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What are Ad-Auctions?

You type in a query: 

You get:

Algorithmic

Search results

And …

Ad-auctions

Vacation Eilat



How do search engines sell ads?

• Each advertiser: 

– Sets a daily budget 

– Provides bids on interesting keywords

• Search Engine (on each keyword):

– Selects ads

– Advertiser pays bid if user clicks on ad.

Goal (of search engine): 

Maximize Revenue 



How much does it cost?

Estimates are for 

September 30th 2007

Buying keyword like

“divorce lawyer”

may cost as much as 

$40 per click

Tel Aviv vacation $2.5

Red sea vacation $2.15

Jewish vacation $2.05

Eilat vacation $2.36



Mathematical Model

• Buyer i: 

– has a daily budget B(i) 

• Online Setting:

– items (keywords) arrive one-by-one.

– buyers bid on the items (bid can be zero)

• Algorithm: 

– Assigns each item to an interested buyer.

Assumption:

Each bid is small compared to the daily budget.



Ad-auctions – Linear Program

s.t:

For each item j:

For each buyer i: 

( , )y i j

max ( , ) ( , )
i I j J

b i j y i j
 



I  - Set of buyers.

J - Set of items.

( , ) 1
i I

y i j




= 1      j-th adword is sold to buyer i.

( , ) ( , ) ( )
j J

b i j y i j B i




B(i)   – Budget of buyer i

b(i,j)  – bid of buyer i on item j



Each item is 

sold once.Buyers do not 

exceed their 

budget



Ad-auctions: Primal and Dual

For each item j:

For each buyer i: 

max ( , ) ( , )
i I j J

b i j y i j
 



( , ) 1
i I

y i j




( , ) ( , ) ( )
j J

b i j y i j B i




D: Dual Packing

P: Primal Covering

min ( ) ( ) ( )
i I j J

B i x i z j
 

 

For each item j and buyer i: ( , ) ( ) ( ) ( , )b i j x i z j b i j 



The Primal-Dual Algorithm

• Initially: for each buyer i: x(i) 0

• When new item j arrives:

• Assign the item to the buyer i that maximizes:

• if x(i)≥1 do nothing, otherwise:





 - „c‟ later.

 ( , ) 1 ( )b i j x i

 
( , ) ( , )

( ) ( ) 1
( ) ( ) 1

b i j b i j
x i x i

B i B i c

 
   

 

 ( ) ( , ) 1 ( )z j b i j x i 

( , ) 1y i j 



Analysis of Online Algorithm 

Proof of competitive factor:

1. Primal solution is feasible.

2. In each iteration, ΔP ≤ (1+ 1/(c-1))ΔD. 

3. Dual is feasible.

Conclusion:

Algorithm is (1+ 1/(c-1))-competitive



Analysis of Online Algorithm 

1. Primal solution is feasible.

For each item j and buyer i:

If x(i) ≥1 the solution is feasible.

Else, z(j)  maxi{ b(i,j)(1-x(i)) }, and the solution 

is feasible

Increasing x(i) in the future maintains feasibility  

( , ) ( ) ( ) ( , )b i j x i z j b i j 



Analysis of Online Algorithm 

2. In each iteration, ΔP ≤ (1+ 1/(c-1))ΔD:

If x(i)≥1, ΔP =ΔD=0

Otherwise:

• ΔD = b(i,j)

• ΔP  =

 
 

( , ) ( ) ( , ) 1
( ) ( , ) 1 ( ) ( , ) 1

( ) ( ) 1 ( 1)

b i j x i b i j
B i b i j x i b i j

B i B i c c

   
        

   

( ) ( ) ( )B i x i z j 

 
( , ) ( , )

( ) ( ) 1
( ) ( ) 1

b i j b i j
x i x i

B i B i c

 
   

 
 ( ) ( , ) 1 ( )z j b i j x i 



Analysis of Online Algorithm 

3. Dual is feasible:

• The “last” item assigned to a buyer may exceed 

his budget 

• The online algorithm loses the revenue from such 

an item

• This where the assumption that each individual bid 

is small with respect to the budget is used

• The maximum ratio between a bid of any buyer 

and its total budget:



Analysis of Online Algorithm 

It is easy to prove by induction that:

• if x(i)≥1, primal constraints of buyer i are feasible.

 No more items are assigned to the buyer.

• simplifying the inequality we get that the dual is 

almost feasible (up to the “last” item)

( , ) ( , )

( )1
1 ( ) 1

1

j

b i j y i j

B ix i c
c

 
 

   


 
 



Competitive Factor

• Setting

• The competitive factor is

• Result obtained by [MSVV, FOCS 2005] 



Extensions – Getting More Revenue

• Seller wants to sell several 

advertisements

• There are    slots on each page

• Bidders provide bids on keywords which are 

slot dependent

b(i,j,k) – bid of buyer i on keyword j and slot k

• A slot can only be allocated to one advertiser



Linear Program



Online Allocation Algorithm



Analysis of Online Algorithm 

Proof of competitive factor:

1. Primal solution is feasible.

2. In each iteration, ΔP ≤ (1+ 1/(c-1))ΔD. 

3. Dual is feasible.

Conclusion:

Algorithm is (1+ 1/(c-1))-competitive



Analysis: Crucial Fact



Analysis of Online Algorithm 

1. Primal solution is feasible.

for each buyer I, item j, slot k:

this constraint is satisfied by the primal-dual 

solution to the weighted matching LP 

Increasing x(i) in the future maintains feasibility  



Analysis of Online Algorithm 

2. In each iteration, ΔP ≤ (1+ 1/(c-1))ΔD:



Analysis of Online Algorithm 

3. Dual is feasible:

• similar to the proof in the single slot case

• the competitive factor is



Online Matching in Bipartite Graphs 

Input:   bipartite graph H=(U,V,E)

Goal:  find a maximum matching in H

Online model:

• V is known

• the vertices of U arrive one by one and expose 

their neighbors in V (upon arrival)

• for each u 2 U, upon arrival, online algorithm 

decides whether to match u to a vertex in V



Online Algorithms for Matching

• any algorithm that matches a vertex, if possible, 

achieves competitive ratio ½ since

(maximal matching) ≥ ½ ∙ (maximum matching)

• online algorithm of [KVV 1990]:

– choose a random permutation π on V

– assign each vertex u 2 U to the minimum index

vertex in V with respect to π

– competitive ratio: 1-1/e

• an online primal-dual algorithm can find a fractional

matching with competitive ratio 1-1/e

• can an integral matching be computed via the primal-

dual method?



The Paging/Caching Problem

• Relationship to the k-Server Problem

• Weighted paging

• Web caching
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The Paging/Caching  Problem (Reminder)

Universe of of n pages 

Cache of size k ¿ n

Request sequence of pages: 1, 6, 4, 1, 4, 7, 6, 1, 3, …

If requested page is in cache: no penalty.

Else, cache miss! load requested page into cache, evicting 
some other page. 

Goal: minimize number of cache misses.

Question: which page to evict in case of a cache miss?



Known Results: Paging

Paging (Deterministic) [Sleator Tarjan 85]:

• Any online algorithm ≥ k-competitive.

• LRU is k-competitive (also other algorithms)

• LRU is k/(k-h+1)-competitive if optimal has cache of size  h · k.

Paging (Randomized):

• Rand. Marking O(log k) [Fiat, Karp, Luby, McGeoch, Sleator, Young 91]. 

• Lower bound Hk [Fiat et al. 91], tight results known.

• O(log(k/k-h+1))-competitive algorithm if optimal has
cache of size  h · k [Young 91]



The Weighted Paging Problem

One small change:

• Each page i has a different fetching cost w(i).

• Models scenarios where cost of loading pages into the 

cache is not uniform: 

Main memory,   disk,    internet …

Goal

• Minimize the total cost of cache misses.

web



Weighted Paging

Lower  bound k  

LRU    k competitive 

k/(k-h+1) if opt‟s cache size h  

k-competitive     [Chrobak, 

Karloff, Payne, Vishwanathan 91]

k/(k-h+1) [Young 94]

O(log k) Randomized  

Marking

O(log k/(k-h+1))

O(log k) for two distinct 

weights [Irani 02]

No o(k) algorithm known even 

for three distinct weights.

Paging Weighted Paging
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The k-server Problem (1)

• k servers are placed in an n-point metric space

• requests arrive at points in the metric

• serving a request: move a server to request point

Goal: minimize total distance traveled 

by the servers.



The k-server Problem

• Paging = k-server on a uniform metric

– every page is a point

– A page is in the cache  iff a server is at the point

• Weighted paging = k-server on a weighted star metric

Deterministic Results:

• General metric spaces: (2k-1)-competitive work function 
algorithm [Koutsoupias-Papadimitriou 95]

• Tree metric: k-competitive algorithm [Chrobak et al. 91]

Randomized Results:

• No o(k) algorithm known   (even for very simple spaces).

• Best lower bound  (log k)



Fractional Weighted Paging

Model:

• Fractions of pages are kept in cache: 

probability distribution over pages p1,…,pn

• The total sum of fractions of pages in the cache is 

at most k.

• If  pi changes by , cost =  w(i)

k units of cache



Overview

High level idea:

1. Design a primal-dual O(log k)-competitive algorithm 
for fractional weighted paging.

2. Obtain a randomized algorithm while losing only a 
constant factor.



Setting up the Linear Program

time line

Page i Page iPage j Page j

We can only keep k pages out of the B(t) pages

Evict ≥ [|B(t)| - 1 - (k- 1)] = [|B(t)|-k] pages from B(t)\{pt}

B(t): Set of pages requested until 

time t (including pt)

Page pt



Weighted paging – Linear Program
( , )

1 1

min ( ) ( , )
r i tn

i j

w i x i j
 



ti B(t)\{p }

   ( , ( , )) ( )t x i r i t B t k


  
0 ( , ) 1x i j 

• Idea: charge for evicting pages instead of fetching pages

x(i,j) – indicator for the event that page i is evicted from the 

cache between the j-th and  (j+1)-st times it is requested

r(i,t) - number of times page i is requested till time t,     

including t



Primal and Dual Programs

For each page i and the j th time it was asked: 

 
( , )

1 1

max ( ) ( ) ( , )
r i tn

t i j

B t k y t z i j
 

  

( , 1) 1

( , ) 1

( ) ( , ) ( )
t i j

t t i j

y t z i j w i
 

 

 
  

 


D: Dual Packing

P: Primal Covering ( , )

1 1

min ( ) ( , )
r i tn

i j

w i x i j
 



ti B(t)\{p }

   ( , ( , )) ( )t x i r i t B t k


  
0 ( , ) 1x i j 



Fractional Caching  Algorithm (1)



Corresponding 

Dual constraint

The growth function of x(i,j)

( , )x i j

1/k

1

Dual is tight Dual violated 

by O(log k)
Page fully

in memory

(marked)

Page fully 

evicted
Page is 

“unmarked”

0



Fractional Caching  Algorithm (2)



Analysis of Online Algorithm 

Proof of competitive factor:

1. Primal solution is feasible.

2. Primal ≤ 2 ∙ Dual

3. Dual is feasible up to a factor of O(log k)

Conclusion (weak duality):

Algorithm is O(log k)-competitive



Analysis of Online Algorithm 

1. Primal solution is feasible. At time t:

– for page pt, x(pt,r(pt,t))←0, i.e., pt is in the cache

– primal variables x(q,r(q,t)) corresponding to other 

pages q are increased till primal constraint is 

satisfied  

– for each page q, by the algorithm, x(q,r(q,t)) ≤ 1

(increase in z balances out increase in y)  



Analysis of Online Algorithm 

3. Dual is O(log k) feasible:

Consider any dual constraint.

since x(i,j)1:

Simplifying, we get that:

( , 1) 1

( , ) 1

( ) ( , )

1
( )1

1 ( , )

t i j

t t i j

y t z i j

w ix i j e
k

 

 

 
 
 
 





 

 
( , 1) 1

( , ) 1

( ) ( , ) ( ) 1 ln
t i j

t t i j

y t z i j w i k
 

 

 
   

 




Analysis of Online Algorithm 

2. Primal ≤ 2 ∙ Dual

This is done in two separate steps:

• C1 - contribution to the primal cost of the 

variables x(p,j) when increased from 0 to 1/k 

• C2 - contribution to the primal cost of the variables 

x(p,j) when increased from 1/k to (at most) 1, 

according to the exponential function

Each contribution is upper bounded separately by the 

dual



Bounding C1



Bounding C1



Bounding C1



Bounding C1



Bounding C2



Bounding C2



Conclusion

• C1 is upper bounded by a dual solution

• C2 is upper bounded by a dual solution

Thus, primal ≤ 2 ∙ dual

The algorithm is O(log k)-competitive



Rounding

Linear program provides a fractional view:

Prob[p is in cache at time t] = 1-x(p,r(p,t))

Randomized alg.: distribution on cache states 

Example:     pages A,B,C,D k=2

LP state =  (1/2,1/2,1/2,1/2)

Consistent distribution =   ½ (A,B)   + ½ (C,D)



Rounding – Need to be Careful

A,B have wt. 1,             C,D have wt. M

LP state =  (1/2,1/2,1/2,1/2)

Distribution =   ½ (A,B)  + ½ (C,D)

LP changes to (1,0,1/2,1/2)      

LP cost = ½

randomized algorithm: only consistent distribution  =   

½(A,C)  + ½ (A,D)

cost of randomized algorithm:

(½ (A,B)  + ½ (C,D))          (½(A,C)  + ½ (A,D))

Θ(M) – either C or D are (partly) evicted



Rounding – Main Ideas

• Partition the pages into weight classes: 

– class i pages with size [2i, 2i+1]

• Define a distribution D on cache states

– each cache state has approximately the 

same number of pages from each class.

• Show how to update the distribution on the 

cache states while paying at most 5 times the 

fractional cost. 



Further Extensions of the Basic Model

First Extension:

• Pages have different fetching costs.

• Models scenarios in which the fetching cost is not 

uniform: 

Main memory,   disk,    internet …

Second (Orthogonal) Extension:

• Pages have different sizes.

• Models web-caching problems (Proxy Servers, local 

cache in browser)

web
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Size

Fetch cost Uniform Non-uniform

Uniform Basic Caching
Fault Model

Non-uniform Weighted Caching

1. General Caching

2. Bit Model 

(fetching cost= size)

Caching Models

Minimize total 

network traffic
Offline is NP-Hard

(Simple reduction from 

Knapsack/Partition)

Minimize number of times the 

user has to wait



Deterministic Algorithms

Size

Fetch cost
Uniform Non-uniform

Uniform

Basic Caching

LRU is k-competitive 

(also other algorithms)

Fault Model

LRU is k-competitive 

[Irani]

Non-uniform

Weighted Caching

k-competitive     

[Chrobak, Karloff,   

Payne, Vishwanathan]

1. General Caching

k-competitve

[Irani,Cao], [Young]

2. Bit Model 

LRU k-competitve [Irani]

Any Algorithm ≥ k-competitive
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Randomized Algorithms

Size

Fetch cost
Uniform Non-uniform

Uniform

Basic Caching

Randomized Marking 

O(log k)-competitive 

[Fiat et al.]

Fault Model

O(log2k)-competitive 

algorithm [Irani]

Non-uniform

Weighted Caching

O(log k)-competitive 

algorithm  [Bansal, 

Buchbinder, Naor]

1. General Caching

2. Bit Model 

O(log2k)-competitive 

algorithm [Irani]

Any Randomized Algorithm 

Ω(log(k))-competitive
Other algorithms that are 

optimal with constants
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Improved Results

Size

Fetch cost
Uniform Non-uniform

Uniform

Basic Caching

Randomized Marking 

O(log k)-competitive 

[Fiat et al.]

Fault Model

O(log2k)-competitive

O(log k)-competitive

Non-uniform

Weighted Caching

O(log k)-competitive 

algorithm  [Bansal, 

Buchbinder, Naor]

1. General Caching

O(log2k)-competitive

2. Bit Model 

O(log2k)-competitive

O(log k)-competitive



Basic Definitions: Generalized Caching

• n pages

• Cache of size k

• Size of page p: wp 2 [1,k]

• Fetching cost of page p: cp (arbitrary)

Fractional solution:

• Algorithm maintains fractions of pages as long 

as the total size does not exceed k.

• Fetching  fraction of page p costs cp



High level approach

First step:

• General O(log k)-competitive algorithm for the fractional 
generalized caching.

 Maintains fractions on pages.

Second Step: 

Transform online the fractional solution into 
Randomized algorithm:

• Maintain distribution on cache states that is 
“consistent” with the fractional solution.

• Simulation procedure maps changes in fractions on 
pages to distribution on cache states  (w/ similar cost).

• O(1) simulation for Bit/Fault model

O(log k) simulation for the general model.



Generalized Caching – Linear Program

Time line

• Interval: Keep the page between the jth time it is 

requested and the (j+1) time it is requested. 

• If interval present, no cache miss.

• At any time step t, total size of intervals (pages) is at 

most k.

Page p1 Page p1Page p2 Page p2

time t



Generalized  Caching: 1st LP formulation

P: Primal Covering
( , )

1 1

min ( , )
r p tn

p

p j

c x p j
 

 

tp B(t)\{p }

   ( , ( , )) ( ( ))pt w x p r p t W B t k


   
0 ( , ) 1x p j 

• x(p,j): How much of interval (p,j) evicted thus far

• B(t): Set of pages requested until time t.

• W(B(t)): total size of pages in B(t).

• r(p,t): number of times page p requested until time t



Problem with LP formulation

P: Primal Covering
( , )

1 1

min ( , )
r p tn

p

p j

c x p j
 

 

tp B(t)\{p }

   ( , ( , )) ( ( ))pt w x p r p t W B t k


   
0 ( , ) 1x p j 

The formulation has unbounded integrality gap …

Example:

• Two pages of size k/2+ε requested alternately.

• Integral solution: cache miss every turn 

• Fractional solution: 

– Keeps almost one unit of each page.

– Needs to fetch only  O(ε/k) page every turn



Generalized  Caching: 2nd LP formulation

P: Primal Covering
( , )

1 1

min ( , )
r i tn

p

p j

c x p j
 



tp B(t)\{p }

( , ( , )) ( )pw x p r p t W S k


  
0 ( , ) 1x p j 

Strengthening the LP:

tp B(t)\{p }

min{ ( ) , } ( , ( , )) ( )pW S k w x p r p t W S k


   

D: Dual Packing  
( ),

max ( ) ( , )
tt S B t p S

W s k y t S
 

  

( , 1) 1

( , ) 1

min{ ( ) , } ( , )
t p j

p p

t t p j

W s k w y t S c
 

 

  

For each page p and the jth time it is requested:
D

P

D*=P*

For any time t and set S ½ B(t) s.t. pt 2 S:

Observation: 

after strengthening, box 

constraints are redundant

These are called:

knapsack inequalities



• While there exists an unsatisfied primal constraint of 
set of pages S and time t: 

• Increase the dual variable y(t,S).

When dual constraint of variable x(p,j) is tight, x(p,j) = 1/k

From then on, increase x(p,j) exponentially (until  x(p,j)=1)

Sketch of Primal-Dual algorithm

( , 1) 1

( , ) 1

min{ ( ) , } ( , )
t p j

p p

t t p j

W s k w y t S c
 

 

  

( , 1) 1

( , ) 1

1 1
( , ) exp min{ ( ) , } ( , ) 1

t p j

p

t t p jp

x p j W s k w y t S
k c

 

 

   
      
     


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Corresponding 

Dual constraint

The growth function of x(p,j)

( , )x p j

1/k

1

Dual is tight Dual violated 

by O(log k)
Page fully

in cache

(“marked”)

Page fully 

evacuated
Page is 

“unmarked”

0



Analysis of Online Algorithm 

Proof of competitive factor:

1. Primal solution is feasible.

2. Primal ≤ 2 Dual. 

3. Dual is feasible up to O(log k) factor

Conclusion (weak duality):

Algorithm is O(log k)-competitive



Analysis - sketch 

1. Primal solution is feasible.

We increase x(p,j)‟s until current primal constraint is feasible

2. Primal ≤ 2 Dual:

a. Setting x(p,j) to 1/k  analyzed using complementary 

slackness

b. During the exponential growth the primal derivative is at 

most dual derivative

3.  Dual is O(log k) feasible:
( , 1) 1

( , ) 1

1 1
( , ) exp min{ ( ) , } ( , ) 1 1

t p j

p

t t p jp

x p j W s k w y t S
k c

 

 

   
       
     



 
( , 1) 1

( , ) 1

min{ ( ) , } ( , ) 1 ln( )
t p j

p p

t t p j

W s k w y t S c k
 

 

   



Concluding Remarks

• Primal-dual approach gives simple unifying 

framework for caching.

Open questions:

1. Improving to O(log k) for the general model.

2. o(k) randomized algorithms for k-server using 

primal-dual approach.

3. Extend primal-dual framework beyond 

packing/covering.


