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Pigou's Example

Example: one unit of traffic wants to go from 
s to t

Question: what will selfish network users do?
• assume everyone wants smallest-possible cost

• [Pigou 1920]

s t

c(x)=x

c(x)=1

cost depends on congestion

no congestion effects



3

Motivating Example

Claim: all traffic will take the top link.

Reason:
• Є > 0 ⇒ traffic on bottom is envious

• Є = 0 ⇒ equilibrium
– all traffic incurs one unit of cost

s t

c(x)=x

c(x)=1

Flow = 1-Є

Flow = Є
this flow   
is envious!
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Can We Do Better?

Consider instead: traffic split equally

Improvement:
• half of traffic has cost 1 (same as before)

• half of traffic has cost ½ (much improved!)

s t

c(x)=x

c(x)=1

Flow = ½

Flow = ½
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Braess’s Paradox

Initial Network:

s t
x 1

½

x1
½

½

½

Cost = 1.5
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Braess’s Paradox

Initial Network:          Augmented Network:

s t
x 1

½

x1
½

½

½

Cost = 1.5

s t
x 1

½

x1
½

½

½0

Now what?
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Braess’s Paradox

Initial Network:          Augmented Network:

s t
x 1

½

x1
½

½

½

Cost = 1.5 Cost = 2

s t

x 1

x1

0
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Braess’s Paradox

Initial Network:          Augmented Network:

All traffic incurs more cost! [Braess 68]

• also has physical analogs [Cohen/Horowitz 91]

s t
x 1

½

x1
½

½

½

Cost = 1.5 Cost = 2

s t

x 1

x1

0



9

High-Level Overview

Motivation: equilibria of noncooperative network 
games typically inefficient

• e.g., Pigou's example + Braess's Paradox

• don't optimize natural objective functions

Price of anarchy: quantify inefficiency w.r.t 
some objective function

Our goal: when is the price of anarchy small?
– when does competition approximate cooperation?

– benefit of centralized control is small

10

Nonatomic Selfish Routing

xs t
1

s t
1
x

½

½
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Our Objective Function

Definition of social cost: total cost C(f) 
incurred by the traffic in a flow f.

Formally: if cP(f) = sum of costs of                
edges of P (w.r.t. flow f), then:

C(f) = ΣΣΣΣP fP • cP(f)
s t
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Our Objective Function

Definition of social cost: total cost C(f) 
incurred by the traffic in a flow f.

Formally: if cP(f) = sum of costs of                
edges of P (w.r.t. flow f), then:

C(f) = ΣΣΣΣP fP • cP(f)

Example:

s t

s t
x

1

½
½

Cost = ½•½ +½•1 = ¾
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The Price of Anarchy

Defn:

– definition from [Koutsoupias/Papadimitriou 99]

price of
anarchy 
of a game

=
obj fn value of worst equilibrium

optimal obj fn value

x
s t

1
s t

1

x

Example: POA = 4/3 in Pigou's example
½

½

1

Cost = 1Cost = 3/4
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A Nonlinear Pigou Network

Bad Example:                (d large)

equilibrium has cost 1, min cost ≈ 0 

s t

xd

1
0

1 1-Є

Є
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A Nonlinear Pigou Network

Bad Example:                (d large)

equilibrium has cost 1, min cost ≈ 0 

⇒⇒⇒⇒ price of anarchy unbounded as d -> infinity

Goal: weakest-possible conditions under 
which P.O.A. is small.

s t

xd

1
0

1 1-Є

Є
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When Is the Price of 
Anarchy Bounded?

Examples so far:

Hope: imposing additional structure on the 
cost functions helps
– worry: bad things happen in larger networks

s t
x

1
s t

xd

1
s t

x 1

x1
0
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Polynomial Cost Functions

Def: linear cost fn is of form ce(x)=aex+be

Theorem: [Roughgarden/Tardos 00] for every 
network with linear cost functions: 

≤ 4/3 ×
cost of 
Nash flow

cost of            
opt flow

s t
x

1
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Polynomial Cost Functions

Def: linear cost fn is of form ce(x)=aex+be

Theorem: [Roughgarden/Tardos 00] for every 
network with linear cost functions: 

≤ 4/3 ×

Bounded-deg polys: (w/nonneg coeffs) replace 
4/3 by ≈ d/ln d

cost of 
Nash flow

cost of            
opt flow

s t
xd

1

tight
example

s t
x

1
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A General Theorem

Thm: [Roughgarden 02], [Correa/Schulz/Stier Moses 
03] fix any set of cost fns. Then, a Pigou-like 
example 2 nodes, 2 links, 1 link w/constant 
cost fn) achieves worst POA

s t
xd

1

tight
example
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Pigou Bound

Recall goal: want to show Pigou-like examples 
are always worst cases. 

Pigou bound: given set of cost functions (e.g., 
degree-d polys), largest POA in a network:

• two nodes, two links

• one function in given set

• one constant function
– constant = cost of fully congested top edge

s t
xd

1
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Pigou Bound

Defn: the Pigou bound α(S) for S is: 

max

• max is over all choices of cost fns                           
c in S, traffic rate r ≥ 0, flow y ≥ 0

• choose c(x) = x; r = 1; y = 1/2 ⇒⇒⇒⇒ get 4/3

• calculus: α(S) = 4/3 when S = affine functions 
[d/ln d for deg-d polynomials]

s t
x

1

r • c(r)

y • c(y) + (r-y) • c(r)
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Main Theorem (Formally)

Theorem: [Roughgarden 02, Correa/Schulz/Stier 
Moses 03]: For every set S, for every  
selfish routing network G with cost 
functions in C, the POA in G is at most α(S).
– POA always maximized by Pigou-like examples

That is, if f and f* are Nash + optimal flows  
in G, then C(f)/C(f*) ≤ α(S).

– example: POA ≤ 4/3 if G has affine cost fns
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Interpretation

Bad news: inefficiency of selfish routing grows 
as cost functions become "more nonlinear".
– think of "nonlinear" as "heavily congested"

– recall nonlinear Pigou's example

Good news: inefficiency does not grow with 
network size or # of source-destination pairs.
– in lightly loaded networks, no matter how large, 
selfish routing is nearly optimal

s t
xd

1

tight
example
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Benefit of Overprovisioning

Suppose: network is overprovisioned by  β > 0 
(β fraction of each edge unused).

Then: Price of anarchy is                                   
at most ½(1+1/√β).

• arbitrary network size/topology,                             
traffic matrix

Moral: Even modest (10%) over-provisioning 
sufficient for near-optimal routing.
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Variational Inequality

e

26

Variational Inequality

e

e e

e ee

relation to C(f)?
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Geometry of Affine Case

e e e

e e

ce(x)

0
0 fef*

e
LHS

RHS

28

POA = 4/3 for Affine Costs

e e e

e ee
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Atomic Selfish Routing

Atomic networks: each of (finitely many) 
players picks a path on which to route one 
unit of traffic.   (otherwise identical model)

AAE example: [refer to whiteboard for 
details]  shows that the POA can be as high 
as 2.5 in this model, with affine cost 
functions.

30

Potential Functions
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Proof of Potential Function

Define        Фe(ke) = ce(1)+ ce (2) + ce (3)+ … +ce (ke)

where ke is # players using e.   

Let Ф(S) = Σ Фe(S)

Consider some solution S (a path for each player).

Suppose player i is unhappy and decides to deviate.

What happens to Ф(S)? 

e є S

32

Proof of Potential Function

Фe(ke) = ce(1)+ ce (2) + … +ce (ke)

Suppose player i’s new path 
includes e.

i pays ce(ke+1) to use e.

Фe(ke) increases by the same 
amount.

If player i leaves an edge e’,

Фe’(ke) exactly reflects the 
change in i’s cost.

e

e’

i
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Consequences for the    
Price of Anarchy?

Example: linear cost functions.

Compare cost + potential function:

C(f) = ΣΣΣΣe fe • ce(fe) = ΣΣΣΣe [ae fe + be fe]

Ф (f) = ΣΣΣΣe ΣΣΣΣi ce(i)dx  ≈ ΣΣΣΣe [(ae fe)/2 + be fe]

• cost, potential fn differ by factor of ≤ 2

• gives upper bound of 2 on price on anarchy?

– C(f) ≤ 2×Ф (f) ≤ 2×Ф (f*) ≤ 2×C(f*)

2

2
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POA in Atomic Model

Catch: only bounds the cost of the global
potential fn minimizer, not all Nash 
equilibria (≈ local minimizers).

Instead: use variational inequality, modified 
for the atomic case:

ΣΣΣΣe fe • ce(fe) ≤ ΣΣΣΣe f* • ce(fe+1)e
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A Technical Lemma

Claim:
• [Christodoulou/Koutsoupias 05]: for all integers y,z: 

y(z+1)  ≤ (5/3)y2 + (1/3)z2
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A Technical Lemma

Claim:
• [Christodoulou/Koutsoupias 05]: for all integers y,z: 

y(z+1)  ≤ (5/3)y2 + (1/3)z2

• so: ay(z+1)  + by ≤ (5/3)[ay2 + by] + (1/3)[az2 + bz]
– for all integers y,z and a,b ≥ 0
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A Technical Lemma

Claim:
• [Christodoulou/Koutsoupias 05]: for all integers y,z: 

y(z+1)  ≤ (5/3)y2 + (1/3)z2

• so: ay(z+1)  + by ≤ (5/3)[ay2 + by] + (1/3)[az2 + bz]
– for all integers y,z and a,b ≥ 0

• so: Σe [ae(fe+1)  + be)fe*] ≤ (5/3) Σe [(aefe* + be)fe*]
+ (1/3) Σe [(aefe + be)fe]

38

A Technical Lemma
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Key Points of the Day



Approximation in 
Algorithmic Game Theory: 

Revenue-Maximizing 
Auctions

Tim Roughgarden  (Stanford)
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Example: Single-Good Auctions

Assume: 1 good, n bidders, bidder i has 
“valuation” vi for good  [like eBay]

� vi = maximum willingness to pay

Design space: given sealed bids, pick:

� (1) a winner; and (2) a selling price.

Example: first-price auction.

� winner = highest bidder; price = winner’s bid

� how would you bid in this auction?
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Example: Posted Price

Assume: 1 good, 1 bidder with valuation v
� utility = v - price paid; or 0 if no sale

Posted price: seller compares the bid b to a  "take-
it-or-leave it" offer at some fixed price p.

Note: truthful bidding (b = v) is “foolproof”

� i.e., a false bid never outperforms a true bid

� case 1: (v ≤ p) max utility = 0, achieved when b = v 

� case 2: (v ≥ p) max utility = v-p, achieved when b = v

� called a truthful auction or “mechanism”
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Example: The Vickrey Auction

Second-Price (or Vickrey) Auction [Vickrey 61]:

� winner = highest bidder; price = 2nd-highest bid

� note: truthful bidding (bi  = vi) is “foolproof”

Proof: each bidder i effectively faces posted price 
pi  = highest bid by someone else.

k-Vickrey: With k copies of a good: winners = top 
k bidders; all pay (k+1)-highest price.

Variation: can add a reserve price (≈ a dummy bidder).
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Auction Benchmarks

Goal: prove results of the form (for revenue):

"Theorem: auction A is (approximately) optimal."
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Auction Benchmarks

Goal: prove results of the form (for revenue):

"Theorem: auction A is (approximately) optimal."

Auction model: focus on multi-item auctions

� n bidders, k identical goods (mostly k = n) 

� allocation rule: bi's      xi's (probability of winning)

� payment rule: bi's       pi's    [require 0 ≤ pi ≤ bixi]

� truthful (i.e., truthful bidding [bi=vi] dominant)

� equivalent: each i faces bid-independent posted price
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Auction Benchmarks (con'd)

Goal: prove results of the form:

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α."

(for a hopefully small constant α)
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Auction Benchmarks (con'd)

Goal: prove results of the form:

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α."

(for a hopefully small constant α)

Idea for OPT(v): sum of k largest vi's.

Problem: too strong, not useful.

� makes all auctions A look equally bad.

� every A has a bad v [no constant α possible]
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The Obvious Idea Fails

Claim: no auction always has revenue at least a 
constant fraction of the sum of k largest vi's.

Proof sketch: by probabilistic method.  Take k = n.

� pick each vi i.i.d. from distribution with CDF 
F(z) = 1-1/z on [1,∞)    [density f(z) = 1/z2]

� expected revenue of every posted price pi ≥ 1 
for bidder i = pi [1-(1-1/pi)] = 1.  

� expected revenue of every auction: ≤ n

� expected sum of vi's: unbounded

10

The Fixed Price Benchmark

Solution: [Goldberg/Hartline/Karlin/Saks/Wright GEB 06]

� define OPT(v) := best fixed-price revenue:

F(2)(v) : =  max  ivi (assume sorted vi's)

Justification?: for now, "seems to work".

� α-competitive auctions exist for small α

� will prove today with  α = 4

� no auction has α smaller than 1 (or even 2.42)

Friday: a fundamental explanation of why it works.

2 ≤ i ≤ k
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Auction Benchmarks (con'd)

Goal: prove results of the form:

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least F(2)(v)/α."

(for a hopefully small constant α)

Note: the Vickrey auction achieves α=2 when n=2.

� but no constant factor for larger n

� to de better: need a more "operational" 
understanding of truthful auctions (next)
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Two Definitions

Implementable Allocation Rule: is a function x 
(from bids to winners/losers) that admits a 
payment rule p such that (x,p) is truthful.

� i.e., truthful bidding [bi:=vi] always maximizes 
a bidder's (expected) utility

Monotone Allocation Rule: for every fixed bidder i, 
fixed other bids b-i, probability of winning only 
increases in the bid bi.

� example: highest bidder wins
� non-example: 2nd-highest bidder wins
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Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos 01]
an allocation rule x is implementable if and 
only if it is monotone.
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Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos 01]
an allocation rule x is implementable if and 
only if it is monotone.

Moreover: for every monotone allocation rule x, 
there is a unique payment rule p such that (x,p) 
is truthful and losers always pay 0.
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Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos 01]
an allocation rule x is implementable if and 
only if it is monotone.

Moreover: for every monotone allocation rule x, 
there is a unique payment rule p such that (x,p) 
is truthful and losers always pay 0.

Explicit formula for pi(b): 
� keep b-i fixed, increase z from 0 to bi

� consider breakpoints y1,...,yq at which xi jumps
� set  pi(b) :=  Σj yj ● [jump in xi at yj]

16

Myerson's Lemma (Proof)
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Myerson's Lemma (Proof con'd)
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A Competitive Auction

Theorem: [Fiat/Goldberg/Hartline/Karlin 02]              

There is a randomized auction for n-bidder      
n-item auctions that, for every input v, has 
expected revenue at least  F(2)/4.

� works also for k ≥ 2 items, see exercises

Recall: 
F(2)(v) : =  max  ivi (assume sorted vi's)

2 ≤ i ≤ k
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Subroutine: Profit Extractor

Given: (truthful) bids v + revenue target R.:
� initialize S = all bidders
� while there is an i in S such that vi <  R/|S|:

� remove such a bidder from S

� return final set S and charge all winners (if any) 
a price of p = R/|S|

Note: allocation rule is monotone; prices are 
correct (p = min bid s.t.  a winner still wins)

� => truthful by Myerson's Lemma 

20

Profit Extractor (con'd)

Claim: ProfitExtract has revenue R if there is a 
common posted price that extracts R; and has 
revenue 0 otherwise.

Proof Sketch: 2nd statement is clear (ProfitExtract 
only uses common posted prices).

For 1st statement: suppose common posted price p 
works, define T = { i | vi ≥ p }.  All such bidders 
can pay R/|T|.  Inductively, no bidder of T ever 
gets deleted.
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The RSPE Auction

� collect (truthful) bid v
� randomly partition v = (x,y)                                  

[each bidder placed 50%/50%, independently]
� let R1 = max revenue from x via common posted price;

R2 = max revenue from y via common posted price

� ProfitExtract(x) with revenue target R2

� ProfitExtract(y) with revenue target R1

Example: n = 2, v = (1,1/2)
� F(2)(v) = 1
� expected revenue of RSPE = ½(½+0) = 1/4
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The RSPE Auction

Claim #1: RSPE is a truthful auction.

Proof sketch: Say bidder i part of x.  i can't change  
R2.  For i, RSPE is same as ProfitExtract(x, R2), 
where truthful bidding is optimal.

Claim #2: RSPE's revenue is at least min{R1,R2}.

Proof : E.g., if R1 ≤ R2, ProfitExtract(y, R1) will 
successfully extract revenue R1.

� recall key property of ProfitExtract subroutine
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The Final Lemma

2 ≤ i ≤ k

24

The Final Lemma (con'd)

Need to show : For every i ≥ 2, a random split into 
a,b (with a+b=i) satisfies E[min{a,b}] ≥ i/4.

Case i = 2: min{a,b} is either 0 (50% probability)    
or 1 (50% probability) => E[min{a,b}] = 1/2 = i/4.

Case i = 3: min{a,b} is either 0 (25% probability)    
or 1 (75% probability) => E[min{a,b}] = 3/4 = i/4.

For general case: imagine throwing balls into two 
urns.  Each new pair of balls increases the 
smaller population by 1 with 50% probability.
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Key Points of the Day



From Bayesian to        
Worst-Case               

Optimal Auctions

Tim Roughgarden (Stanford)

[mostly joint work with                        
Jason Hartline (Northwestern)]
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Example: Multi-Item Auctions

Setup: n bidders, k identical goods.

� bidder i has private “valuation” vi for a good

� vi = maximum willingness to pay

Design space: decide on:

� (1) at most k winners; and (2) selling prices.

Example: Vickrey auction.

� top k bidders win; all pay (k+1)th highest bid

Variant: Vickrey with a reserve.   [≈extra bid by seller]
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Auction Benchmarks

Goal: prove results of the form (e.g., for revenue):

"Theorem: auction A is (approximately) optimal."
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Auction Benchmarks

Goal: prove results of the form (e.g., for revenue):

"Theorem: auction A is (approximately) optimal."

Auction model: single-round, sealed bid auctions.

� truthful (i.e., truthful bidding [bi=vi] is foolproof)

� equivalent: selling price to i independent of bi

Fact: [Myerson 81] these assumptions are “WLOG”.

� “Revelation Principle” + “Revenue Equivalence Thms”
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The Fixed Price Benchmark

Solution: [Goldberg/Hartline//Wright SODA 01]

� define OPT(v) := best fixed-price revenue:

RB(v) : =  max  ivi (assume sorted vi's)

Usual justification: "seems to work".

� α-competitive auctions exist for small α

� assuming no "dominant bidder"

� no auction has α smaller than 1 (or even 2.42)

Question: is there a fundamental explanation?

i ≤ k

6

Bayesian Profit Maximization

Example: 1 bidder, 1 item, v ~ known distribution F

� truthful auctions = posted prices p

� expected revenue of p:  p(1-F(p))

� given F, can solve for optimal p*

� e.g., p* = ½ for v ~ uniform[0,1]

� but: what about k,n >1 (with i.i.d. vi's)?
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Bayesian Profit Maximization

Example: 1 bidder, 1 item, v ~ known distribution F

� truthful auctions = posted prices p

� expected revenue of p:  p(1-F(p))

� given F, can solve for optimal p*

� e.g., p* = ½ for v ~ uniform[0,1]

� but: what about k,n >1 (with i.i.d. vi's)?

Theorem: [Myerson 81] auction with max expected 
revenue is Vickrey with above reserve p*.

� note p* is independent of k and n
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Proof of Myerson's Theorem

Given: a truthful auction (x,p), denoting the:

� allocation rule:  vi's       xi's   [who wins]

� payment rule:  vi's       pi's    [who pays what]

Key Lemma: characterize expected revenue in 
terms of "virtual valuations“ of the winner:

= Ev[Σi ϕ(vi) ∙ xi(v)]

where 

ϕ(vi) = vi -
1-F(vi)
f(vi)

"virtual 
valuation"

E.g., ϕ(vi) = 2vi-1 
when F = Unif[0,1]
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Proof of Myerson's Theorem

So far: expected revenue of any (x,p): 

= Ev[Σi ϕ(vi) ∙ xi(v)]

� to maximize: for each vector v, set xi's to   
maximize sum of virtual valuations.

� fine print: need F to be "regular" to be truthful

� multi-item auctions: award k items to the       
top k ϕ(vi)'s that are also positive

� i.e., Vickrey with reserve price ϕ-1(0)   [for all k,n]

E.g., ϕ(vi) =     
2vi-1 when         
F = Unif[0,1]

10

Opt Fixed-Price via Myerson

Recall question: meaning of the optimal fixed-price 
revenue for (non-Bayesian) auctions?

RB(v) : =  max  ivi (assume sorted vi's)

Recall: "seems to work" (even with apples vs. oranges).

Myerson: for all F, Vickrey + a reserve is optimal.

Corollary 1: for all F and all v, ex post behavior of 
optimal auction for F is to charge a fixed price.

� namely: max{reserve price, (k+1)th highest bid of v}

i ≤ k
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Opt Fixed-Price via Myerson

Corollary 2: If auction A is α-competitive w.r.t
benchmark RB, then it is simultaneously 
competitive with all Bayesian optimal auctions!

I.e.: For every F, corresponding opt auction AF:

A's expected revenue ≥ (AF's expected revenue)/α

Proof: inequality holds for every v:

A's revenue on v ≥ RB(v)/α ≥ (AF's revenue on v)/α

Interpretation: ignorance of F costs only α factor.  

12

From Old to New Results

So far: re-interpretation of old results for worst-
case profit-maximization in multi-item auctions. 

Next: new applications [Hartline/Roughgarden 08, 09]

� beyond multi-item auctions

� beyond identical bidders

� novel objectives (will skip, see [HR STOC 08])
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Analysis Template

Moral: Bayesian auction design yields strong  
worst-case performance benchmarks.

� characterize ex post Bayesian optimal behavior

� for all distributions of interest, all valuation profiles

� want to simultaneously compete with all such 
behaviors (on each valuation profile)

� automatic corollary: competitive with expected 
performance of every Bayesian-optimal auction

14

Beyond Multi-Item Auctions

Example: n bidders (valuations vi), feasible subsets 
of winners = independent sets of some matroid.

� e.g., spanning trees; multi-item = uniform matroid
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Beyond Multi-Item Auctions

Example: n bidders (valuations vi), feasible subsets 
of winners = independent sets of some matroid.

� e.g., spanning trees; multi-item = uniform matroid

Myerson’s Revenue Formula: given a prior 
distribution F (with virtual value ϕ), expected 
revenue of an auction: Ev[Σi ϕ(vi) ∙ xi(v)]

To maximize: given v, choose independent set    
maximizing Σi ϕ(vi)    [e.g., via greedy algorithm]

16

A Prior-Free Benchmark
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More Prior-Free Benchmarks

Beyond matroids?: e.g., each bidder wants a bundle 
of goods, can only allocate each good once.

� the optimal mechanism is complicated

But: [Hartline/Roughgarden EC 09] VCG mechanism 
with a common reserve is a 2-approximation.

� needs somewhat stronger distributional assumption

� offers simple and provably good alternative to the 
(complex) optimal auction

� justifies VCG + optimal reserve benchmark in general

18

Beyond Symmetric Bidders

Asymmetric bidders (Bayesian): different prior Fi

(and corresponding ϕi) for each bidder i.

� Myerson’s formula: Ev[Σi ϕ i(vi) ∙ xi(v)]

� arbitrary Fi’s => all prices can arise ex post

� ordered Fi’s => optimal prices monotone

� “ordered” = ϕi
-1 ‘s can be consistently ordered

Prior-free version: only know bidder ordering .

� RB(v) := max revenue via monotone prices

� Open: can you O(1)-compete with this?
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Conclusions

Take-home point: new template for generating 
meaningful worst-case auction benchmarks.

� automatic: simultaneous competitive guarantee  
with all Bayesian-optimal auctions

� enables new theorems for money-burning 
mechanisms, asymmetric allocations and/or bidders

Open Questions: 

� thoroughly understand “single-parameter” problems

� multi-parameter?  (e.g., combinatorial auctions)

� general definitions of “more informed opponent”
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Bulow-Klemperer ('96)

Observation: for every F, E[ϕ(vi)] = 0.

� proof #1: consider Vickrey with k = n = 1

� proof #2: integrate ϕ(vi) = vi - (1-F(vi)/f(vi))
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Bulow-Klemperer ('96)

Observation: for every F, E[ϕ(vi)] = 0.

� proof #1: consider Vickrey with k = n = 1

� proof #2: integrate ϕ(vi) = vi - (1-F(vi)/f(vi))

Corollary [BK96]: for k = 1, every n ≥ 1, every F:

Vickrey's revenue                 OPT's revenue
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Bulow-Klemperer ('96)

Observation: for every F, E[ϕ(vi)] = 0.

� proof #1: consider Vickrey with k = n = 1

� proof #2: integrate ϕ(vi) = vi - (1-F(vi)/f(vi))

Corollary [BK96]: for k = 1, every n ≥ 1, every F:

Vickrey's revenue       ≥ OPT's revenue
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Bulow-Klemperer ('96)

Observation: for every F, E[ϕ(vi)] = 0.

� proof #1: consider Vickrey with k = n = 1

� proof #2: integrate ϕ(vi) = vi - (1-F(vi)/f(vi))

Corollary [BK96]: for k = 1, every n ≥ 1, every F:

Vickrey's revenue       ≥ OPT's revenue

[with (n+1) i.i.d. bidders]                      [with n i.i.d. bidders]

Interpretation: small increase in market size more 
important than running optimal auction.

24

Bulow-Klemperer (Proof)

Proof idea: 

� OPT's expected revenue [n bidders]:

Ev[max {maxi≤n ϕ(vi), 0}]

� Vickrey's expected revenue [(n+1) bidders]:

Ev[max {maxi≤n ϕ(vi), ϕ(vn+1)}]

� condition on ϕ(v1),...,ϕ(vn), use observation  
that E[ϕ(vi)] = 0
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Intrinsic Robustness of 
the Price of Anarchy

Tim Roughgarden
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The Price of Anarchy

Recall: price of
anarchy of a 
game

=
obj fn value of worst equilibrium

optimal obj fn value

x
s t

1
s t

1

x

Example: POA = 4/3 in Pigou's example

½

½

1

Cost = 1Cost = 3/4
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Key Points for Lecture

• main definition: a “canonical way” to bound 
the price of anarchy (for pure equilibria)

• theorem 1: every POA bound proved 
“canonically” is automatically far stronger
– e.g., even applies “out-of-equilibrium”,   
assuming no-regret play

• theorem 2: canonical method provably 
yields optimal bounds in fundamental cases

4

Variational Inequalities

e

e
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Abstract Setup

• n players, each picks a strategy si
• player i incurs a cost Ci(s)

Important Assumption: objective function is 
cost(s) := ΣΣΣΣi Ci(s)

Key Definition: A game is (λ,µ)-smooth  if, for 
every pair s,s* outcomes (λ > 0; µ < 1):

ΣΣΣΣi Ci(s*i,s-i) ≤ λ●cost(s*) + µ●cost(s)    [(*)]

6

Smooth => POA Bound

Next: “canonical” way to upper bound POA 
(via a smoothness argument).

• notation: s = a Nash eq; s* = optimal

Assuming (λ,µ)-smooth: 

cost(s)  =  ΣΣΣΣi Ci(s) [defn of cost]

≤ ΣΣΣΣi Ci(s*i,s-i)                 [s a Nash eq] 

≤ λ●cost(s*) + µ●cost(s)      [(*)]

Then: POA (of pure Nash eq) ≤ λ/(1-µ).
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Why Is Smoothness Stronger?

Key point: to derive POA bound, only needed

ΣΣΣΣi Ci(s*i,s-i) ≤ λ●cost(s*) + µ●cost(s)    [(*)]

to hold in special case where s = a Nash eq 
and s* = optimal.

Smoothness: requires (*) for every pair s,s* 
outcomes.
– even if s is not a pure Nash equilibrium

Example Application

Definition: a sequence s1,s2,...,sT of outcomes 
is no-regret if: 

• for each player i, each fixed action qi:
– average cost player i incurs over sequence no 
worse than playing action qi every time

– simple hedging strategies can be used by 
players to enforce this (for suff large T)

Theorem: in a (λ,µ)-smooth game, average 
cost of every no-regret sequence at most      
[λ/(1-µ)] x cost of optimal outcome.

8
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Why Important?

pure
Nash

mixed Nash

correlated eq

no regret
• bound on “price of total                        
anarchy” implies bound of                 
inefficiency of mixed +                         
correlated equilibria

• bound applies even to                             
sequences that don’t                                      
converge in any sense
• no regret much weaker than reaching equilibrium

• [Blum/Even-Dar/Ligett PODC 06], 
[Blum/Hajiaghayi/Ligett/Roth STOC 08]

10

Smooth => POTA Bound

• notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,µ)-smooth: 

ΣΣΣΣt cost(st)  = ΣΣΣΣt ΣΣΣΣi Ci(st)               [defn of cost]
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Smooth => POTA Bound

• notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,µ)-smooth: 

ΣΣΣΣt cost(st)  = ΣΣΣΣt ΣΣΣΣi Ci(st)               [defn of cost]

= ΣΣΣΣt ΣΣΣΣi  [Ci(s*i,st-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*i,st-i)]

12

Smooth => POTA Bound

• notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,µ)-smooth: 

ΣΣΣΣt cost(st)  = ΣΣΣΣt ΣΣΣΣi Ci(st)               [defn of cost]

= ΣΣΣΣt ΣΣΣΣi  [Ci(s*i,st-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*i,st-i)]

≤ ΣΣΣΣt [λ●cost(s*) + µ●cost(st)] + ΣΣΣΣi ΣΣΣΣt ∆i,t [(*)]
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Smooth => POTA Bound

• notation: s1,s2,...,sT = no regret; s* = optimal

Assuming (λ,µ)-smooth: 

ΣΣΣΣt cost(st)  = ΣΣΣΣt ΣΣΣΣi Ci(st)               [defn of cost]

= ΣΣΣΣt ΣΣΣΣi  [Ci(s*i,st-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*i,st-i)]

≤ ΣΣΣΣt [λ●cost(s*) + µ●cost(st)] + ΣΣΣΣi ΣΣΣΣt ∆i,t [(*)]

No regret: ΣΣΣΣt ∆i,t ≤ 0 for each i.

To finish proof: divide through by T.
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Further Applications

pure
Nash

mixed Nash

correlated eq

no regret

best-
response
dynamics

approximate
Nash

Theorem: in a (λ,µ)-smooth game, everything in 
these sets costs (essentially) λ/(1-µ) x OPT.
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Some Smoothness Bounds

Examples: selfish routing, linear cost fns.

• every nonatomic game is (1,1/4)-smooth
– implicit in [Roughgarden/Tardos 00]

– less implicit in [Correa/Schulz/Stier Moses 05]

– implies bound of 4/3  (tight even for pure eq)

• every atomic game is (5/3,1/3)-smooth
– follows directly from analysis in 
[Awerbuch/Azar/Epstein 05], 
[Christodoulou/Koutsoupias 05]

– implies bound of 5/2  (tight even for pure eq)

16

Geometry of Affine Case

e e e

e e

ce(x)

0
0 fef*

e

LHS

RHS
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A Technical Lemma

18

Tight Game Classes

Theorem: for every set C, congestion games 
with cost functions restricted to C are tight:

maximum  [pure POA] =   minimum [λ/(1-µ)]

correlated
equilibium

no regret
sequence

1

optimal
outcome

pure
Nash
mixed
Nash

λ/(1-µ)
for tightest
choice of λ,µ

congestion games
w/cost functions in C

(λ ,µ): all such games
are (λ ,µ)-smooth
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First Main Proof Step

Step 1: characterize optimal smoothness 
parameters λ,µ as vertex of a 2-D polyhedron

• intersection of halfplanes of the form
yc(z+1) ≤ λ●c(y)y + µ●c(z)z

for all integers y,z and cost fns c є C

20

Second Main Proof Step

Step 2: exhibit example with POA = λ/(1-µ)
• use two “parallel cycles” (one per tight halfplane)

• each player has “short” and “long” strategy
– each strategy uses resources of both cycles

• OPT = all use short strategies; 

• worst Nash = all use long strategies
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Corollaries

Corollary 1: first characterization of “universal worst-
case congestion games” in the atomic case.

• analog of “Pigou-like (2-node, 2-link) networks are the 
worst” in nonatomic case [Roughgarden 03]

• here: “2 parallel cycles always suffice”
– and are generally necessary for minimal worst-case examples

Corollary 2: first (tight) POA bounds for (atomic) 
congestion games with general cost functions.

• previous exact bounds for polynomials +w/nonnegative 
coefficients: [Aland et al 06], [Olver 06]

Take-Home Points

• the most common way of proving POA 
bounds automatically yields a much more 
robust guarantee

• and this technique often gives tight bounds

• future work: characterize tight game 
classes (where smoothness gives optimal 
POA bounds, even for pure NE)
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