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What are Ad-Auctions?

You type in a guery:
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How do search engines sell ads?

« Each advertiser:

— Sets a daily budget

— Provides bids on interesting keywords
« Search Engine (on each keyword).

— Selects ads

— Advertiser pays bid if user clicks on ad.

Goal (of search engine):
Maximize Revenue




How much does It cost?

= Google AdWords: Keyword Tool - Windows Internet Explorer
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Mathematical Model

* Buyer :
— has a daily budget B(i)

* Online Setting:
— Items (keywords) arrive one-by-one.
— buyers bid on the items (bid can be zero)
« Algorithm:
— Assigns each item to an interested buyer.

Assumption:
Each bid is small compared to the daily budget.




Ad-auctions — Linear Program

| - Set of buyers. B(i) — Budget of buyer i
J - Set of items. b(i,]) — bid of buyer i on item |

y(l, j) = 1= j-th adword is sold to buyer i.

max » > b, j)y(i, j)

el jeld

S.t

For each item j: Zy(i, ))<1 ,

icl

Buyers do not
exceed their
budget

. - o= - . OOO -
For each buyer i: Zb(l, Ny, ]) <B(1)

jeld



Ad-auctions: Primal and Dual

P: Primal Covering

min > B(i)x(i)+>_z(j)

icl jed

For each item j and buyer i: b(i, j)x(i) + z(j) = b(i, j)

D: Dual Packing
max > > b(i, j)y(i j)
iel jeld
For each item j: D_Y(i, ) <1

el

For each buyer i: > b, j)y(, j) < B(i)

jed



The Primal-Dual Algorithm

-+ Initially: for each buyer i: x(i)€ 0
'« When new item | arrives:
'« Assign the item to the buyer i that maximizes:

: b(i, j)[1-x(i)]

-+ if x(i)21 do nothing, '

* y(, j) <1

. 2(j) < b, H[1-x(@)]

. x(i)(—x(i){1+ bg’j)}+8(?)(i[’cjzl] - ‘'C’ later.




Analysis of Online Algorithm
Proof of competitive factor:
1. Primal solution is feasible.
2. In each iteration, AP < (1+ 1/(c-1))AD.
3. Dual is feasible.

Conclusion:
Algorithm is (1+ 1/(c-1))-competitive



Analysis of Online Algorithm

Primal solution is feasible.
For each item j and buyer i:

b(1, J)x(1) +2z()) 2b(1, J)

If X(i) 21 the solution is feasible.

Else, z()) € maxq{ b(i,j)(1-x(i)) }, and the solution

IS feasible /

Increasing x(i) in the future maintains feasibility



Analysis of Online Algorithm

2. In each iteration, AP = (1+ 1/(c-1))AD:

If x(i)=21, AP =AD=0
Otherwise:

AD = b(i,))

AP = B(@i)Ax(i)+z(j)
o, J)x(1) b, J)

ORI

.. : .. 1
:|+b(|, J)[1-x(@i)]=b, j){l—l— (c—l)}

v

2(J) = b(i, DL-xD] x) « X(i){“ bgiig)} 0




Analysis of Online Algorithm

Dual is feasible:

The “last” item assigned to a buyer may exceed
his budget

The online algorithm loses the revenue from such
an item

This where the assumption that each individual bid
Is small with respect to the budget is used

The maximum ratio between a bid of any buyer

and its total budget: {b(i,j) X

R =
ichyenm | B() |

>




Analysis of Online Algorithm

It is easy to prove by induction that:
LI I

12x(i)zic S|
c—1

. if x(i)21, primal constraints of buyer i are feasible.
= No more items are assigned to the buyer.
« simplifying the inequality we get that the dual is

almost feasible (up to the “last” item)



Competitive Factor

e  Setting c=(1+ R)%

¢c — e when R — 0

 The competitive factor is

(1—%) (1—R):(1—%> if R—0

 Result obtained by [MSVV, FOCS 2005]



Extensions — Getting More Revenue

Seller wants to sell several

advertisements

There are £ slots on each page

Bidders provide bids on keywords which are
slot dependent

b(l,],k) — bid of buyer i on keyword | and slot k

A slot can only be allocated to one advertiser



Linear Program

Dual (Packing)

Maximize: ijl 23:1 Zgzl b(z, j, £)y(i, j, £)
Subject to:
Vi<j<m,1<k<e 7" y(jk) <1

V1 <i<n: ST D ey (i, 5, k)Y (i, 5, k) < B(i)

Vi<j<m,1<i<n: >, y(i,jk) <1

Primal (Covering)

Minimize : S Bl)z(i) + 3T S 26 k) + Y ST s(i )
Subject to:
Vi, j, k: b(i, j, k)a(i) + 2(j. k) + (3, 5) > b(i, j, k)



Online Allocation Algorithm

Initially, Vi, (i) < 0.
Upon arrival of a new item j:

1. Generate a bipartite graph H: n buyers on one side and ¢ slots on
the other side. Edge (i, k) € H has weight b(i, 7, k)(1 — x(7)).

2. Find a maximum weight (integral) matching in H, i.e., an assignment
to the variables y(i, j, k).

3. Charge buyer ¢ the minimum between Zf;zl b(i, 7, k)y(i, 7, k) and its
remaining budget.
4. For each buyer i, if there exists slot k for which y(i, j, k) > 0:

. . b(i, g, k)y(i, j, k) \ | b(i, 5, k)y(i, j, k)
x(i) «— (1) (1 + B(i) ) + (c—1)-B()

Remark: If / = 1, the maximum weight matching is a single edge
maximizing b(z, 7)(1 — x(7)).




Analysis of Online Algorithm
Proof of competitive factor:
1. Primal solution is feasible.
2. In each iteration, AP < (1+ 1/(c-1))AD.
3. Dual is feasible.

Conclusion:
Algorithm is (1+ 1/(c-1))-competitive



Analysis: Crucilal Fact

Dual (Packing)

Primal (Covering)

max » > b(i,5,k) (1 —x(3)) y(i, 4, k)
Subject to:

V1<k</¥: Z 1y(7,j,k)_1

V1l <i<n: Zk L y(i,4,k) <1

Vi, k: y(i,7,k) >0

mlnzz  s(4,7 +Zk 2

Subject to:
V(i k) s(i,5) + 2(J, k) = b(4,j, k) (1 — z(4))
Vi, k: s(t,9),2(J, k) =2 0

Figure 1: The LP for the matching problem solved for item j

e Primal variables are the same as in the allocation problem.

e There is an optimal primal solution and a dual integral solution satisfy-

ing:

n

DO b g k) (1 —a(0) yli, k) = > 56, 5) + > 235 k).

1=1 k=1

1=1

e This solution defines the assignmet to the primal and dual variables



1.

Analysis of Online Algorithm

Primal solution is feasible.
for each buyer I, item |, slot k:

b(i, 7, k)x(i) + 2(j, k) + s(i, 5) > b(i, j, k).

this constraint is satisfied by the primal-dual
solution to the weighted matching LP

Increasing x(1) in the future maintains feasibility

v



Analysis of Online Algorithm
2. In each iteration, AP s (1+ 1/(c-1))AD:

M>:§:$+ZZH+ZP‘M
- Z Z b(, 5, k) (1 — 2(4)) y(i, j, k)

i, 5, k)z()y(e, j, k) | b, J, k)y(i, J, k)
*2;3 ( B() T =1 BO) )
1
= ;;bz], y(i,7, k (1—|—C_1).

Since AD = 327 S, b(i, 4, k)y(i, j, k), the claim follows. %
Zszgk (1 —x(2))y(i, 5, k) = Z’LJ—I—Z (7, k).

1=1 k=1 =1



Analysis of Online Algorithm

3. Dual is feasible:
« similar to the proof in the single slot case

« the competitive factor is

(1—%) (1—R):(1—é) if R—0



Online Matching in Bipartite Graphs
Input: bipartite graph H=(U,V,E)

Goal: find a maximum matching in H

Online model:
e VIS known

« the vertices of U arrive one by one and expose
their neighbors in V (upon arrival)

 foreach u € U, upon arrival, online algorithm
decides whether to match u to a vertex in V



Online Algorithms for Matching

any algorithm that matches a vertex, if possible,
achieves competitive ratio %2 since

(maximal matching) = %2 - (maximum matching)
online algorithm of [KVV 1990]:
choose a random permutation 1T on V

assign each vertex u € U to the minimum index
vertex in V with respect to

competitive ratio: 1-1/e

an online primal-dual algorithm can find a fractional
matching with competitive ratio 1-1/e

can an integral matching be computed via the primal-
dual method?



The Paging/Caching Problem

 Relationship to the k-Server Problem
« Weighted paging
« Web caching



The Paging/Caching Problem (Reminder)

Universe of of n pages
Cache of size k < n

Request sequence of pages: 1,6,4,1,4,7,6,1, 3, ..

If requested page is in cache: no penalty.

Else, cache miss! load requested page into cache, evicting
some other page.

Goal: minimize number of cache misses.

Question: which page to evict in case of a cache miss?



Known Results: Paging

Paging (Deterministic) [Sleator Tarjan 85]:
* Any online algorithm = k-competitive.

LRU is k-competitive (also other algorithms)
LRU is k/(k-h+1)-competitive if optimal has cache of size h <k.

Paging (Randomized): @ﬂ?

Rand. Marking O(log k) [Fiat, Karp, Luby, McGeoch, Sleator, Young 91].
Lower bound H, [Fiatetal. 91], tight results known.

O(log(k/k-h+1))-competitive algorithm if optimal has
cache of size h <k [Young91]



The Weighted Paging Problem

One small change:

« Each page I has a different fetching cost w(i).

« Models scenarios where cost of loading pages into the
cache is not uniform:

Main memory, disk, internet...

Goal
« Minimize the total cost of cache misses.




Deterministic

Randomized

Weighted Paging

Paging

Weighted Paging

Lower bound k
LRU k competitive

k/(k-h+1) if opt’'s cache size h

K-competitive  [Chrobak,
Karloff, Payne, Vishwanathan 91]

k/(k-h+1)  [Young 94]

O(log k) Randomized
Marking

O(log k/(k-h+1))

O(log k) for two distinct
weights [Irani 02]

No o(k) algorithm known even
for three distinct weights.




The k-server Problem (1)

* k servers are placed in an n-point metric space
* requests arrive at points in the metric

° serving a request: move a server to request point

Goal: minimize total distance traveled o

by the servers. iy



The k-server Problem

« Paging = k-server on a uniform metric

— every page Is a point

— A page is in the cache iff a server is at the point
« Weighted paging = k-server on a weighted star metric
Deterministic Results:

« (General metric spaces: (2k-1)-competitive work function
algorithm [Koutsoupias-Papadimitriou 95]

« Tree metric: k-competitive algorithm [Chrobak et al. 91]
Randomized Results:

* No o(k) algorithm known (even for very simple spaces).
« Bestlower bound (log k)



Fractional Weighted Paging
Model:

* Fractions of pages are kept in cache:
probability distribution over pages py,...,p,

 The total sum of fractions of pages in the cache is
at most k.

« If p; changes by ¢, cost = € w(i)

k units of cache



Overview

High level idea:

1. Design a primal-dual O(log k)-competitive algorithm
for fractional weighted paging.

2. Obtain a randomized algorithm while losing only a
constant factor.



Setting up the Linear Program

o o time line

| | | | | | | L1 | | L
| | | | | | | | | | |

t t t t
Page | Page | Page p, Pagei Page]

B(t): Set of pages requested until
time t (including p,)

We can only keep k pages out of the B(t) pages

—_ =

Evict2[|B(t)| - 1 - (k- 1)] = [|B(t)|-k] pages from B(t)\{p;}



Weighted paging — Linear Program

n r(it)

min > > w(i)x(i, j)

i=1 j=1
vt Z x(i,r(i,t))z\B(t)\—k
ieB(O\p, } ..
0<x(l, J) <1

e |dea: charge for evicting pages instead of fetching pages

X(1,J)) — indicator for the event that page i is evicted from the
cache between the j-th and (j+1)-st times it is requested

r(i,t) - number of times page I is requested till time t,
Including t



Primal and Dual Programs

P: Primal Coverin LS (713
> min > > wi)x(, j)

i=1 j=1
vt > x(ir(i, 1) >|B()|-
ieBOWp} .
0<x(1,])<1

D: Dual Packing i)
n

max 3(BO|-k)y© -3 . 26 )

=1 j=1
For each page | and the j th time it was asked:

t(i, j+1)-1
( > Y(t)j—z(i,j)ﬁw(i)

t=t(i, j)+1



Fractional Caching Algorithm (1)

At time t, when page p; is requested:
e Set the new variable: z(p:, r(pt,t)) < O:

— this guarantees that p; is in the cache at time ¢.

— this variable can only be increased at times t’ > ¢.

e If the primal constraint corresponding to time ¢ is satisfied, then do
nothing.

e Else, increase variables z(i, j) as a function of y(?),
details follow soon ...




The growth function of x(i,))

1/k

Oﬁ == \. Corresponding
. ual constraint
Dual is tight Dual violate
g Page fully by O(log k)
In memory Page is Pag_efully }
_ (marked) “unmarked” evicted




Fractional Caching Algorithm (2)

e Else: increase primal and dual variables, till primal constraint corre-
sponding to time ¢ is satisfied:

1. Increase variable y(t) continuously; for each variable x(p, j) that
appears in the (yet unsatisfied) primal constraint that corre-
sponds to time t:

2. If x(p,j) = 1, then increase z(p, j) at the same rate as y(t).
3. If x(p,j) =0 and

t(p:j‘l’l)_]-
> @) ] - z(pd) = wip),
t=t(p,j)+1

then set x(p,j) <« 1/k.
4. If 1/k < z(p,j) < 1, increase x(p, j) by the following function:

t(p,j+1)—1
| 1 (p,J+1)

=exp | —— Z y(t) | —z(p,j) —w(p)

t=t(p,j)+1




Analysis of Online Algorithm
Proof of competitive factor:
1. Primal solution is feasible.
2. Primal <2 - Dual
3. Dual is feasible up to a factor of O(log k)

Conclusion (weak duality):
Algorithm is O(log k)-competitive



Analysis of Online Algorithm

1. Primal solution is feasible. At time t:
— for page p,, X(p.r(p,t))<0, i.e., p;is in the cache

— primal variables x(q,r(qg,t)) corresponding to other
pages q are increased till primal constraint is
satisfied

— for each page g, by the algorithm, x(q,r(q,t)) <1
(Increase In z balances out increase in y) /



Analysis of Online Algorithm

3. Dual is O(log k) feasible:

Consider any dual constraint.

since X(I,))<1: (t(if)ly(t)]—z(i,j)
o 1 t=t(i,j)+1 |
12x04):Ee Wi

Simplifying, we get that:

t(i, j+1)-1
t) |—z(1, ) <w()[1+Ink
[t%HY( )) z(i, ) <w(i)[1+Ink] ‘/

-1




Analysis of Online Algorithm

2. Primal <2 - Dual
This is done In two separate steps:

 C, - contribution to the primal cost of the
variables x(p,J) when increased from O to 1/k

« C, - contribution to the primal cost of the variables
X(p,)) when increased from 1/k to (at most) 1,
according to the exponential function

Each contribution is upper bounded separately by the
dual



Bounding C;

Define: Z(p,j) = min(z(p,J), %)

Primal complementary slackness: if z(p,j) > 0,

t(paj_i_l)_]-

> yt) | —z(pd) = w(p)

t=t(p.j)+1



Bounding C;

e B'(t) - set of pages p € B(t) for which z(p,r(p,t)) =1

Dual complementary slackness (1): if y(¢) is being increased at time ¢ then:

> ) < PO g ko im

pEB(\(B'(t)U{p:})

o |[B(t)|—|B'(t)| > k+1 (else |B'(t)| > |B(t)| — k, satisfying constraint)

o = [BOIILBOl o By~ k- |B/(1))

Dual complementary slackness (2): if z(p,j) > 0, then z(p,j) > 1



Bounding C;

n r(p,t)
> 2wl
p=1 j7=1

(by primal complementary slackness)

n 7(pt) t(p,j+1)—1
< > > v | —2pJ) | #(p ) =
p=1 j=1 t=t(p,j)+1

(changing order of summation)

—

r(p,t)

= > | > @pr( )= > @(p,4)x(p, )

t i€B(t)\{p+} p=1 j=1



Bounding C,

n T(p:t)
Yol DL #poret) v =D> > #pi)z(p )
t \ieB(®\{p:} p=1 j=1
n T(p,t)
Z(IB )| — k) z(p, J
p=1 j5=1

e The derivative of the LHS is:

> Z(p,r(p,t)) < |B(t)| — k — |B'(1)]

peB(\(B'(t)U{p:})

since z(p, j) increases at the same rate as y(t) when x(p,r(p,t)) =1
e The derivative of the RHS is |B(t)| — k — |B'()|

Thus, ' is upper bounded by the dual solution



Bounding C,

Reminder:

If 1/k < x(p,j) < 1, increase x(p, j) by the following function:

1 ( 1 K(f ( )) (0. ) — )D
—-exp | ——= y(t —2(p,7) —w(p
g wp) |\ il



Bounding C,

Variables y(t) and z(p, j) are raised at rate 1 with respect to virtual variable 7.

dy(t dr(p,j) __ .
® %:17 dz(;l()tg) _ﬁm(paj)
dCy )9 w(p) dz(p,r(p,t)) dy(t)
dr , dy(t) dr
peB(t)\{p¢},1/k<z(p,j)<1
= > z(p,r(p, 1))
peB(t)\{p¢ },1/k<z(p,j)<1
< (1B —Fk) - > 1
pEB(t)\{pt},x(p,j)=1
dy(t) dz(p, j)
= (|B(t)|—k) —— —
(1B(1)| - k) 2 > I

pGB(t)\{pt},w(p,j)Zl

. >
~

dual derivative

dual objective = >, (|B(t)| — k) y(t) — 22:1 Z;(:p{t) z(p,J)



Conclusion

 C, Isupper bounded by a dual solution
 C,Is upper bounded by a dual solution

Thus, primal < 2 - dual

The algorithm is O(log k)-competitive

v



Rounding

Linear program provides a fractional view:
Prob[p Is in cache at time t] = 1-x(p,r(p,t))

Randomized alg.: distribution on cache states
Example: pages A,B,C,D k=2

LP state = (1/2,1/2,1/2,1/2)
Consistent distribution = % (A,B) + %2 (C,D)



Rounding — Need to be Careful
A,B have wt. 1, C,D have wt. M

LP state = (1/2,1/2,1/2,1/2)
Distribution = %2 (A,B) + %2 (C,D)

LP changes to (1,0,1/2,1/2)
LP cost ="

randomized algorithm: only consistent distribution =
2(A,C) + %2 (A,D)
cost of randomized algorithm:
(Y2 (A,B) +2(C,D)) => ("2(A,C) + 7% (A,D))
©(M) — either C or D are (partly) evicted



Rounding — Main ldeas

- Partition the pages into weight classes:
— class | pages with size [2I, 2i+1]
 Define a distribution D on cache states

— each cache state has approximately the
same number of pages from each class.

«  Show how to update the distribution on the
cache states while paying at most 5 times the

fractional cost. /



Further Extensions of the Basic Model

First Extension:
« Pages have different fetching costs.

* Models scenarios in which the fetching cost is not
uniform:

Main memory, disk, internet ...

Second (Orthogonal) Extension:
« Pages have different sizes.

* Models web-caching problems (Proxy Servers, local
cache in browser)




.

Size

Fetch cos

:

Caching Models

Uniform \

Minimize number of times thew
user has to wait l

N

Non-uniform

N

Unif(”

\

Offline is NP-Hard

(Simple reduction from

Knapsack/Partition)

Non-uniform

Weighted Caching

~

Fault Model

General Caching
2. Bit Model
(fetching cost= size)

56




Deterministic Algorithms

-

Any Algorithm = k-competitive

Size
~etch cos Uniform Non-uniform
Basic Caching\/ Fault Model
Uniform | LRU is k-competitive LRU is k-competitive
(also other algorithms) [Irani]

Weighted Caching |1. General Caching
K-competitive K-competitve
Non-uniform | [Chrobak, Karloff, [Irani,Cao], [Young]
Payne, Vishwanathan] | o Bit Model

LRU k-competitve [Irani]
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Basic Caching Fault Model
Uniform | R&ndomized Marking O(log?k)-competitive
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[Fiat et al.]
Weighted Caching |1. General Caching
O(log k)-competitive é@
Non-uniform algorithm [Bansal, \

Buchbinder, Naor]

2. Bit Model

O(log?k)-competitive
algorithm [lraniks
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Size

Fetch cos

Uniform

Non-uniform

Uniform

Basic Caching
Randomized Marking
O(log k)-competitive
[Fiat et al.]

Fault Model

OM()-competitive

O(log k)-competitive

Non-uniform

Weighted Caching

O(log k)-competitive
algorithm [Bansal,
Buchbinder, Naor]

1. General Caching
O(|Og2k)-COI‘.§1®itive
2. Bit Model ¥

OYTogﬂ()-com petitive

O(log k)-competitive,




Basic Definitions: Generalized Caching

* npages
« Cache of size k

* Size of page p: w, € [1,K]

* Fetching cost of page p: c, (arbitrary)

Fractional solution:

« Algorithm maintains fractions of pages as long
as the total size does not exceed K.

* Fetching ¢ fraction of page p costs ¢c,



High level approach

First step:

 General O(log k)-competitive algorithm for the fractional
generalized caching.

= Maintains fractions on pages.

Second Step:

Transform online the fractional solution into
Randomized algorithm:

e Maintain distribution on cache states that is
“consistent” with the fractional solution.

e Simulation procedure maps changes in fractions on
pages to distribution on cache states (w/ similar cost).

 O(1) simulation for Bit/Fault model
O(log k) simulation for the general model.



Generalized Caching — Linear Program

® o ® o ® o
| | | | | | | | | L1 | L
| | | | | | | | | | | | |
t ¢ t t  Timeline
Page p, Pagep, Page p, Page p,
time t

Interval: Keep the page between the jth time it is
requested and the (j+1) time it is requested.

If interval present, no cache miss.
At any time step t, total size of intervals (pages) is at

most K.



Generalized Caching: 15t LP formulation

X(p,}): How much of interval (p,j) evicted thus far
B(t): Set of pages requested until time t.

W(B(t)): total size of pages in B(t).

r(p,t): number of times page p requested until time t

n r(p,t)

. Primal Covering mmz Z c, X(p, j)

p=1 j=1

vt w,-x(p,r(p,t) =W (B(t) -k
peB(MOMp, } 0< X(p, J) <1



Problem with LP formulation

The formulation has unbounded integrality gap ...

Example:

 Two pages of size k/2+¢& requested alternately.

« Integral solution: cache miss every turn
« Fractional solution:
— Keeps almost one unit of each page.
— Needs to fetch only O(g/k) page every turn

| _ n r(p.t)
P: Primal Covering mmz Z C X(p J)

p=1 j=1

vt w,-x(p,r(p,t) =W (B(t) -k
peB(MOMp, } 0< X(p, J) <1



Generalized Caching: 2"d LP formulation

Strengthening the LP: These are called:
P: Primal Covering knapsack inequalities
_ | aft ening, box
For any time t and set traints are redundant

Y
: P
>, winfS PRI Fko. D)) Tk
peB()\{p,} 1T 0 M 1 ‘
D*=pP*
D: Dual Packing max» > (W(s)—k)-y(t,S) |
t ScB(t),p,eS D
For each page p and the jth time it is requested:
t(p,j+1)-1
min{W (s) —k,w }-y(t,S) <c,

t=t(p,j)+1




Sketch of Primal-Dual algorithm

 While there exists an unsatisfied primal constraint of
set of pages S and time t:

* Increase the dual variable y(t,S).
When dual constraint of variable x(p,)) is tight, x(p,j) = 1/k

t(p,j+1)-1

min{W (s) —k,w_}-y(t,S) =c,

t=t(p,j)+1

From then on, increase Xx(p,)) exponentially (until x(p,))=1)

t(p,j+1)-1
«(p. j)—(%jexp{i[ y min{W<s>—k,vvp}-y(t,S)]—1}

o \t=t(p,j)+1



The growth function of x(p,j)
X(p, J)

1/k

Oﬁ == \. Corresponding
: ual constraint
Dual is tight Dual violate
g Page fully by O(log k)
In cache Page is Page fully }
_ (“marked”) “unmarked” evacuated




Analysis of Online Algorithm

Proof of competitive factor:
1. Primal solution is feasible.
2. Primal < 2 Dual.

3. Dual is feasible up to O(log k) factor

Conclusion (weak duality):
Algorithm is O(log k)-competitive



Analysis - sketch

1. Primal solution is feasible.

We increase x(p,j)’s until current primal constraint is feasible

2. Primal < 2 Dual:
a. Setting x(p,)) to 1/k analyzed using complementary

slackness

b. During the exponential growth the primal derivative is at
most dual derivative

3. Dual is O(log k) feasible:
(1. i) _(%)exp{i(t(pf)lmin{w (s)—k,wp}-y(t,S)]—l} <1

p \ t=t(p,]j)+1

—_ =

t(p, J+l)_l

min{W (s) —k,w_}-y(t,S) <c_(1+In(k))

t=t(p,j)+1



Concluding Remarks

* Primal-dual approach gives simple unifying
framework for caching.

Open questions:

1. Improving to O(log k) for the general model.

2. 0(k) randomized algorithms for k-server using
primal-dual approach. N

3. Extend primal-dual framework beyond

packing/covering. @
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