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Pigou's Example

Example: one unit of traffic wants to go from

stot
c(X)=x __— cost depends on congestion

" no congestion effects

Question: what will selfish network users do?

- assume everyone wants smallest-possible cost
« [Pigou 1920]




Motivating Example

Claim: all traffic will take the top link.

c(x)=x __— Flow = 1-€

e O JP
this flow /.

is enviousl! Flow = €

Reason:
« €>0 = traffic on bottom is envious

* € =0 = equilibrium
- all traffic incurs one unit of cost
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Can We Do Better?

Consider instead: traffic split equally

c(x)=x __— Flow = 3

\77 \

Improvement:
* half of traffic has cost 1 (same as before)

- half of traffic has cost 3+ (much improved!)

1
Flow = 5




Braess's Paradox

Initial Network:

Cost =15

Braess's Paradox

Initial Network: Augmented Network:

[HY
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Cost=15 Now what?




Braess's Paradox

Initial Network: Augmented Network:

Cost =15 Cost =2

Braess's Paradox

Initial Network: Augmented Network:

Cost=15 Cost =2

All traffic incurs more cost! [Braess 68]

also has physical analogs [Cohen/Horowitz 91]




High-Level Overview

Motivation: equilibria of noncooperative network
games typically inefficient
* e.g., Pigou's example + Braess's Paradox

» don't optimize natural objective functions

Price of anarchy: quantify inefficiency w.r.t
some objective function

Our goal: when is the price of anarchy small?
- when does competition approximate cooperation?

- benefit of centralized control is small
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Nonatomic Selfish Routing

+ directed graph G = (V E)
+ source-destination pairs (s;,1;), .., (s, 1))
* r; = amount of traffic going from s; to t,

+ for each edge e, a cost function c ()
- assumed continuous and nondecreasing

Defn: a multicommodity flow is an equi/ibrium
if all traffic routed on shortest paths.

Gy =
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Our Objective Function

Definition of social cost: total cost C(f)
incurred by the traffic in a flow f.

Formally: if cp(f) = sum of costs of
edges of P (w.r.t. flow f), then: @
C(f) = Zp fp  cp(f)
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Our Objective Function

Definition of social cost: total cost C(f)
incurred by the traffic in a flow f.

Formally: if cp(f) = sum of costs of
edges of P (w.r.t. flow f), then: @
C(f) = Zp fp - cp(f)

Example:

|w

12




The Price of Anarchy

Defn: price of
anarchy =
of a game

obj fn value of worst equilibrium

optimal obj fn value

- definition from [Koutsoupias/Papadimitriou 99]
Example: POA = 4/3 in Pigou's example

-

Cost = 3/4 Cost =1
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A Nonlinear Pigou Network

Bad Example: d (d large)

0] €

equilibrium has cost 1, min cost =0
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A Nonlinear Pigou Network

Bad Example: o (d large)
0 €
equilibrium has cost 1, min cost =0

= price of anarchy unbounded as d -> infinity

Goal: weakest-possible conditions under
which P.O.A. is small.
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When Is the Price of
Anarchy Bounded?

Examples so far:

B {50 €

Hope: imposing additional structure on the
cost functions helps
- worry: bad things happen in larger networks

16




Polynomial Cost Functions

Def: linear cost fn is of form c,(x)=a,x+b,

Theorem: [Roughgarden/Tardos 00] for every
network with linear cost functions:

cost of cost of
Nash flow = 4/3 xop’r flow 9‘0
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Polynomial Cost Functions

Def: linear cost fn is of form c (x)=a,x+b,

Theorem: [Roughgarden/Tardos 00] for every
network with linear cost functions:

cost of cost of a
Nash flow = 4/3 xop’r flow ¢ U
Bounded-deg polys: (w/nonneg coeffs) replace

4/3 by  d/Ind o
e




A General Theorem

Thm: [Roughgarden 02], [Correa/Schulz/Stier Moses

03] fix any set of cost fns. Then, a Pigou-like
example 2 nodes, 2 links, 1 link w/constant
cost fn) achieves worst POA

900 4—:3:r)rr\ple
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Pigou Bound

Recall goal: want to show Pigou-like examples
are always worst cases.

Pigou bound: given set of cost functions (e.g.,
degree-d polys), largest POA in a network:

- two nodes, two links
* onhe function in given set Gﬁo
- onhe constant function

- constant = cost of fully congested top edge

20




Pigou Bound

Defn: the Pigou bound a(S) for S is:
r e c(r)
y * c(y) + (r-y) - c(r)

- max is over all choices of cost fns e o
cinS, trafficrater >0, flowy >0
* choose c(x)=x;r=1,y=1/2 = get 4/3

+ calculus: a(S) = 4/3 when S = affine functions
[d/In d for deg-d polynomials]

max
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Main Theorem (Formally)

Theorem:
. For every set S, for every
selfish routing network G with cost
functions in C, the POA in G is at most a(S).

- POA always maximized by Pigou-like examples

That is, if f and f* are Nash + optimal flows
in G, then C(f)/C(f") < a(S).

- example: POA < 4/3 if G has affine cost fns

22




Interpretation

Bad news: inefficiency of selfish routing grows
as cost functions become "more nonlinear".
- think of "nonlinear" as "heavily congested"
- recall nonlinear Pigou's example

Good news: inefficiency does not grow with
network size or # of source-destination pairs.

- in lightly loaded networks, no matter how large,
selfish routing is nearly optimal

eﬁo 4—:3:;\ple
23

Benefit of Overprovisioning

Suppose: network is overprovisioned by p >0
(p fraction of each edge unused).

Then: Price of anarchy is
at most 3(1+1//p).

- arbitrary network size/topology,
traffic matrix

Moral: Even modest (10%) over-provisioning
sufficient for near-optimal routing.

24




Variational Inequality
Claim:
- if f is a Nash flow and " is feasible, then
Ze fe ’ CE(fZ) S 28 f: ' Ce(fe)

proof: use that Nash flow routes flow on
shortest paths (w.r.t. costs c (f.))

25

Variational Inequality

Claim:
- if fis a Nash flow and " is feasible, then

Tefer celfe) ¢ T - co(fo)

+ proof: use that Nash flow routes flow on
shortest paths (w.r.t. costs c(f,))

Thus: T, f, - c(f.) < T fo - ¢ (f3) +
2:e f: : [Ce(fe) B Ce(f:)]
relation to C(f)? —
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Geometry of Affine Case

Assume: ¢ (x) = a.x + b,

Goal: compare

fo o lee(f) - c(£9)] vs. fo - co(fe)

Interesting case: when c(f,) > ¢ (f¥):

/

Ce(X)
(] S— .

RHS

27

POA = 4/3 for Affine Costs

Assume: ¢ (x) = a.x + b,

Thus: .« [c(fo) - c.(f)] < [f. - c(f.))/4

Thus: Z, f, « c(fo) < Z.f - ¢ (f*) +
%e f: ’ [Ce(fe) - Ce(fg)]
J

< Ze [fe ’ Ce(fe)]/4/Y

Thus: C(f) <4/3 - C(f*)
- proof from [Correa/Schulz/Stier Moses 08]

28




Atomic Selfish Routing

Atomic networks: each of (finitely many)
players picks a path on which to route one
unit of traffic. (otherwise identical model)

AAE example: [refer to whiteboard for
details] shows that the POA can be as high
as 2.5 in this model, with affine cost
functions.
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Potential Functions

So: potential fn tracks deviations by players

Thus: equilibria of game = local optima of @

- so finite potential games have pure-strategy
Nash equilibria (proof: just do "best-
response dynamics") [Monderer/Shapley 96]

- precursors: [Rosenthal 73], [Beckmann et al 56]

Claim: every atomic selfish routing game has a
potential function.

30




Proof of Potential Function

Define  &.(k.) = c.(1)+ c.(2) + ¢, (3)+ ... +c. (k)

where k, is # players using e.
Let &(S) = 2 2.(S)

Consider some solution S (a path for each player).
Suppose player i is unhappy and decides to deviate.

What happens to &(S)?

31

Proof of Potential Function

(ko) = c(D)* . (2) + .. +c. (Ke)
Suppose player i's new path
includes e.
i pays c,(k.+1) fo use e.
®,(k,) increases by the same
amount.

If player i leaves an edge ¢/,

®,(k,) exactly reflects the
change in i's cost.

32




Consequences for the
Price of Anarchy?

Example: linear cost functions.

Compare cost + potential function:

C(f) = 2, f " c.(f.) = Z.[a, o + b, f.]
®(f) =X, % c(i)dx =2, [(a,f)/2 +b,f,]

- cost, potential fn differ by factor of < 2
» gives upper bound of 2 on price on anarchy?
- C(f) < 2x® (f) < 2x® (f7) < 2xC(f™)
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POA in Atomic Model

Catch: only bounds the cost of the globa/
potential fn minimizer, not all Nash
equilibria (# /Joca/ minimizers).

Instead: use variational inequality, modified
for the atomic case:

Ze fe ’ Ce(fe) $ Ze f: ’ Ce(f€+1)

34




A Technical Lemma

Claim:
* [Christodoulou/Koutsoupias 05]: for all integers y,z:
y(z+1) < (5/3)y? + (1/3)z2
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A Technical Lemma

Claim:
* [Christodoulou/Koutsoupias 05]: for all integers y,z:
y(z+1) < (5/3)y? + (1/3)z2

- so: ay(z+1) + by < (5/3)[ay? + by] + (1/3)[az? + bz]

- forall integersy,zandab >0

36




A Technical Lemma

Claim:
* [Christodoulou/Koutsoupias 05]: for all integers y,z:
y(z+1) < (5/3)y? + (1/3)z2

- so: ay(z+1) + by < (5/3)[ay? + by] + (1/3)[az? + bz]

- for all integersy,zandab >0

© 50t X, [a (frl) +b.)f ]« (5/3) X, [(a.f," + b )]
+(1/3) Z, [(a.f, + b,)f,]
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A Technical Lemma

Claim:
* [Christodoulou/Koutsoupias 05]: for all integers y,z:
y(z+1) <(B/3)y? + (1/3)z2

» s0: ay(z+1) + by < (5/3)[ay? + by] + (1/3)[az? + bz]

- forallintegersy,zanda,b >0

© 500 X, [a (f41) + b )f. )< (5/3) I, [(a.f, + b.)f.]
+(1/3) 2. [(af. * b.)f ]

+ 501 C(F) < B '+ ¢ (F+1) < (B/3)C(F*) + (1/3)C(F)
- 50: POA<H/2
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Key Points of the Day

Key Examples: Pigou's example + nonlinear
variant; Braess's Paradox; AAE example

* POA depends on cost fns, honatomic vs. atomic
- but proofs "structurally" the same (more on Friday)

Key proof techniques: (1) equilibrium satisfies a
"variational inequality", which can be related
to Nash & OPT costs; (2) parameterize POA

bounds via "universal worst-case examples"

Also: equilibria (locally) minimize potential

39




Approximation in
Algorithmic Game Theory:
Revenue-Maximizing
Auctions

Tim Roughgarden (Stanford)

‘ Example: Single-Good Auctions

Assume: 1 good, n bidders, bidder i has
“valuation” v; for good [like eBay]

o v; =maximum willingness to pay

Design space: given sealed bids, pick:
= (1) a winner; and (2) a selling price.

Example: first-price auction.
= winner = highest bidder; price = winner’s bid
= how would you bid in this auction?




Example: Posted Price

Assume: 1 good, 1 bidder with valuation v
utility = v - price paid; or 0 if no sale

Posted price: seller compares the bid b to a "take-
it-or-leave it" offer at some fixed price p.

Note: truthful bidding (b =v) is “foolproot”

i.e., a false bid never outperforms a true bid
case 1: (v < p) max utility = 0, achieved when b = v
case 2: (v 2 p) max utility = v-p, achieved when b =v
called a truthful auction or “mechanism”

Example: The Vickrey Auction

Second-Price (or Vickrey) Auction [Vickrey 61]:
winner = highest bidder; price = 2"¥-highest bid
note: truthful bidding (b; = v;) is “foolproof”

Proof: each bidder i effectively faces posted price
p; = highest bid by someone else.

k-Vickrey: With k copies of a good: winners = top
k bidders; all pay (k+1)-highest price.
Variation: can add a reserve price (= a dummy bidder).

4




Auction Benchmarks

Goal: prove results of the form (for revenue):

"Theorem: auction A is (approximately) optimal.”

Auction Benchmarks

Goal: prove results of the form (for revenue):

"Theorem: auction A is (approximately) optimal.”

Auction model: focus on multi-item auctions
n bidders, k identical goods (mostly k =n)

allocation rule: b;'s— x;'s (probability of winning)

payment rule: b;'s — p;'s  [require 0 < p; < b;x;]

truthful (i.e., truthful bidding [b;=v;] dominant)
0 equivalent: each i faces bid-independent posted price

6




" Auction Benchmarks (con'd)

Goal: prove results of the form:

"Theorem: for every valuation profile v:
auction A's revenue on v is at least OPT(v)/a.”

(for a hopefully small constant a)

" Auction Benchmarks (con'd)

Goal: prove results of the form:

"Theorem: for every valuation profile v:
auction A’s revenue on v is at least OPT(v)/a.”

(for a hopefully small constant )

[dea for OPT(v): sum of k largest v;'s.

Problem: too strong, not useful.
o makes all auctions A look equally bad.
o every A has a bad v [no constant a possible]




The Obvious Idea Fails

Claim: no auction always has revenue at least a
constant fraction of the sum of k largest v;'s.

Proof sketch: by probabilistic method. Take k =n.
pick each v; i.i.d. from distribution with CDF
F(z) =1-1/zon [1,¢) [density f(z) = 1/z?]
expected revenue of every posted price p; =1
for bidder i = p, [1-(1-1/p;)] = 1.
expected revenue of every auction: <n
expected sum of v;'s: unbounded

The Fixed Price Benchmark

Solution: [Goldberg/Hartline/Karlin/Saks/Wright GEB 06]
define OPT(v) = best fixed-price revenue:

F@(v):= max iv;  (assume sorted v,'s)
2<isk

Justification?: for now, "seems to work".

a-competitive auctions exist for small a
o will prove today with a =4

no auction has a smaller than 1 (or even 2.42)

Friday: a fundamental explanation of why it works.

10




Auction Benchmarks (con'd)

Goal: prove results of the form:

"Theorem: for every valuation profile v:
auction A’s revenue on v is at least F?(v)/a.”

(for a hopefully small constant )

Note: the Vickrey auction achieves a=2 when n=2.
but no constant factor for larger n

to de better: need a more "operational”
understanding of truthful auctions (next)
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Two Definitions

Implementable Allocation Rule: is a function x
(from bids to winners/losers) that admits a
payment rule p such that (x,p) is truthful.

i.e., truthful bidding [b;:=v,] always maximizes
a bidder's (expected) utility

Monotone Allocation Rule: for every fixed bidder i,
tfixed other bids b-;, probability of winning only
increases in the bid b;.
example: highest bidder wins
non-example: 2nd-highest bidder wins

12




‘ Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos 01]
an allocation rule x is implementable if and
only if it is monotone.

13

‘ Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos 01]
an allocation rule x is implementable if and
only if it is monotone.

Moreover: for every monotone allocation rule x,
there is a unique payment rule p such that (x,p)
is truthful and losers always pay 0.

14




Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos 01]
an allocation rule x is implementable if and
only if it is monotone.

Moreover: for every monotone allocation rule x,
there is a unique payment rule p such that (x,p)
is truthful and losers always pay 0.

Explicit formula for p;(b):
keep b fixed, increase z from 0 to b;
consider breakpoints yj,....y, at which x; jumps
set pi(b) == X y; @ [jump in X; at y;]

15

Myerson's Lemma (Proof)

Proof of "if" direction: let x be monotone, fix i and
b-;. Write x(z), p(z) for x,(z, b-), pi(z, b-).
Swapping trick: if (x,p) is truthtul, p satisfies:
[take true value = z, false bid = z + ¢]:
ZzoxX(z)-p(z)2zeox(z+¢)-plz+¢)
[take true value = z + ¢, false bid = z]:
(z +e)ox(z +&)-plz +e)2(z +&) x(z)-p(z)

Thus: p(z + ¢) - p(z) lies between
z°[x(z +&)-x(z)]and (z + &) o [x(z + ¢€) - x(z)]

16




Myerson's Lemma (Proof con'd)

The story so far: p(z + ¢) - p(z) lies between
zo[x(z +¢)-x(z)]and (z + €) o [x(z + €) - x(z)]
So: taking ¢ to zero get,
p(z)=z-°x'(z) [if x differentiable at z] or
jumpinp atz =z ° [jump in x at z]
Integrating from 0 to b, get:
pi(b) == Xy, ® [jump in x; at y]

To tinish proof (exercise): verity that auction (x,p)
is truthful if and only if x monotone.

17

A Competitive Auction

Theorem: [Fiat/Goldberg/Hartline/Karlin 02]
There is a randomized auction for n-bidder
n-item auctions that, for every input v, has
expected revenue at least F®)/4.
works also for k > 2 items, see exercises

Recall:

F@(v):= max iv;  (assume sorted v;'s)
2<isk

18




Subroutine: Profit Extractor

Given: (truthful) bids v + revenue target R.:
initialize S = all bidders
while there is an i in S such that v,< R/IS]I:
o remove such a bidder from S
return final set S and charge all winners (if any)

a price of p=R/ISI

Note: allocation rule is monotone; prices are
correct (p = min bid s.t. a winner still wins)
=> truthful by Myerson's Lemma

19

Profit Extractor (con'd)

Claim: ProfitExtract has revenue R if there is a
common posted price that extracts R; and has
revenue 0 otherwise.

Proof Sketch: 2nd statement is clear (ProfitExtract
only uses common posted prices).

For 1st statement: suppose common posted price p
works, define T={i | v; 2p }. All such bidders
can pay R/ITI. Inductively, no bidder of T ever
gets deleted.

20




The RSPE Auction

collect (truthful) bid v
randomly partition v = (x,y)
[each bidder placed 50%/50%, independently]

let R; = max revenue from x via common posted price;
R, = max revenue from y via common posted price

ProfitExtract(x) with revenue target R,
ProfitExtract(y) with revenue target R,

Example:n=2, v=(1,1/2)
FO(v)=1
expected revenue of RSPE = Y2(Y2+0) = 1/4

21

The RSPE Auction

Claim #1: RSPE is a truthful auction.

Proof sketch: Say bidder i part of x. i can't change
R,. For i, RSPE is same as ProfitExtract(x, R,),
where truthful bidding is optimal.

Claim #2: RSPE's revenue is at least min{R,R,}.

Proof : E.g., if R; < R,, ProfitExtract(y, R,) will
successfully extract revenue R;.
o recall key property of ProfitExtract subroutine

22




The Final Lemma

Claim £3: For all inputs v, E[min{R,,R,}] = F?/4.
expectation is over the random split v=(x,y)
recall F?)(v) : = max iv, (assume sorted v;'s)

2<isk
Proof : Fix v. Leti>2 satisfy F(v) = iv,.
Let a,b =number of top i bidders in x,y.

Note: Ry 2 av, and R, > bv;,
So: just need E[min{a,b}] = i/4.

23

The Final Lemma (con'd)

Need to show : For every i > 2, a random split into
a,b (with a+b=i) satisfies E[min{a,b}] > i/4.

Case i =2: minf{a,b} is either 0 (50% probability)
or 1 (50% probability) => E[min{a,b}] = 1/2 = i/4.

Case i = 3: minf{a,b} is either 0 (25% probability)
or 1 (75% probability) => E[min{a,b}] = 3/4 = i/4.

For general case: imagine throwing balls into two
urns. Each new pair of balls increases the
smaller population by 1 with 50% probability.
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‘ Key Points of the Day




From Bayesian to
Worst-Case
Optimal Auctions

Tim Roughgarden (Stanford)

[mostly joint work with
Jason Hartline (Northwestern)]

‘ Example: Multi-Item Auctions

Setup: n bidders, k identical goods.

o bidder i has private “valuation” v; for a good
o v; =maximum willingness to pay

Design space: decide on:
= (1) at most k winners; and (2) selling prices.
Example: Vickrey auction.

= top k bidders win; all pay (k+1)th highest bid

Variant: Vickrey with a reserve. [=extra bid by seller]

2




Auction Benchmarks

Goal: prove results of the form (e.g., for revenue):

"Theorem: auction A is (approximately) optimal.”

Auction Benchmarks

Goal: prove results of the form (e.g., for revenue):

"Theorem: auction A is (approximately) optimal.”

Auction model: single-round, sealed bid auctions.
truthful (i.e., truthtul bidding [b;=v;] is foolproof)

o equivalent: selling price to i independent of b,

Fact: [Myerson 81] these assumptions are “WLOG”.

“Revelation Principle” + “Revenue Equivalence Thms”
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‘ The Fixed Price Benchmark

Solution: [Goldberg/Hartline//Wright SODA 01]
= define OPT(v) = best fixed-price revenue:

RB(v) : = max iv;  (assume sorted v;'s)
i<k

Usual justification: "seems to work".

= a-competitive auctions exist for small

o assuming no "dominant bidder"

» no auction has a smaller than 1 (or even 2.42)

Question: is there a fundamental explanation?

‘ Bayesian Profit Maximization

Example: 1 bidder, 1 item, v ~ known distribution F
= truthful auctions = posted prices p
= expected revenue of p: p(1-F(p))

o given F, can solve for optimal p’
a eg.,p =Y forv~uniform[0,1]
= but: what about k,n >1 (with i.i.d. v;'s)?




Bayesian Profit Maximization

Example: 1 bidder, 1 item, v ~ known distribution F
truthful auctions = posted prices p
expected revenue of p: p(1-F(p))
o given F, can solve for optimal p’
o eg., p =Y forv~uniform[0,1]
but: what about k,n >1 (with i.i.d. v;'s)?

Theorem: [Myerson 81] auction with max expected
revenue is Vickrey with above reserve p'.
o note p’is independent of k and n

Proof of Myerson's Theorem

Given: a truthful auction (x,p), denoting the:
allocation rule: v.'s— x;'s [who wins]
payment rule: vi's—. p;'s [who pays what]

Key Lemma: characterize expected revenue in
terms of "virtual valuations” of the winner:

= E [Z; @(vy) - x(V)]
where
1-F(v,) E.g., @(v,) =2v-1

"virtual ——— (P(Vi) = Vi- f(v) when F = Unif[0,1]
valuation" !




Proof of Myerson's Theorem

So far: expected revenue of any (x,p): E.g, P(v) =

V.- Wh n
=E,[Z; @(v;) - x;(V)] %‘ - Iljnif[%,ll

to maximize: for each vector v, set x;’s to
maximize sum of virtual valuations.
o fine print: need F to be "regular” to be truthful

multi-item auctions: award k items to the
top k ¢(v,)'s that are also positive
o i.e., Vickrey with reserve price ¢1(0) [for all kn]

Opt Fixed-Price via Myerson

Recall question: meaning of the optimal fixed-price
revenue for (non-Bayesian) auctions?

RB(v) : = max iv;  (assume sorted v|'s)
Recall: "seems to work" (even with apples vs. oranges).
Myerson: for all F, Vickrey + a reserve is optimal.

Corollary 1: for all F and all v, ex post behavior of
optimal auction for F is to charge a fixed price.
o namely: max{reserve price, (k+1)th highest bid of v}

10




Opt Fixed-Price via Myerson

Corollary 2: If auction A is a-competitive w.r.t
benchmark RB, then it is simultaneously
competitive with all Bayesian optimal auctions!

[.e.: For every F, corresponding opt auction Ag:
A's expected revenue = (Ag's expected revenue)/a
Proof: inequality holds for every v:

A's revenue on v > RB(V)/a > (Ag's revenue on v)/a

Interpretation: ignorance of F costs only « factor.

11

From Old to New Results

So far: re-interpretation of old results for worst-
case profit-maximization in multi-item auctions.

Next: new applications [Hartline/Roughgarden 08, 09]
beyond multi-item auctions
beyond identical bidders
novel objectives (will skip, see [HR STOC 08])

12




Analysis Template

Moral: Bayesian auction design yields strong
worst-case performance benchmarks.

characterize ex post Bayesian optimal behavior
o for all distributions of interest, all valuation profiles

want to simultaneously compete with all such
behaviors (on each valuation profile)

automatic corollary: competitive with expected
performance of every Bayesian-optimal auction

13

Beyond Multi-Item Auctions

Example: n bidders (valuations v;,), feasible subsets
of winners = independent sets of some matroid.

a0 e.g., spanning trees; multi-item = uniform matroid

14




Beyond Multi-Item Auctions

Example: n bidders (valuations v,), feasible subsets
of winners = independent sets of some matroid.

a0 e.g., spanning trees; multi-item = uniform matroid

Myerson’s Revenue Formula: given a prior
distribution F (with virtual value @), expected
revenue of an auction: E_[X. @(v;) - x;(V)]

To maximize: given v, choose independent set
maximizing 2., @(v;) [e.g., via greedy algorithm]

15

A Prior-Free Benchmark

50: ex post behavior of a Bayesian optimal auction:
choose independent set with max X, ¢p(v,)

Equivalent: the “VCG mechanism” with a
common reserve price.
o VCG allocation rule: pick feasible set with max X, v,

Upshot: prior-free benchmark RB(v) := max revenue
achievable via VCG with a common reserve.

[HR]: can be 8-competitive with this benchmark
randomize between VCG and ProfitExtract

16




More Prior-Free Benchmarks

Beyond matroids?: e.g., each bidder wants a bundle
of goods, can only allocate each good once.

the optimal mechanism is complicated

But: [Hartline/Roughgarden EC 09] VCG mechanism
with a common reserve is a 2-approximation.
o0 needs somewhat stronger distributional assumption

o offers simple and provably good alternative to the
(complex) optimal auction

o justifies VCG + optimal reserve benchmark in general

17

Beyond Symmetric Bidders

Asymmetric bidders (Bayesian): different prior F;
(and corresponding ;) for each bidder i.

Myerson’s formula: E [X; ¢ (v;) - X;(V)]
arbitrary F,’s => all prices can arise ex post

ordered F;'s => optimal prices monotone
a  “ordered” = @;!’s can be consistently ordered

Prior-free version: only know bidder ordering .
RB(v) := max revenue via monotone prices
Open: can you O(1)-compete with this?

18




Conclusions

Take-home point: new template for generating
meaningful worst-case auction benchmarks.

o0 automatic: simultaneous competitive guarantee
with all Bayesian-optimal auctions

a0 enables new theorems for money-burning
mechanisms, asymmetric allocations and/or bidders

Open Questions:
a  thoroughly understand “single-parameter” problems
o multi-parameter? (e.g., combinatorial auctions)
o general definitions of “more informed opponent”

19

Bulow-Klemperer ('96)

Observation: for every F, E[¢@(v;)] =0.
proof #1: consider Vickrey withk=n=1
proof #2: integrate @(v;) = v, - (1-E(v,)/f(v)))
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‘ Bulow-Klemperer ('96)

Observation: for every F, E[¢(v;)] = 0.
= proof #1: consider Vickrey withk=n=1
= proof #2: integrate @(v;) = v; - (1-E(v;)/f(v;))

Corollary [BK96]: for k=1, everyn =1, every F:

Vickrey's revenue OPT's revenue

21

‘ Bulow-Klemperer ('96)

Observation: for every F, E[¢@(v;)] =0.
= proof #1: consider Vickrey withk=n=1
= proof #2: integrate @(v;) = v; - (1-E(v;)/f(v;))

Corollary [BK96]: for k=1, every n 21, every F:

Vickrey's revenue 2 OPT's revenue
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Bulow-Klemperer ('96)

Observation: for every F, E[¢(v;)] = 0.
proof #1: consider Vickrey withk=n=1
proof #2: integrate @(v;) = v; - (1-F(v,)/f(v,))

Corollary [BK96]: for k=1, everyn =1, every F:

Vickrey's revenue 2 OPT's revenue
[with (n+1) i.i.d. bidders] [with n i.i.d. bidders]

Interpretation: small increase in market size more
important than running optimal auction.
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Bulow-Klemperer (Proot)

Proof idea:
OPT's expected revenue [n bidders]:
E,[max {max;, (v;), 0}]

Vickrey's expected revenue [(n+1) bidders]:
Ev[max {maXiSn (P(Vi)/ (P(Vn+1)}]

condition on @(v,),...,(v,,), use observation
that E[¢(v,)] =0

24




Intrinsic Robustness of
the Price of Anarchy

Tim Roughgarden
Stanford University

The Price of Anarchy

Recall: price of

anarchy of a_
game optimal obj fn value

obj fn value of worst equilibrium

Example: POA = 4/3 in Pigou's example

1
= T~
h =
o 1

Cost = 3/4 Cost =1




Key Points for Lecture

- main definition: a “canonical way" to bound
the price of anarchy (for pure equilibria)

* theorem 1: every POA bound proved
“canonically” is automatically far stronger
- e.g., even applies "out-of-equilibrium”,
assuming no-regret play

- theorem 2: canonical method provably
yields optimal bounds in fundamental cases

Variational Inequalities

Recall nonatomic variation inequality:
- if f is a Nash flow and f"is feasible, then

Ee fe : CE(fE) < Ze f: ’ CE(fG)

Atomic variational inequality:

Tefe cofe) € e fe v co(fetl)

Proof: for each player i, current cost c(f)
only increases from switching to path in f°




Abstract Setup

- n players, each picks a strategy s;
- player i incurs a cost Ci(s)

Important Assumption: objective function is
cost(s) := . Ci(s)

Key Definition: A game is (4,1)-smooth if, for
every pair s,s” outcomes (A> 0; p < 1):

% Ci(s7i5.) ¢ Aecost(s”) + pecost(s) [(*)]

5

Smooth => POA Bound

Next: "canonical” way to upper bound POA
(via a smoothness argument).

* notation: s = a Nash eq; s™ = optimal
Assuming (A,u)-smooth:
cost(s) = X.Ci(s) [defn of cost]

< X.C(s"..s.) [s a Nash eq]
< Aecost(s™) + gecost(s)  [(*)]

Then: POA (of pure Nash eq) < A/(1-p).




Why Is Smoothness Stronger?

Key point: o derive POA bound, only needed
i Ci(s7i5.) ¢ Aecost(s) + pecost(s) [(*)]

to hold in special case where s = a Nash eq
and s” = optimal.

Smoothness: requires (*) for every pair s,s”
outcomes.
- even if s is not a pure Nash equilibrium

Example Application

Definition: a sequence s!,s?,...,sT of outcomes
is no-regret if:
+ for each player i, each fixed action g;:

- average cost player i incurs over sequence no
worse than playing action g; every time

- simple hedging strategies can be used by
players to enforce this (for suff large T)

Theorem: in a (A,u)-smooth game, average
cost of every no-regret sequence at most
[A/(1-p)] x cost of optimal outcome.




Why Important?

» bound on "price of total
anarchy” implies bound of ho regret
ineffidency of mixed + correlated ed
correlated equilibria

- bound applies even to
sequences that don't
converge in any sense

* no regret much weaker than reaching equilibrium

* [Blum/Even-Dar/Ligett PODC 06],
[Blum/Hajiaghayi/Ligett/Roth STOC 08]

Smooth => POTA Bound

» notation: s!,s?,..sT = no regret; s” = optimal
Assuming (A,u)-smooth:
¥, cost(st) = X, X C(s") [defn of cost]
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Smooth => POTA Bound

» notation: s!,s2,...,sT = no regret; s” = optimal

Assuming (A,u)-smooth:

Y. cost(st) = X, X C(s") [defn of cost]
= 5% [G(sTis™) + Ajr] [z G(sh)- C(s™s)]

11

Smooth => POTA Bound

» notation: s!,s?,..sT = no regret; s” = optimal

Assuming (A,u)-smooth:

¥, cost(st) = X, X C(s") [defn of cost]
=55 [G(sTsm) + Ayl [Av= C(sD)- Ci(s™.st)]
< Zi[Aecost(s™) + pecost(sN] + 5 Z; Ay [(F)]

12




Smooth => POTA Bound

* notation: s!,s2,..sT = no regret; s” = optimal

Assuming (A,u)-smooth:

Y. cost(st) = X, X C(s") [defn of cost]
=5 % [Ci(sTsT0) + Al A p= Ci(sh)- (™57
¢ X; [Aecost(s™) + pecost(sN]+ X I, Ay [(*)]

No regret: X; AA;; < O for each i.

To finish proof: divide through by T.
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Further Applications

no regret

best-
/ response
J dynamics

Theorem: in a (A,u)-smooth game, everything in
these sets costs (essentially) A/(1-p) x OPT.

14




Some Smoothness Bounds

Examples: selfish routing, linear cost fns.

- every honatomic game is (1,1/4)-smooth
- implicit in [Roughgarden/Tardos 00]
- less implicit in [Correa/Schulz/Stier Moses 05]
- implies bound of 4/3 (tight even for pure eq)

- every atomic game is (5/3,1/3)-smooth

- follows directly from analysis in
[Awerbuch/Azar/Epstein 05],
[Christodoulou/Koutsoupias 05]

- implies bound of 5/2 (tight even for pure eq)

15

Geometry of Affine Case

Assume: ¢ (x) =a.x + b,

Goal: compare

fo o [eo(f) - c(£)] vs. f. - c(f.)

Interesting case: when c(f,) > c (f%):

/

c,(x) ’7 -

LHS T &~ 1,

e 16




A Technical Lemma

Recall Claim for Atomic Case:

* [Christodoulou/Koutsoupias 05]: for all integers y,z:
y(z+1) < (B/3)y? + (1/3)z°

e

+ so: ay(z+1) + by < (5/3)[ay? + by] + (1/3)[az® + bz
- for allintegersy,zandab >0

+ 50t Z, [ag(frl) + b)f ]« (5/3) Z [(a.f,” + b )f.]

L1/ S T c + b )f.]

T S LMl

+ 50t C(F) < X"+ ¢ (f.+1) < (B/3)C(F*) + (1/3)C(F)

17

Tight Game Classes

Theorem: for every set C, congestion games
with cost functions restricted to C are tight:

maximum [pure POA]= minimum [A/(1-p)]

congestion games (A p): all such games
w/cost functions in C are (A ,u)-smooth

timal pure correlated
opTima Nash equilibium
outcome mixed N0 regret

Nash sequence
|
|

|
1 A (1-4)
for tightest
choice of A,

18




First Main Proof Step

Step 1: characterize optimal smoothness
parameters A,y as vertex of a 2-D polyhedron

- intersection of halfplanes of the form

yc(z+1) < Aec(y)y + Hec(2)z
for all integers y,z and cost fnsce C

19

Second Main Proof Step

Step 2: exhibit example with POA = A/(1-p)
- use two "parallel cycles” (one per tight halfplane)

- each player has "short” and "long" strategy
- each strategy uses resources of both cycles

teSed

+ OPT = all use short strategies;

- worst Nash = all use long strategies
20




Corollaries

Corollary 1: first characterization of “universal worst-
case congestion games” in the atomic case.

» analog of "Pigou-like (2-node, 2-link) networks are the
worst"” in nonatomic case [Roughgarden 03]

* here: "2 parallel cycles always suffice”
- and are generally necessary for minimal worst-case examples

Corollary 2: first (tight) POA bounds for (atomic)
congestion games with general cost functions.

» previous exact bounds for polynomials +w/nonnegative
coefficients: [Aland et al 061, [Olver 06]

21

Take-Home Points

- the most common way of proving POA
bounds automatically yields a much more
robust guarantee

- and this technique often gives tight bounds

- future work: characterize tight game
classes (where smoothness gives optimal
POA bounds, even for pure NE)
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