
- p. 1/44

Cost sharing methods for Stochastic
Optimization

Stefano Leonardi

"Sapienza" University of Rome

ADFOCS 2008

August 18 - 22, 2008

- p. 2/44

Outline

� Two stage stochastic optimization
(Gupta, Pál, Ravi and Sinha, 2004)

� Online Stochastic Optimization
(Garg, Gupta, L. & Sankowski, 2008)

� Conclusions

- p. 3/44

Two-stage Stochastic
Optimization

- p. 4/44

Stochastic optimization

� Classical optimization assumes deterministic
inputs

� Stochastic optimization handles uncertainty
in data

� Modeled by a probability distribution π over
actual realizations of data, called scenarios

� Stochastic linear programming dates back to
early stages of optimization [Dantzig ’55,
Beale ’61]

� We rather consider a class of stochastic integer
combinatorial optimization problems

- p. 5/44

Two-stage stochastic optimization

� Two stages of decision making, with limited
information in the first stage

� Probability distribution governing
second-stage data and costs given in the first
stage

� Solution can always be made feasible in the
second stage

� Building in advance reduces costs, but not
enough information is given

� Building in second stage when the actual
scenario materializes is more expensive

- p. 6/44

Example: Facility location

� In a first stage open some facilities with
opening costs fi.

� When demand points materialize, open more
facilities with inflated cost σ fi.

Scenario 1

Scenario 2

Stage1

Stage 2

- p. 7/44

Modeling uncertainty

We assume the black-box model: The algorithm
has the ability to sample from an arbitrary
probability distribution

Other models also considered:
� K different scenarios part of the input [Karger

& Minkoff00]. Also in the context of solving
stochastic linear programs [Ravi & Sinha 03],
[Immorlica, Karger, Minkoff & Mirrokni 04].

� Demand request j shows up independently
with some probability pj [Immorlica et al,
2004].

- p. 8/44

The model:

Combinatorial optimization problem Π:

� U: universe of clients

� X: set of elements we can purchase

� For a set F ⊆ X, c(F): cost of element set F

� Given S ⊆ U, Sols(S) ⊆ 2X be the set of
feasible solutions for client set S

� OPT(S): solution in Sols(S) of minimum cost

� σ ≥ 1: inflation parameter

� Probability distribution π : 2U → [0, 1]

- p. 9/44

The model (contd)

First stage:
� An oracle draws samples from π in poly(U)

� Compute a first stage solution F0 with cost
c(F0)

Second stage:
� One scenario S ⊆ U materializes.

� Purchase a second stage solution FS at cost
σc(FS) such that F0 ∪ FS ∈ Sols(S)

Minimize the expected cost of the solution:

c(F0) + ∑
S⊆U

π(S)σc(FS)

- p. 10/44

Requirements

We require Π to satisfy subadditivity:

� For any S, S′ ⊆ U, S′ ∪ S′ is also a valid set of
clients for Π

� Sols(S) ∪ Sols(S′) ∈ Sols(S ∪ S′)

Steiner tree with connection to a root r is
subadditive

If we drop the root r, e.g. connect all nodes in S,
we loose subadditivity

- p. 11/44

Boost-and-Sample(Π)

An α approximate algorithm A used to
compute the first stage solution

Augmentation algorithm AugA used to
compute the second stage solution.

1. Draw σ independent samples D1, . . . , Dσ

from π. Let D = ∪iDi.

2. Use A to construct an α-approximate first
stage solution F0 ∈ sols(D)

3. Use AugA to compute FS such that
F0 ∪ FS ∈ Sols(S).

- p. 12/44

Theorem

Theorem 1 If i) Π is subadditive and ii) α-apx alg.
A for Π admits group β-strict cost-shares then
exists an α + β-apx for two-stage stochastic Π.

Group β-strictness

ξ : 2U × U → ℜ≥0 is a group β-strict
cost-sharing function with respect to A if
1. For a set S ⊆ U, ξ(S, j) > 0 only for j ∈ S.

2. For a set S ⊆ U, ∑j∈S ξ(S, j) ≤ c(OPT(S))

3. If S′ = S ∪ T, then ∑j∈T ξ(S′, j) ≥ (1/β) x

cost (AugA(S′/S))

- p. 13/44

Applications: Steiner tree

Steiner tree: Prim’s cost-shares are group
2-strict. Implies a 4-apx algorithm for 2-stage
stochastic steiner tree.

Steiner t: FKLS cost-shares are 3 strict (not
group strict). Implies a 5-apx for 2-stage
stochastic Steiner forest in the independent
decision model, e.g. terminal pair j shows up
independently with probability pj

- p. 14/44

Applications: Facility location

Metric facility location: Mettu-Plaxton
algorithm for facility location is 3-apx.
Pal-Tardos costs shares are 5.45 group strict for
Mettu-Plaxton algorithm. Implies a 8.45 apx
algorithm for metric facility location.

Vertex cover: There exists a 2-apx, 6-strict
algorithm for vertex cover.

- p. 15/44

Proof of main Theorem

Bounding first stage cost by αE[OPT]:
� Let F1 = F∗

0 + F∗
D1

+ . . . + F∗
Dσ

� By subadditivity, F1 ∈ Sols(D) and
E[c(F0)] ≤ αED[c(F1)]

� Let Z∗ = c(F∗
0) + ∑S π(S)σc(F∗

S)

ED[c(F1)] ≤ c(F∗
0) + ED[

σ

∑
i=1

c(F∗
Di

)]

= c(F∗
0) +

σ

∑
i=1

ED[c(F∗
Di

)]

= c(F∗
0) + σ ∑

S

π(S)c(F∗
S) = Z∗

- p. 16/44

Proof of main Theorem

Bounding second stage cost by βE[OPT]:

On lines similar to the bound of rental cost for
Rent-or-buy network design

The argument needs to be extended to group
strictness

- p. 17/44

Extensions

� Deal with non-uniform inflation factors
[Gupta et al. 2007].

� Convert an arbitrary deterministic LP based
approximation into a 2-stage stochastic
approximation. [Schmoys and Swamy, 2004]

� Solve stochastic linear programming in the
black-box model [Schmoys and Swamy, 2006].

� Multi-stage stochastic optimization.

- p. 18/44

On-line Stochastic Optimization

- p. 19/44

On-line Stochastic Optimization

We assume that the requests to the algorithm
come from the universe U that is equipped with
probability distribution π : U → [0, 1]. The
input sequence ω is generated by drawing k
independent requests from π.

Online model: the sequence ω is revealed
element by element.

- p. 20/44

Approximation Ratio

In the stochastic case the aim is to minimize the
expected cost payed by the algorithm.

Hence, we define the stochastic approximation
ratio as:

SApx(ALG) = max
π

max
k

Eω∈πk,r[ALG(ω, r)]

Eω∈πk [OPT(ω)]
,

where:
� r denote the random choices of the algorithm.

� OPT(ω) is the optimal (offline) solution.

- p. 21/44

Online and Stochastic Online

The online algorithm must satisfy an
unpredictable sequence of requests, completing
each request without being able to see the
future.

The online stochastic algorithm knows that the
sequence of requests comes from π.
Additionally, it might be given knowledge of:

� distribution π — assumed here,

� sequence length k — is length-aware,
� otherwise is length-oblivious.

- p. 22/44

Online Stochastic Steiner Tree

In the online Steiner tree problem:

� we are given a graph G = (V, E),

� a root vertex r,

� and edge costs/lengths c : E → ℜ≥0,

� the request are vertices v1, v2, . . . from V
� that need to be connected to r,

� the decisions are irrevocable.

(Garg, Gupta, L. & Sankowski, 2008)

- p. 23/44

Greedy Algorithm

In the classical online setting the best solution is
greedy algorithm, i.e.,

� we connect each request using the shortest
path.

The greedy algorithm is Θ(log n) competitive.

It remains as bad even when we are in the
stochastic setting.

- p. 24/44

Greedy Algorithm

Consider a path of length n with unit length edges, with
the vertices numbered 0, 1, . . . , n, vertex 0 being the root,
and each other vertex having π(i) = 1/n.

Between each pair of nonadjacent vertices add an edge

{i, j} having length ℓij = |i − j| − (i − j)2/n3.

This ensures that the shortest path between any pair of
nodes is the “short-cut” edge between them.

- p. 25/44

Greedy Algorithm

- p. 26/44

Greedy Algorithm

Now if we pick input nodes from π, then:
� the expected distance from tth node to closest node is

approximately n/2t.

� the greedy always buys “short-cut” edge.

We get expected cost of Θ(n log k) for k vertices.

Even the completely naïve strategy of buying the entire
path when the first input point arrives does well, i.e.,

� it costs n, which results in a SApx = n/(n/2) = 2.

- p. 27/44

Naïve Algorithm

- p. 28/44

Doing Better than Greedy

Solution is motivated by the naive strategy.

At the beginning we build an ”dummy” solution, such
that:
� its expected cost is related to the expected OPT,

� connection cost of the online vertices is related to the
expected OPT.

We show that a Steiner tree on k random point is a good
anticipatory solution.

- p. 29/44

Length-aware Algorithm

Assume that the sequence length k is known. Consider
the following algorithm:

A1. Choose a set of vertices D by drawing from the
distribution π independently k times.

A2. Construct a 2-approximate Steiner tree TM over the
set D ∪ {r}.

A3. Run the greedy algorithm on actual nodes —namely,
connect each input vertex to the closest vertex in the
current tree.

- p. 30/44

The Algorithm

- p. 31/44

Length-aware Algorithm

Theorem 2 (Steiner Tree Lenght-aware) The
SApx ratio of the above algorithm is 4.

The cost of the optimal Steiner tree on D has
expected cost E[OPT(ω)], and hence the cost of
the anticipatory solution is at most 2E[OPT(ω)].

- p. 32/44

Connection Cost

Theorem 3 The expected cost of greedy connections
is 2E[OPT(ω)].
We bound ED∈πk,ω∈πk [∑v∈ω c(v, D ∪ {r})] by:

k × Ev∈π,D∈πk [c(v, D ∪ {r})]

≤ k × Ev∈π,D′∈πk−1[c(v, D′ ∪ {r})]

≤ k × ED′′∈πk [
1

k
· MST(D′′ ∪ {r})]

= ED∈πk [MST(D ∪ {r})]

We can see v as a random vertex of D′′ and
charge it with the connection to its parent node
in the MST.
A 2 + approximation follows.

- p. 33/44

Connection Cost

- p. 34/44

Length-oblivious Algorithm

Now we will remove the assumption that we
know the number of points in the input
sequence.

The idea of the algorithm is to scale on the
expected cost of the solution.

In each scale we build an anticipatory solution
costing about twice as much as before, and wait
until we see as many vertices as in that solution.

- p. 35/44

Unknown Sequence Length

The cost in the last scale is at most 8, because the
expected cost of anticipatory solution is at most two
times bigger then the cost of k vertices.

Hence, the cost of all the scales is no more then 16 times
the expected cost of optimal solution on k vertices.

Theorem 4 (Unknown Sequence Length) There exists
polynomial time length-oblivious algorithm for stochastic
online Steiner tree with SApx = O(1).

- p. 36/44

Other Results

One can show that some access to the distribution, and
also the independence is necessary, i.e.:
� if the input consists of i.i.d. draws from a fixed but

unknown distribution,

� or if the draws are not independent but drawn from
some given Markov chain,

then there is an Ω(
log n

log log n) lower bound for Steiner tree.

Can be generalized to subadditive problems provided
that there exists a β-strict cost sharing methods for an
α-approximate anticipatory solution: Uncapacitated
Facility Location, Steiner Forest and Vertex Cover.

- p. 37/44

Expectation of Ratios

An objective function that is often more
challenging to work with is the expected ratio
(EoR):

EoR(ALG) = max
π

max
k

Eω∈πk

[

Er[A(ω, r)]

OPT(ω)

]

.

We will again consider the case when the length
of the input sequence is given to the algorithm.

- p. 38/44

Expectation of Ratios

Consider the following algorithm run in parallel with the
greedy algorithm:

1. Sample L different k element multisets D1, . . . , DL from
the distribution π.

2. For each i, find ρ-approximate Steiner tree Ti on the set
Di ∪ {r}, but do not buy these edges.

3. Choose i∗ such that the cost of Ti∗ is the least, and buy
these edges: i.e., set S0 = Ti∗ .

4. Connect the k input vertices greedily: connect the tth

input vertex vt to the closest node in the tree St−1.

- p. 39/44

Expectation of Ratios

The following lemma is immediate from symmetry.

Lemma 5 With probability at least 1 − 1
L+1 , the cost of least

expensive tree Ti∗ is no more than ρOPT(R).

The following lemma follows from the fact that for each
set of log n input vertices there is vertex from Ti∗ nearby.
Hence, the connection cost is no more then the greedy
connection cost.

Lemma 6 The cost of connecting the demand vertices is

O(OPT(R) · log log(nL)) with probability at least 1 − 1
n2 .

- p. 40/44

Expectation of Ratios

Theorem 7 Setting L = O(log n), the expected competitive
ratio of the above algorithm is O(log log n).

� Suppose either of the both lemmas fails: this happens

with probability at most 1
L+1 + L

n2 ≤ 2
log n . In this case,

we pay greedy O(log n) cost, which contributes only
constant to EoR.

� If neither of the two lemmas fail, we see that the cost of
the algorithm is O(OPT(R) · log log n).

- p. 41/44

Stochastic Competitive Ratio

In the stochastic case we can consider two different
performance measures.

� the ratio-of-expectations (RoE):

RoE(ALG) = max
π

max
k

Eω∈πk,r[ALG(ω, r)]

Eω∈πk [OPT(ω)]
.

� the expectation-of-ratios (EoR):

RoE(ALG) = max
π

max
k

Eω∈πk,r

[

ALG(ω, r)

OPT(ω)

]

.

- p. 42/44

Stochastic Competitive Ratio

The ratios are incomparable, but the EoR seems harder.

Consider L + 1 inputs.

RoE =
L × 1 + 1 × 2L2

L × 1 + L

=
1 + 2L

2
≥ L,

EoR =
1

L + 1

(

L ×
1

1
+

L2

L

)

=
2L

L + 1
≤ 2.

Consider 2L inputs.

RoE =
L × L + L × 2L

L × L + L

=
2L2

L2 + L
≤ 2,

EoR =
1

2L

(

L ×
L

L
+ L ×

2L

1

)

=
L + 2L2

2L
≥ L.

- p. 43/44

Stochastic Competitive Ratio

Theorem 8 (Known Sequence Length) There
exists polynomial time length-aware algorithm for
stochastic online Steiner tree with
EoR = O(log log n).

The length-oblivious case remains unsolved.

- p. 44/44

Conclusions

The stochastic assumptions soften pessimistic
online setting and allow to:
� beat the classical competitive Ω(log n) lower

bound for the online Steiner tree,

Interesting problem:
� we might be interested algorithms with

expected approximation ratio.

	Outline
	Two-stage Stochastic Optimization
	Stochastic optimization
	Two-stage stochastic optimization
	Example: Facility location
	Modeling uncertainty
	The model:
	The model (contd)
	Requirements
	Boost-and-Sample()
	Theorem
	Applications: Steiner tree
	Applications: Facility location
	Proof of main Theorem
	Proof of main Theorem
	Extensions

	On-line Stochastic Optimization
	On-line Stochastic Optimization
	Approximation Ratio
	Online and Stochastic Online
	Online Stochastic Steiner Tree
	Greedy Algorithm
	Greedy Algorithm
	Greedy Algorithm
	Greedy Algorithm
	Naïve Algorithm
	Doing Better than Greedy
	Length-aware Algorithm
	The Algorithm
	Length-aware Algorithm
	Connection Cost
	Connection Cost
	Length-oblivious Algorithm
	Unknown Sequence Length
	Other Results
	Expectation of Ratios
	Expectation of Ratios
	Expectation of Ratios
	Expectation of Ratios
	Stochastic Competitive Ratio
	Stochastic Competitive Ratio
	Stochastic Competitive Ratio
	Conclusions

