_i}$$

to show that

$$R(d') \ge \min_{S:\alpha_S \ge 0} \frac{\sum_{ij \in E} \delta_S(i,j)}{\sum_{i,j} \delta_S(i,j)}$$

iii. Let S^{*} ⊆ V be the cut achieving the min on the right side. Show that, without loss of generality, we can assume |S^{*}| ≤ n/2.

iv. Observe that for any $S \subseteq V$

$$\sum_{ij\in E} \delta_S(i,j) = |\partial S|$$

And if $|S| \leq n/2$, then

$$\sum_{ij} \delta_S(i,j) = |S| \cdot |V \setminus S| \le |S|n.$$

v. Finally, use the edge-expansion property to show that for S^*

$$|\partial S^*| / |S^*| \ge \alpha.$$

where $\alpha = \Omega(1)$ is the expansion parameter. And hence conclude that

$$R(d') \ge \frac{\alpha}{n}$$

5. Dimension versus Distortion. The *n*-point uniform metric $U_n = (V, d)$ has interpoint distances d(x, y) = 1 for all $x \neq y \in V$.

a. Show that any embedding of U_n into \mathbb{R}^k incurs a distortion of at least $\Omega(n^{1/k})$.

Hint: again, consider the vectors x_1, x_2, \ldots, x_n giving the embedding. Suppose the map only expands distances, and the expansion of this map is D. What are the largest open balls around the x_i 's which are disjoint? What is the smallest ball you can draw that is guaranteed to contain all the points, if the distortion is at most D?

If the volume of a radius-r ball in \mathbb{R}^k is $c_k r^k$ for some constant c_k that depends only on k, what inequality does this give you?

b. Hence, if the distortion is at most $(1 + \varepsilon)$, then $k \geq \frac{\log n}{\epsilon}$.

6. Trees Embed into Few Dimensions Show that any tree metric on n nodes embeds into ℓ_{∞} with $O(\log n)$ dimensions.

Hint: every n-node tree has a node whose deletion breaks the tree into subtrees of size at most 2n/3. (If you havent seen this before, it's fun to prove.)

4