Approximation algorithms
for discrete
stochastic optimization problems

David B. Shmoys
Cornell University

Stochastic Optimization

Way of modeling uncertainty.

Exact data is unavailable or expensive — data is
uncertain, specified by a probability distribution.

Want to make the best decisions given this
uncertainty in the data.

Dates back to 1950’s and the work of Dantzig.

Applications in logistics, transportation models,
financial instruments, network design, production
planning, ...

Two-Stage Recourse Model

Given : Probability distribution over inputs.

Stage I : Make some advance decisions — plan ahead
or hedge against uncertainty.

Observe the actual input scenario.

Stage I1: Take recourse. Can augment earlier
solution paying a recourse cost.

Choose stage I decisions to minimize

(stage I cost) + (expected stage II recourse cost).

2-Stage Stochastic Facility Location

® 4 © e @ Distribution over clients gives
= the set of clients to serve.
" o .
@ O ° Stage I: Open some facilities in
@ advance; pay cost f, for facility i.
[0 facility M stage | facility Stage I cost = 2 i gpened) fi-

@ client set D

2-Stage Stochastic Facility Location

u ® @ Distribution over clients gives
@ O the set of clients to serve.
" o .
@ O ° Stage I: Open some facilities in
@ advance; pay cost f, for facility i.
[0 facility M stage | facility Stage I cost = 2 i gpened) fi-

@ client set D

How is the probability distribution on clients specified?
* A short (polynomial) list of possibile scenarios;

* Independent probabilities that each client exists;

* A black box that can be sampled.

2-Stage Stochastic Facility Location

n Distribution over clients gives
o the set of clients to serve.
O m = Stage I: Open some facilities in
advance; pay cost f. for facility i.

[0 facility M stage | facility Stage I cost = 2 i gpened) fi-

Actual scenario A = { @ clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fA to open facility i. Assign clients in A to facilities.

Stage Il cost =) . opened in fA + (cost of serving clients in A).
scenario A

2-Stage Stochastic Facility Location

the set of clients to serve.

u '/-\ Stage I: Open some facilities in
advance; pay cost f. for facility i.

[0 facility M stage | facility Stage I cost = 2 i gpened) fi-

u © 0 Distribution over clients gives
O f
O

Actual scenario A = { @ clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fA to open facility i. Assign clients in A to facilities.

Stage Il cost = 3 . opened in fA + (cost of serving clients in A).
scenario A

Want to decide which facilities to open in stage L.

Goal: Minimize Total Cost =

(stage I cost) + E, _, [stage II cost for A].

We want to prove a worst-case guarantee.

Give an algorithm that “works well” on any instance,
and for any probability distribution.

A is an ai-approximation algorithm if -
- A runs in polynomial time;
- A(l) = a.OPT(l) on all instances |.

o is called the approximation ratio of A.

Goals of this Tutorial

* Focus on techniques of approximation algorithm design
LP-rounding
Primal-dual algorithms and analysis
Random sampling

* Five illustrative problems
Set cover problem
Facility location problem
Steiner tree problem
Traveling salesman problem
Maximum-weight on-time scheduling

Stochastic Set Cover (SSC)

Universe U ={e,, ..., e }, subsets S;, S,, ..., S, S U, set S has
weight .

Deterministic problem: Pick a minimum weight collection of
sets that covers each element.

Stochastic version: Set of elements to be covered is given by
a probability distribution.

— choose some sets initially paying o, for set S
— subset A c U to be covered is revealed
— can pick additional sets paying W for set S.

Minimize (-cost of sets picked in stage I) +
E, cu [WVs -cost of new sets picked for scenario A].

An LP formulation

Pa : probability of scenario A € U.
Xs :indicates if set S is picked in stage I.
Yas : indicates if set S is picked in scenario A.

Minimize Y ¢ WXs + D acy Pa 25 Weyas
subject to,

Dsees Xs F DsecsYas21 foreachAc U, eeA

Xs, Yas 2 0 for each S, A.

Exponential number of variables and exponential number
of constraints.

A Rounding Theorem (S & Swamy)

Stochastic Problem: LP can be solved in polynomial time.

Example: polynomial scenario setting

Deterministic problem: a-approximation algorithm A with
respect to the LP relaxation, A(l) £ a.LP-OPT(l) for each I.

Example: “the greedy algorithm” for set cover is a
log n-approximation algorithm w.r.t. LP relaxation.

Theorem: Can use such an o-approx. algorithm to get a
20-approximation algorithm for stochastic set cover.

Rounding the LP

Assume LP can be solved in polynomial time.

Suppose we have an (-approximation algorithm wrt. the LP
relaxation for the deterministic problem.

Let (x,y) : optimal solution with cost LP-OPT.
D secs Xs ¥ Dsees Yas 2 1 for each Ac U, ec A
= for every element e, either
Dsecs Xs2 2 OR in each scenario A : e€A, . s Yas 2 /2.
LetE={e:Dc.csXs 2 Y2}

So (2x) is a fractional set cover for the set E = can “round” to get
an integer set cover & for E of cost ¢, 0 < 0t(Y g 20Xg) -

Sis the first stage decision.

Rounding (contd.)

O O m 0O O 0O M [IJSets W Setin&

o —— e
- -~

-~

® '@ O O O @O @ Elements @ ElementinE

Consider any scenario A. Elements in A N E are covered.

For every e € A\E, it must be that 3 .. yas 2 2

So (2y”) is a fractional set cover for A\E = can round to
get a set cover of W-cost < 03 s 2Wy,) -

Using this to augment & in scenario A, expected cost

S Dscg W5+ 2003 acy Pa(2s Wsyas) < 20-LP-OPT.

A Rounding Theorem

Stochastic Problem: LP can be solved in polynomial time.

Example: polynomial scenario setting

Deterministic problem: o-approximation algorithm A with
respect to the LP relaxation, A(l) £ a.LP-OPT(l) for each I.

Example: “the greedy algorithm” for set cover is a
log n-approximation algorithm w.r.t. LP relaxation.

Theorem: Can use such an a-approx. algorithm to get a
20-approximation algorithm for stochastic set cover.

A Rounding Technique

Assume LP can be solved in polynomial time.

Suppose we have an o-approximation algorithm w.r.t. the LP
relaxation for the deterministic problem.

Let (x,y) : optimal solution with cost OPT.
D secs Xs ¥ Dsees Yas 2 1 for each Ac U, eec A
= for every element e, either
Dsecs Xs = /2 OR in each scenario A: e€A, Y. .sYas 2 2
LetE={e:Dc.csXs 2 Y2}

So (2x) is a fractional set cover for the set E = can “round” to
get an integer set cover & of cost Y, s < 0T g 2Xs) -

Sis the first stage decision.

A Compact Formulation

Pa : probability of scenario A € U.
Xs :indicates if set S is picked in stage I.

Minimize h(x) =) X + f(x) s.t. x;=0 foreachS

where, f(x) = 3 acy Pafa(¥)
and fa(x) = min. 3 s Wyas
St DsecsYas 2 1= Dgecs X for each eeA
Yas 2 0 for each S.
Equivalent to earlier LP.

Each f5(x) is convex, so f(x) and h(x) are convex functions.

Solving the Stochastic LP?
The LP has exponential number of variables

and constraints, but can give other compact
formulation as convex program that focuses
on Stage |

Can compute a fractional solution of cost at
most (1+€)LP-OPT with probability at least
1-0 in time polynomial in input size and

A = maxs W/

Many approaches are possible, including
ellipsoid method and sample average
approximation [S&Swamy, Nemirovski&
Shapiro, Charikar, Chekuri, & Pal]

The Ellipsoid Method

Min c-x subject to xe P.

Ellipsoid = squashed sphere
Start with ball containing polytope 2.
y; = center of current ellipsoid.

If y, is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

The Ellipsoid Method

Min c-x subject to xe 7.

Ellipsoid = squashed sphere
Start with ball containing polytope 2.
y; = center of current ellipsoid.

If y. is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

The Ellipsoid Method

Min c-x subject to xe P. Ellipsoid = squashed sphere

Start with ball containing polytope 2.
y; = center of current ellipsoid.
If y. is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.
If y, € PP, use objective function cut
c-x < ¢y, to chop off polytope, half-
ellipsoid.
New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

The Ellipsoid Method

Min c-x subject to xe P. Ellipsoid = squashed sphere

Start with ball containing polytope 2.
y; = center of current ellipsoid.

/' If y. is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

If y, € P, use objective function cut
c-x < cy, to chop off polytope, half-
ellipsoid.
New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

The Ellipsoid Method

Min c-x subject to xe P. Ellipsoid = squashed sphere
Start with ball containing polytope 2.
y; = center of current ellipsoid.

If y. is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

If y, € PP, use objective function cut

c-x < ¢y, to chop off polytope, half-

ellipsoid.
EE New ellipsoid = min. volume ellipsoid
P X containing “unchopped” half-ellipsoid.
Xy, Xy, -..y X2 points lying in . c-x, is a close to optimal value.

Ellipsoid for Convex Optimization

Min h(x) subject to xe P. Start with ball containing polytope 7.
y; = center of current ellipsoid.

If y, is infeasible, use violated inequality.

If y. € P — how to make progress?
add inequality h(x) < h(y;)? Separation
becomes difficult.

Ellipsoid for Convex Optimization

Min h(x) subject to xe P. Start with ball containing polytope 7.
y; = center of current ellipsoid.

If y, is infeasible, use violated inequality.

If y. € P — how to make progress?

add inequality h(x) < h(y;)? Separation
becomes difficult.

Let d = subgradient at y,.
use subgradient cut d-(x-y;) < 0.

Generate new min. volume ellipsoid.

d € R" is a subgradient of h(.) at u, if for every v, h(v)-h(u) = d-(v-u).

Ellipsoid for Convex Optimization

Min h(x) subject to xe P. Start with ball containing polytope 7.
y; = center of current ellipsoid.

If y, is infeasible, use violated inequality.

If y. € P — how to make progress?

add inequality h(x) < h(y;)? Separation
becomes difficult.

Let d = subgradient at y,.
use subgradient cut d-(x—y,) < 0.

Generate new min. volume ellipsoid.
d € R" is a subgradient of h(.) at u, if for every v, h(v)-h(u) = d-(v-u).

Xy, Xy, -0y X2 points in . Can show, min._; | h(x;) < OPT+p.

Ellipsoid for Convex Optimization

Min h(x) subject to xe P. Start with ball containing polytope 7.
y; = center of current ellipsoid.

If y, is infeasible, use violated inequality.

If y. € P — how to make progress?
add inequality h(x) < h(y;)? Separation
becomes difficult.
subgradient is difficult to compute.

Let d' = e-subgradient at y..
use €-subgradient cut d'-(x—y,) < 0.

d' € R"is a e-subgradient of h(.) at u, if Vve P, h(v)-h(u) 2 d"(v-u) — &-h(u).

Xq, Xy, ..., X2 points in . Can show, min_; | h(x) < OPT/(1-¢) + p.

Subgradients and €-subgradients

Vector d is a subgradient of h(.) at u,
if for every v, h(v) - h(u) = d-(v-u).

Vector d' is an e-subgradient of h(.) at u,
if for every ve P, h(v) - h(u) = d'-(v-u) — €-h(u).

P={x:0=<x,<1foreachsetS}
h(x) = 25 Wexs + D acy Pafa(X) = 0 + 3 sy PATAX)
Lemma: Let d be a subgradient at u, and d' be a vector

such that d — e < d's < d; for each set S. Then,
d' is an €-subgradient at point u.

Getting a “nice” subgradient

h(x) = @x + 3 acy Pafa(¥)
fa(x) = min. 3 s Wgyas
L Dsees Yas 2 1= Dsees Xs
VeeA
Yas20 VS

Getting a “nice” subgradient

h(x) = @x + 3 acy Pafalx)
fa(x) = min. 3 s Weyas = max. Y oca (1= Jsecs Xs) Zae
St Dsecs YASZ 1= DseesXs St Decans Zae S Ws
VeeA VS
Yas20 VS 2,20 VeeA

Getting a “nice” subgradient

h(x) = @-x + 3 acy Pafa(®)

fa(x) = min. 3 s Weyas = max. 3, (1= YsecsXs) Za,
St Dsecs YAs 2 1= Dgees X5 St DecsZpe S Wi
VeeA VS
Yas 20 VS 2, =0 VegA, z,,20 Ve

Consider point u € R". Let z, = optimal dual solution for A at u.

Lemma: For any point v e R", we have h(v) — h(u) = d-(v-u) where
dg = 05— 2 Acy PA Zees Zae

=> d is a subgradient of h(.) at point u.

Getting a “nice” subgradient

h(x) = @x+ 3y Pafa(¥)
fa(x) = min. 35 Wayas = max. 2 (1= Ysecs Xs) Zae
St Dsees Yas 21— Dsecs Xs St DeesZae S Wi
Vee A VS
Yas 20 A z,. =0 VegA, z,.,20 Ve

Consider point u € R". Let z, = optimal dual solution for A at u. So

fau) = 3o (1= Jsecs Us) Zpe

For any other point v, z, is a feasible dual solution for A. So

fav) 2 2o (1= secs Vo) Zpe

Get that h(v) —h(u) 2 35 (05 — 2 acy Pa 2ees Zae) (Vs — Us) = d-(v-u) where
dg = @5 — Y Ay PA 2ces Zae SO d is a subgradient of h(.) at point u.

Computing an €-Subgradient

Given pointu € R". z, = optimal dual solution for A at u.

Subgradient at u: ds = 05— 2 acy PA 2ees Zae -
Want: d' such that d; — €0 < d's < d for each S.

For each S, -Wq < d; < . Let A = maxg W /.
Sample once from black box to get random scenario A.
Compute X with Xg = 05 — D (s Za .-

E[X] = d; and Var[X{] < W..

Sample O(XZ/SZ-Iog(n/S)) times to compute d' such that
Pr[Vs, d. — e < d's < d(] = 1-3.

= d'is an e-subgradient at u with probability = 1-3.

One last hurdle

Cannot evaluate h(.) — how to compute X = argmin._; . h(x,)?

Will find point X in the convex hull of x,..., X, such that h(x)
is close to min_; | h(x)).

Take two points x; and x,. Find point X
on x;—X, line segment with value close to
\ min(h(x,), h(x,)) using bisection search.
° ;

e y i — dxy) 20

) X, @ ® 0 X,

d': e-subgradient

One last hurdle

Cannot evaluate h(.) — how to compute X = argmin._; , h(x;)?

Will find point X in the convex hull of x,,..., x, such that h(x)
is close to min_; | h(x,).

@ @ x, Take two points x; and x,. Find point X on
X{—X, line segment with value close to
) min(h(x,), h(x,)) using bisection search.
//, \‘ \
@.. L7 1
Xp o T 4
g X\ O——¢——0 @ X,
Xy 1
“«— ‘\
1

One last hurdle

Cannot evaluate h(.) — how to compute X = argmin._; . h(x,)?

Will find point X in the convex hull of x,..., X, such that h(x)
is close to min_; | h(x,).

[o x, Take two points x; and x,. Find point X on
X=X, line segment with value close to
min(h(x,), h(x,)) using bisection search.
@. /‘
X1 ‘\\\\ ,’/’ \\\
\\‘\ - Xl. ._.\ . . XZ
@ N

XZ AN
N
N

One last hurdle

Cannot evaluate h(.) — how to compute X = argmin._; , h(x;)?

Will find point X in the convex hull of x,,..., x, such that h(x)

is close to min_; | h(x,).
Take two points x; and x,. Find point X on

Moo @ X : .
‘ \ X{—X, line segment with value close to
\ min(h(x,), h(x,)) using bisection search.
g, /,‘ ~
X1 :‘\ ,,/, X
X ' X @ o—o © @ X,
X)
Stop when search interval is small enough.

Set x = either end point of remaining segment

One last hurdle

Cannot evaluate h(.) — how to compute X = argmin._; . h(x,)?

Will find point X in the convex hull of x,..., X, such that h(x)

is close to min_; | h(x,).
Take two points x; and x,. Find point X on
X=X, line segment with value close to

A @ X
S
|
! min(h(x,), h(x,)) using bisection search.
Iterate using X and xs,..., X, updating X

along the way.

One last hurdle

Cannot evaluate h(.) — how to compute X = argmin._; , h(x;)?
Will find point X in the convex hull of x,,..., x, such that h(x)
is close to min_; | h(x,).

Take two points x; and x,. Find point X on

M @ X . .
S X{—X, line segment with value close to

A min(h(x,), h(x,)) using bisection search.

/, ! \\
4 1 o — . —
é. ! 2 lterate using X and x;,..., X, updating X

S N p along the way.
g
Xa

One last hurdle

Cannot evaluate h(.) — how to compute X = argmin._; . h(x,)?
Will find point X in the convex hull of x,..., X, such that h(x)
is close to min_; | h(x,).

Take two points x; and x,. Find point X on

B---e- @ X
- k . .
. ,.' o« N X=X, line segment with value close to
’k min(h(x,), h(x,)) using bisection search.
/, 1 ; . —_— . fr—
é. ! A2 Iterate using X and xs,..., X, updating X
S along the way.
g

One last hurdle

Cannot evaluate h(.) — how to compute X = argmin._; , h(x;)?

Will find point X in the convex hull of x,,..., x, such that h(x)
is close to min_; | h(x,).

Take two points x; and x,. Find point X on

©------ @ X
’ -, k . .
, ,.' o X{—X, line segment with value close to
lk’ ‘\\‘\\ min(h(x,), h(x,)) using bisection search.
/! 1 X ¢ . = . =
6. X /,0 Iterate using X and x,..., X, updating X
X e . - along the way.
g
Xa

Can show that h(x) < (min._; |, h(x) + k-p)/(1- €)<N.

Putting it all together

Min h(x) subject to xe 2. v' Can compute &-subgradients.
Run ellipsoid algorithm.
Given y, = center of current ellipsoid.

If y. is infeasible, use violated
inequality as a cut.

If y. € P use e-subgradient cut.

Continue with smaller ellipsoid.

Generate points X;, X,, ..., X, in P. Return X = argmin,_; | h(x)).

Get that h(x) < OPT/(1-¢) + p.

Finally,
Get solution x with h(x) close to OPT.

Sample initially to detect if OPT = Q(1/A) — this allows
one to get a (1+€).OPT guarantee.

Theorem: Compact convex program can be solved to
within a factor of (1 +€) in polynomial time, with high
probability.

Gives a (2log n+€)-approximation algorithm for the
stochastic set cover problem.

A Solvable Class of Stochastic LPs

Minimize h(x) = w.x + > s Pafa(X)
s.t. xe R, x20,xe?P
where fo(X) = min. wAy, + cAry
s.t. Br, = jA
Dry + Ty, 2 ¢ —Tx

YA€ R, rae R, y,20,r, 20.

Theorem: Can get a (1+€)-optimal solution for this class of
stochastic programs in polynomial time.

2-Stage Stochastic Facility Location

o Distribution over clients gives
o the set of clients to serve.
O m = Stage I: Open some facilities in
advance; pay cost f. for facility i.

[facility M stage I facility Stage I cost = 2 i gpened) fi-

Actual scenario A = { @ clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fA to open facility i. Assign clients in A to facilities.

Stage Il cost = 3 . opened in fA + (cost of serving clients in A).
scenario A

A Convex Program

P, : probability of scenario A € D.

y; :indicates if facility i is opened in stage I.

Ya; - indicates if facility i is opened in scenario A.

X - Whether client j is assigned to facility i in scenario A.

Minimize h(y) = >.fy +g(y) st y,20 foreachi

(SUFL-P)
where, g(y) = 2acpPagalY)
and galy) = min. 3 Fiy,; + Z],i Cij XA
s.t. > Xp; 2 1 for each je A
Xpii S Vit Yai for each i
XpjiYai 2 0 for each i,j.

Lecture #2

A priori optimization (no recourse)

Given: Probability distribution over inputs.
In advance: Compute master plan.
Observe the actual input scenario.

In real time: Adapt master plan to scenario.

Compute master plan to minimize

expected real time cost.

The Traveling Salesman Problem (TSP)

Given input points, compute tour T to minimize total length c(7)

The Traveling Salesman Problem (TSP)

Given input points, compute tour T to minimize total length c(7)

The A Priori TSP

o @)

@) @
Given input points N and a distribution IT of active sets A 2 2N
Need to specify the probability that a given set A is active

The A Priori TSP | ®

Active Nodes

P @

@ [
Given input points N and a distribution IT of active sets A 2 2N
Need to specify the probability that a given set A is active

The A Priori TSP

® Active
nodes A

Given input points N and a distribution IT of active sets A 2 2N,
compute master tour T to minimize expected length of the tour T
shortcut to serve only A

The A Priori TSP

P N I odes A

Shortcut tour on A
@

Given input points N and a distribution IT of active sets A 2 2N,
compute master tour T to minimize expected length of the tour T
shortcut to serve only A

The A Priori TSP

O g0 ? Acdve

Shortcut tour on A
@

Given input points N and a distribution IT of active sets A 2 2N,
compute tour T to minimize expected length E, [c(T4)], where T, is
the tour T shortcut to serve only A

The A Priori TSP

PS Active
nodes A

Optimal tour on A

Given input points N and a distribution IT of active sets A 2 2N,
compute tour T to minimize expected length E, [c(T,)], where T, is
the tour T shortcut to serve only A

The A Priori TSP

O g0 . e odes A

Shortcut tour on A
@

Given input points N and a distribution IT of active sets A 2 2N,
compute tour T to minimize expected length E, [c(T4)], where T, is
the tour T shortcut to serve only A

The A Priori TSP

Given input points N and a distribution IT of active sets A 2 2N,
compute tour ¢, to minimize expected length E, [c(T4)], where T, is
the tour 7T shortcut to serve only A = 1 * (optimal solution)

Goal: Find tour 7 such that E, [c(T4)] £ ®E, [c(T *,)] = ®OPT

(This is an ®-approximation algorithm for the a priori TSP.)

How is the probability distribution on active set specified?
* A short (polynomial) list of possibile scenarios;

* Independent probabilities that each point is active;

* A black box that can be sampled.

The A Priori TSP

Given input points N and a distribution IT of active sets A 2 2N,
compute tour ¢, to minimize expected length E, [c(T4)], where T, is
the tour 7T shortcut to serve only A = T * (optimal solution)

Goal: Find tour 7 such that E, [c(T,)] £ ®E, [c(t *,)] = ®OPT

(This is an ®-approximation algorithm for the a priori TSP.)

How is the probability distribution on active set specified?
* A short (polynomial) list of possibile scenarios;

* Independent probabilities that each point is active;

* A black box that can be sampled.

Some relevant history for a priori TSP
* Jaillet (1985, 1988), Bertsimas (1988), Jaillet, Bertsimas, &
Odoni (1990) introduce problem — analyze with probabilistic
assumptions on distances

* Schalekamp & S (2007) randomized O(log n)-approximation
* Maybecast problem Karger & Minkoff (2000)
* Rent-or-buy problem Gupta, Kumar, Pal, Roughgarden (2007)

* Stochastic Steiner Tree variants Gupta, Pal, Ravi, Sinha (2004)
Gupta, Ravi, Sinha (‘04), Hayraptian, Swamy, Tardos (‘05)
Garg, Gupta, Leonardi, Sankowski (2008)

* Universal TSP Bartholdi & Plazman (1989), Jia, Lin, Noubir,
Rajaraman & Sundaram, (2005), Hajiaghayi, Kleinberg &
Leighton (2006), Gupta, Hajiaghayi, Racke (2006)

The One Random Sample Algorithm

I. Draw sample S < N according to II (i.e., pick each point j
independently with probability p))

2. Build minimum spanning tree on S

3. Foreachj¢ S, connectj to its nearest neighbor in S
4. Build “double tree” tour of this tree = 1

Simplifying Assumption: 3 node r with p. = 1 (wlog)

Theorem The one random sample algorithm is a
4-approximation algorithm for the a priori TSP.

Running the Algorithm

® Sampled nodes S

Running the Algorithm

A

£

@® Sampled nodes S

Running the Algorithm

@® Sampled nodes S

Analyzing the Algorithm

Let D;(S) be the distance from j to its nearest neighbor in S-{j}
Let MST(S) be the length of the minimum spanning tree on S
Goal: Analyze E¢ [E, [c(Ta)]]

Fact 1. E5[D;(S)] = Es [D)| j ¢ S] = E5 [D; | j€S] = E5 [Dy(A)] je Al
Why? Choice of S-{j} is independent of whether j 2 S, and
S and A are independent draws from same distribution

Fact 2. MST(A) <c(¢, “») for each Ay N
Why? Tour ;* shortcut to A still contains spanning tree

Fact 3. 2., 1(€ A) Dy(A) < c(t*,) for all A

Why? Any tour on A “leaves” each node i by some edge

Let D;(S) be the distance from j to its nearest neighbor in S-{j}
Let MST(S) be the length of the minimum spanning tree on S

Goal: analyze Eq [E, [c(TA)]]

Fact 1. Es [D(S)] = Es [D] j € S] = E [D, | jeS] = Ex [Dy(A)] je Al
Fact 2. MST(A) < ¢(t *,) for all A

Fact 3. 2., 1(j € A) D,(A) < c(t *,) forall A

Key Idea: always pay for backbone built on S (for any active A)

EG[EAL c(ca)]] < Es[2MST(S) IWES [EA [, 1 < A) 1 5) 2D(S)]]
= E; [2MST(S)] + X, Eqa [1(€ A)I(j & $) 2D, (5)]
= E; [2MST(S)] + 23, p; (1-p) ES[D(9)]
<2(E [MST()] + .. p, ED(S))
<2 (OPT+OPT)
= 40PT

Analyzing the Algorithm

® Sampled nodes S

Analyzing the Algorithm

® Sampled nodes S
@ Active set A

edges paid for
w.rt. Ain E []

Always pay for all of backbone and just those attached leaves you need

Cost of shortcut tour for A is at most twice the cost of these edges

Let D;(S) be the distance from j to its nearest neighbor in S-{j}
Let MST(S) be the length of the minimum spanning tree on S

Goal: analyze Eq [E5 [c(TA)]]

Fact 1. Es [D(S)] = Es [D] j € S] = E [D, | jeS] = Ex [Dy(A)] je Al
Fact 2. MST(A) < c(t *,) for all A

Fact 3. 2, 1(j € A) D,(A) < c(t *,) forall A

Key Idea: always pay for backbone built on S (for any active A)

Ef[EAL c(Ta)]] < Eql 2MST(S) +E [EA [%, 1G € A) 1(& S) 2D(S)]]
= Eg [2MST(S)] + . Esa [1 € A)I(& S) 2D, (5)]
= E; [2MST(S)] + 23, p, (1-p,) Es[D,(S)]
<2(E [MST(S)] + .., p, E[D(S)])
<2 (OPT+OPT)
= 40PT

Let D;(S) be the distance from j to its nearest neighbor in S-{j}
Let MST(S) be the length of the minimum spanning tree on S

Goal: analyze Eq [E, [c(TA)]]

Fact 1. Eg[D(S)] = Es [D]] j & S] = Eg [D, | jeS] = E4 [Dy(A)| je Al
Fact 2. MST(A) < c(t *,)

Fact 3. Zj e A D(A) <c(t %)

Key Idea: always pay for backbone built on S (for any active A)

EG[EAL c(ca)]] < Es[2MST(S) IWES [EA [, 1 < A) 1 5) 2D(S)]]
= E; [2MST(S)] + X, Eqa [1(€ A)I(j & $) 2D, (5)]
= E; [2MST(S)] + 23, p; (1-p) ES[D(9)]
<2(E [MST()] + .. p, ED(S))
<2 (OPT+OPT)
= 40PT

The One Random Sample Algorithm

I. Draw sample S < N according to I1 (i.e., pick each point j
independently with probability p))

2. Build minimum spanning tree on S

3. Foreachjé¢ S, connectj to its nearest neighbor in S
4. Build “double tree” tour of this tree = 1

Simplifying Assumption: 3 node r with p. = 1 (wlog)
Theorem (S & Talwar) The one random sample

algorithm is a 4-approximation algorithm for the a
priori TSP.

Two Footnotes

Can be derandomized -

Let D;(S) be the distance from j to its nearest neighbor in S-{j}
Let MST(S) be the length of the minimum spanning tree on S

Goal: analyze Eq [E5 [c(TA)]]

Fact 1. E [D(S)] = Eg [D] j € S] = Es [D, | jS] = E, [D(A)] je Al
Fact 2. MST(A) < c(t *,) for all A

Fact 3. 2, 1(j € A) D,(A) < c(t *,) forall A

Key Idea: always pay for backbone built on S (for any active A)

Ef[EAL c(Ta)]] < Eql 2MST(S) +E [EA [%, 1G € A) 1(& S) 2D(S)]]
= Eg [2MST(S)] + . Esa [1 € A)I(& S) 2D, (5)]
= E; [2MST(S)] + 23, p, (1-p,) Es[D,(S)]
<2(E [MST(S)] + X, p, E[D(S)])
<2 (OPT+OPT)
= 40PT

Two Footnotes

Can be derandomized — Williamson & van Zuylen (2007)
show how to deterministically achieve twice guarantee for
rent-or-buy/connected facility location problem by the
method of conditional probabilities (by an LP estimate)

Assumption that p. = 1 is not needed;
Need only that D,(S) is well defined.
Modify I to condition on that each set has cardinality > 2

Can sample according to this new distribution also, and this

just rescales things (any tour has cost 0 restricted to 0 or 1
points) but must be careful about dependence

Theorem (S & Talwar) There is a deterministic 8-
approximation algorithm for the a priori TSP in the
independent activation model

What about the black box model?

Recent work of Gorodezky, R. Kleinberg, S, &
Spencer shows that for a (slightly) restricted class of
algorithms can embed a universal computation in an
a priori one, and thereby show a non-constant
lower bound on performance guarantees possible
with a polynomial number of samples

2-Stage Steiner Tree Problem

Given a set of points N (with root) in a metric space,
integer inflation factor A, and distribution over 2N

Stage I: install edges A, — costofeisc,
Set of active terminals T < N is selected (including root)

Stage Il: install edges A, s.t. Aj U A, is Steiner treeon T -
cost of edge e is Ac,

Goal: Minimize
(cost of edges installed in stage |) +
A E; _\ [cost of edges installed for scenario T].

An Example

@ active node root node

N

First stage

Second stage

An Example

@ active node root node

First stage

Second stage

Deterministic Steiner Tree

i @® Steiner nodes S

o

Walking “around” optimal Steiner tree gives connected graph, so
can view as connected graph on just terminal nodes (by shortcuts)

Deterministic Steiner Tree

@® Steiner nodes S

Walking “around” optimal Steiner tree gives connected graph, so
can view as connected graph on just terminal nodes (by shortcuts)

Deterministic Steiner Tree

@® Steiner nodes S

Hence, MST

costs at most
twice optimal
Steiner tree !

Walking “around” optimal Steiner tree gives connected graph, so
can view as connected graph on just terminal nodes (by shortcuts)

Boosted Sampling Algorithm
(Gupta, Pal, Ravi, Sinha)
* Draw A independent samples S;, S,, ..., S, — S

* First stage decision: compute minimum spanning tree (MST)
for S (including root), and install those edges — Alg,

* Observe scenario T (independently drawn from same dist)

* Compute (rooted) minimum spanning tree on S U T,
(but make cost of edges Alg, all 0)
and let e[j] be edge from j to its parent

*Let Alg, < {e[j]l:je T}

First Stage Cost
Optimal cost Z* = ¢(Opt;) + A E; _ [<«(Opt(T))]
We compute MST on S <~ S; U ... U S, for Stage |
(this is 2-approximation for S)

How expensive is it to connect S? Could use

Opt, U Opt; (S4) U ... L Opty(Sy)
Each S, is identical random T so its expected cost is

c(Opt;) + A Er [<(Opty (T)] > Z°
Since MST is 2-approximation algorithm =

expected Stage | cost is at most 2Z"

Cost sharing role of parental edge

* Builda MST onasetS U T (plus root)
« Focus on parental edge e[j] foreachje SUT
* Total edge costis 2, . 5, T Cqp

* But this is < twice cost of optimal Steiner tree
onSuUT

* Attribute share c /2 of optimal cost to |

* Total share cost is < optimal Steiner tree cost

Second Stage Cost
* Algorithm computes Steiner tree for S, U ... US§, U T
* Consider J < Opt, U Opt;(S,) U...u Opt,; (S;) L Opt,(T)
* Role of A+1 sets, S,,....,S,, T is symmetric
+ E[c(9)] < c(Opt) + (\+1) E[c(Opt, (S))] < (A+1)/A Z'
* Form Dy,...,D, by deleting nodes in multiple sets
*Ljes Cepy t 2i Zje D, Cefj] < 2c(J)
* By symmetry, E[2, _ 15 ¢y 1 € 2¢(9)/(A+1)
* Hence, E[2, 15 ¢] <2Z° / A = Stage |l cost < 27

— Boosted Sampling is 4-approximation algorithm

2-Stage Stochastic Facility Location

n Distribution over clients gives
o the set of clients to serve.
O m = Stage I: Open some facilities in
advance; pay cost f. for facility i.

[facility M stage I facility Stage I cost = 2 i gpened) fi-

Actual scenario A = { @ clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fA to open facility i. Assign clients in A to facilities.

— A . . .
Stage Il cost =) _ opencdin 1 T (cost of serving clients in A).
scenario A

Deterministic Facility Location

Minimize 3, fy; + %;; d; ¢;X;
subject to 2. Xij 2 1 V]

y; - indicates if facility i is open.

X; : indicates if client j is assigned to facility i.

d; is the demand at client]

A Convex Program

P, : probability of scenario A € D.

y; :indicates if facility i is opened in stage I.

Ya; - indicates if facility i is opened in scenario A.

X - Whether client j is assigned to facility i in scenario A.

Minimize h(y) = >.fy +g(y) st y,20 foreachi

(SUFL-P)
where, g(y) = 2acpPagalY)
and galy) = min. 3 Fiy,; + Z],i Cij XA
s.t. > Xp; 2 1 for each je A
Xpii S Vit Yai for each i
XpjiYai 2 0 for each i,j.

Rounding (SUFL-P)

Let y : optimal solution with cost OPT.
(Xasya) : optimal solution for scenario A.

Goal: Decouple stage I and the stage II scenarios.

Assign je A exclusively to stage I facilities, or to stage II facilities.

B stage I facility :y, I| II
B stage II facility : y, II
II I

[T]

Rounding (contd.)

B stage I facility : y, [l stage II facility : Yai
I II Il Set X ; = byt ra i, Where
Is

bA,ij <y, and Faii S YA

2 bA,ij DY Faij 21

Rounding (contd.)

B stage I facility : y, [l stage 11 facility : y,

Set Xp; = bpt ra . Where

bA,ij <y, and Faii S YA

2. bA,ij + 2. Faij 2 1
— —

i x >, OR 2V

Rounding (contd.)

2ibajj 22 = (2b,) is a feasible assignment for j with
facility variables 2y..

2ita; 22 = (2ry;) is a feasible assignment for j with
facility variables 2y, ..

Have an o-approx. algorithm for UFL wrt. LP relaxation.
Stage |

* Solve UFL instance: facility set '/ with costs f,
client set D = {(,A) : 2, bs;; 2 2}, (j,A) has demand p, .

* ({2bai }ja)eD» 2y) is a feasible fractional solution.
* Obtain integer solution: gives facilities to open in stage L.

* Takes care of client j in each scenario A where } b, 2 /2.

Rounding (contd.)

Stage II, scenario A

* Assign je A such that), baj 2 72 to stage I facility.
= Only need to assign remaining clients with 3 r,; = /2.

* Solve UFL instance: facility set '/ with costs F,,
clientset D, ={je A: 3 ;ry; 22}

* ({2rajiticpp 2ya) s a feasible fractional solution.

* “Round” to get an integer solution
— determines what other facilities to open in scenario A,
— how to assign clients in D,.

Shows a 2« integrality gap for stochastic UFL-LP. Modify slightly
to get a 3.23-approximation algorithm for stochastic UFL.

Lecture #3

Stochastic Set Cover (SSC)

Universe U ={e,, ..., e }, subsets S;, S,, ..., S, S U, set S has
weight .

Deterministic problem: Pick a minimum weight collection of
sets that covers each element.

Stochastic version: Set of elements to be covered is given by
a probability distribution.

— choose some sets initially paying . for set S
— subset A c U to be covered is revealed
— can pick additional sets paying W for set S.

Minimize (-cost of sets picked in stage I) +
E, cu [VWVs -cost of new sets picked for scenario A].

Stochastic Set Covering LP

Pa : probability of scenario A < U.
Xs :indicates if set S is picked in stage I.
Yas : indicates if set S is picked in scenario A.

Minimize 3 ¢ Wsxs + 3 acy Pa 2.5 WeYas
subject to,
Dsees Xs t DseesYas 21 foreach Ac U, ecA

X5 Yas2 0 foreach§, A

Exponential number of variables and exponential number
of constraints.

Inflation factor , = maxs W/

Sample Average Approximation

Sample Average Approximation (SAA) method:
— Sample initially N times from scenario distribution
— Solve 2-stage problem estimating p, with frequency of occurrence of
scenario A

How large should N be?

Kleywegt, Shapiro & Homem De-Mello 0l: bound N by variance of a certain
quantity — need not be polynomially bounded even for our class of programs.

SwamyS 05: show using €-subgradients that for our class, N can be poly-
bounded.

Nemirovskii & Shapiro: show that for stochastic set cover LP with non-
scenario dependent costs, KSHO1 gives polynomial bound on N for
(preprocessing + SAA) algorithm. Later also without preprocessing.

Charikar, Chekuri, & Pal 05: give elegant “Chernoff’-based proof that an

o-approximation for polynomial-scenario setting yields (I+€)a-approximation
for black box setting

A Compact Formulation

Pa : probability of scenario A € U.
Xs :indicates if set S is picked in stage I.

Minimize h(x) =) X + f(x) s.t. x;=20 foreachS

where, f(x) = 3 acy Pafa(¥)
and fa(x) = min. 3 s Wgyas
St DsecsYas 2 1= Dgecs X for each eecA
Yas 2 0 for each S.
Equivalent to earlier LP.

Each f,(x) is convex, so f(x) and h(x) are convex functions.

Sample Average Approximation

Sample Average Approximation (SAA) method:
— Sample N times from distribution

— Estimate p, by q, = frequency of occurrence of scenario A

(P) minep (h(x) = @x + Yoy Pafax))
(SAA-P) min,_p (h'(x) = 0x + Facy qafalx))
To show: With poly-bounded N, if X solves (SAA-P) then h(x) = OPT.
Let z, = optimal dual solution for scenario A at point u € R".
= d, with d ¢ = 05— D acy Ga 2ees Zae IS @ subgradient of h'(.) at u.
Lemma: With high probability, for “many” points u in P,
d, is a subgradient of h'(.) at u,
d, is an approximate subgradient of h(.) at u.
Establishes “closeness” of h(.) and h'(.) and suffices to prove result.

Intuition: Can run ellipsoid on both (P) and (SAA-P) using the same
vector d, at feasible point u.

Sample Average Approximation

Sample Average Approximation (SAA) method:
— Sample initially N times from scenario distribution
— Solve 2-stage problem estimating p, with frequency of occurrence of
scenario A
How large should N be?

Kleywegt, Shapiro & Homem De-Mello 0l: bound N by variance of a certain
quantity — need not be polynomially bounded even for our class of programs.

SwamysS 05: show using €-subgradients that for our class, N can be poly-
bounded.

Nemirovskii & Shapiro: show that for stochastic set cover LP with non-
scenario dependent costs, KSHO1 gives polynomial bound on N for
(preprocessing + SAA) algorithm. Later also without preprocessing.

Charikar, Chekuri, & Pal 05: give elegant “Chernoff’-based proof that an
oi-approximation for polynomial-scenario setting yields (1+€)a-approximation
for black box setting

Sample Average Approximation

(Charikar, Chekuri, and Pal)
Sample Average Approximation (SAA) method:
— Sample N times from distribution

— Estimate p, by q, = frequency of occurrence of
scenario A

(P) minep (h(x) = Ox+ 3 acy Pafa(x))
(SAA-P) min,p (h'(x) = @x + 3 \cyy qafa(X))
Prove just a weak version — let x' be a minimizer of h' — we want

to show that for N polynomial, then x' is also of objective
function value within a factor of 1+2, with probability 1-d

Chernoff Bound — Let X, 2 [0,1], k=1,...,M, be ind. r.v.s & let X
= X,. Then, for any 2> 0
Pr[[X-E[X]| >2M] - 2 exp(-#* M)

We'll take N = ¢ 2 n log (1/9) (1/2%)

Sample Average Approximation (SAA) method:

— Sample N times from distribution

— Estimate p, by q, = freq. of occurrence of scenario A
(P) OPT=min,p (h(x) = Ox + Tacy, Pafalx) =0 + f(x))
(SAA-P) min,e p (h'(X) = OX + 3 acyy qa falx) =ox + f(x))

Divide scenarios into high and low: say A is high if f,(0) , ,OPT/2
By def'n of : for each x & A, f,(0) - ,mx + f5(x)
Lemma: Let p be probability that A is high; then p - (1/,)%/(1-2).
Proof: OPT = wx* + E,[fo(x™)] for optimal x*.
. P EAIfa(<") | A high] | p EA[f(0)-,0x*] A high]
,P[. OPT/2- OPT]=p OPT ., (1-3/2 qed

Three Key Properties
f(x) = ox + 2y Pa fa(X)
fui(X) = LA nigh Pa fa(X) & fig(x) = f(x) — fi; (x) — ox
and analogous for f
* For each x, |f, (x) —f,,(X)| - 2OPT w.h.p.
* For each x, f,(0) — f.(x) * 220x w.h.p.
* For each x, f,.(0) —f,.(x) - 220x .

Three Key Properties
f(x) = x + 25,4 Pa fa(X) & f' replace p by q
fui(X) = Zanign Pa fa(X) & fig(x) = f(x) — fi; (x) — 00X
and analogous for f
° For each x, [f, (x) —f,(X)| - 20OPT w.h.p.
* For each x, f,(0) — f,.(x) * 220x w.h.p.
* For each x, f,.(0) —f,.(x) - 220x .
For SAA minimizer x': (by above + f,.(x) - f..(0))
f(x') — f(x') - 20PT + 22mx’ + £, .(0) — f,.(0)
f'(x*) — f(x*) - 20PT + 220x* + ' .(0) —f,.(0))

f(x') — 22mx' = f(x*) + 220x* + 220PT)
(1-29)f(x') - (1+43)OPT !

Three Key Properties

* For each x, [f, (x) —f,(X)| - 20OPT w.h.p.

* For each x, f,(0) — f.(x) * 22mx w.h.p.

* For each x, f.(0) —f,.(x) * 22mx .

Lemma. With probability 1-9, the fraction of high
scenarios is at most 22/, (by Chernoff)

This yields 2" and 3" properties directly.

For It view f | (x) as the mean of N independent
random variable F, that is f,(x) if A is low, but
0 otherwise

Apply Chernoff bound to (1/N)2.. F/[, OPT/?] to
get |t property

Maximum-weight on-time set

Jobs N ={1,2,...,n} - job j has set of allowed time intervals
S; = {[syj€1))s- - [s1814)} With corresponding weights w;

Deterministic problem: Pick a maximum-weight collection of

intervals < 1 per job and at each time
Height =

. wegh
|
|

Maximum-weight on-time set

Jobs N ={1,2,...,n} - job j has set of allowed time intervals
S; = {[syj€1))s- - [s1844)} With corresponding weights w;
Deterministic problem: Pick a maximum-weight collection of

intervals < 1 per job and at each time
Height =

—_— wegh
.

Optimal selection

is shaded

v

Time

Maximum-weight on-time set
Jobs N ={1,2,...,n} - job j has set of allowed time intervals
S; = {[syj€1))s- - [s1814)} With corresponding weights w;

Deterministic problem: Pick a maximum-weight collection of
intervals < 1 per job and at each time

Linear Programming Relaxation
Let T, be the set of intervals (for all jobs) containing time t : (i,j)

x; : indicates whether [s;,e;) selected for job j

i’

Maximize 2,;; w; x;

Subjectto 2 x; <1, for each j=1,...,n
2 < T, X S 1 for each t
x. >0 for each i,j

i
Theorem [Bar-Noy, Bar-Yehuda, Freund, Naor, & Schieber]
Primal-dual 2-approximation algorithm for max-weight schedule

2-Stage Stochastic Variant

Scenario A N of active jobs occurs with probability p,

Stage |: Choose set D — N of jobs to defer to subcontractor
and receive small weight ®, for each je D

Stage lI: Given realized scenario A, make selection T, where
(ij) € To=j e A-D and has weight W,

Goal: Maximize the total expected weight scheduled (where
expectation is with respect to active subset probabilities)

A Primal-Dual Theorem

Theorem: [S & Sozio] We can (adapt the 2-approximation
algorithm for deterministic setting to) obtain a 2-
approximation algorithm for stochastic maximum-weight on-
time scheduling.

Note: it is trivial to obtain a 4-approximation algorithm (flip
a coin and either decide to either put all of your eggs in
Stage | or Stage Il) and almost as simple to obtain a
3-approximation algorithm

We focus first on the polynomial-scenario model

Maximum-weight on-time set
Jobs N ={1,2,...,n} - job j has set of allowed time intervals
S; = {[syj€1))s- - [s1844)} With corresponding weights w;

Deterministic problem: Pick a maximum-weight collection of
intervals < 1 per job and at each time

Linear Programming Relaxation
Let T, be the set of intervals (for all jobs) containing time t : (i,j)

x; : indicates whether [s;,e;) selected for job j

i

Maximize 2,;; w; x;

Subjectto 2 x; <1 for each j=1,...,n
i) e T, X S 1 for each t
x; 20 for each ij

Theorem [Bar-Noy, Bar-Yehuda, Freund, Naor, & Schieber]
Primal-dual 2-approximation algorithm for max-weight schedule

Dual Linear Program
Let T, be the set of intervals (for all jobs) containing time t

Minimize >, u, + 2, v,
Subject to
Ut X e, Ve 2 Wy for each (i)

u, v, >0

The primal-dual algorithm has two phases:

«first it constucts a feasible dual solution, while building a stack of
possible pairs (i,j) to be selected;

*next it pops the stack, selecting any pair that doesn’t conflict with
those already selected;

*amortization shows dual cost is at most twice the value of the primal.

Dual Linear Program
Let T, be the set of intervals (for all jobs) containing time t

Minimize X, u, + 2., v,

Subject to

- For dual solution (u,v)
U+ 2 e 1, Ve 2 W foreach (i) «— ¢y (i,j) covered if this
constraint is satisfied
u, v, 20

The primal-dual algorithm has two phases:

«first it constucts a feasible dual solution, while building a stack of
possible pairs (i,j) to be selected;

*next it pops the stack, selecting any pair that doesn’t conflict with
those already selected;

*amortization shows dual cost is at most twice the cost of the primal.

The Primal-Dual Algorithm of Bar-Noy et al.
* Pick the uncovered interval (i,j) with the earliest ending point t*
* Compute its deficit & = w; - u; - 2 i T, Ve

* Increase u; and v+ by 6/2 (so now (i,j) is tight)

e — Height =
I
I

Weight

A 4

t Time

The Primal-Dual Algorithm of Bar-Noy et al.
* Pick the uncovered interval (i,j) with the earliest ending point t*
* Compute its deficit & = w; - u; - 2 i T, Ve

* Increase u; and v+ by 6/2 (so now (i,j) is tight)

Height
] L.
=Deficit
]

Time

v

The Primal-Dual Algorithm of Bar-Noy et al.
* Pick the uncovered interval (i,j) with the earliest ending point t*
* Compute its deficit 6 = w; - u; - 2 T, Ve
* Increase u; and v+ by 6/2 (so now (i,j) is tight)
» Keep “stack” of tight (i,j)’s

* Pop them off an add to selection if they don’t conflict with ones
chosen already

Time

The Primal-Dual Algorithm of Bar-Noy et al.
* Pick the uncovered interval (i,j) with the earliest ending point t*
* Compute its deficit & = w; - u; - 2 i T, Ve
* Increase u; and v+ by 6/2 (so now (i,j) is tight)
» Keep “stack” of tight (i,j)’s

* Pop them off an add to selection if they don’t conflict with ones
chosen already

Analysis: every selected interval is tight; every iteration adds d to
dual objective and contributes at least 6/2 to “paying for” selected
(i,j)’s; hence, dual objective is at most twice amount paid!!

I . [S
Time

Linear Programming Relaxation for 2-Stage Problem

Let T, be the set of intervals (for all jobs) containing time t
X; : indicates whether job j is deferred in stage |

yij(S): indicates whether [s
for scenario S

€;j) selected for job j in stage Il

Maximize 2, 0x; + 2;;s ps W, ;(S)

Subject to x; + 2 y; (S) <1, for each j,S
i) e T Yi®) < 1, for each t,S
X, Y; (S) 20 for each i,j,S

DUAL Minimize 2,5 u; (S) + 25 v, (S)

Subject to 2s ui(S)z o, for each |
Ui(S) + Lo iy e 1, V(S 2 PS) W, for each (i,j), S
u; (S), v(S) 20

A Simple 2-Stage Algorithm

For each scenario A < N with probability p, >0

run the deterministic algorithm with job set A where

weight of job j for [s;,e;) is py W;

let u; (A) denote the dual values constucted by the algorithm

Stage |: Let D be the set of jobs j for which

o, > 2A uj(A)
Stage lI: Given realized scenario A,

recompute first phase of algorithm (to get duals)

but in second phase never select (i,j) forje D

Main ldea of Analysis

What is 2-stage dual? Block-structured by scenario A with

additional linking constraints:

A

Each
block is
just like
determ.
problem

Sa u(S) > V|

So we can adapt the scenario-by-scenario constuction as

building a feasible dual solution for the 2-stage linear relaxation

What about black box model?

Just use sampling to estimate the deferral rule! - use M samples

For each sampled scenario A — N run deterministic algorithm
with job set A where weight of job j for [s;,e;) is W, to
obtain dual values u(A) — let A, be k™ sample
Stage |: Let D be the set of jobs j for which
(1+e) 0 > (1M) 3, u(A)

Stage lI: Given realized scenario A, compute T, and then
recompute first phase of algorithm (to get duals)
but in second phase never select (i,j) forje D

Number of samples needed is polynomial in n, 1/¢, and A = max; Wi/,

Similar to “sample average approximation” results of [Swamy & S,
Shapiro & Nemirovski, and Charikar, Chekuri, & Pal]

Some Additional Details

Previously used profits equal to p,W; for i interval
of job j in scenario A — what now!?

Ignore p, — call rescaled duals u*(A) where
Ui(A) = pa U (A)
Had used r = 2., p, U(A) as threshold
Now use r"=2_(1/M) u* (A)) instead
Use Chernoff bounds to prove r* 4 r w/high prob.

Chernoff — Let X, 2 [0,1], k=1,...,M be ind. r.v.s &
let X=2, X, . Then, forany?>0

Pr[|X-E[X]| >2M] - 2 exp(-2*> M)
What are the [0,]] random variables?

What about black box model?

Just use sampling to estimate the deferral rule! - use M samples

For each sampled scenario A — N run deterministic algorithm
with job set A where weight of job j for [s;,e;) is W, to
obtain dual values u(A) — let A, be k™ sample
Stage |: Let D be the set of jobs j for which
(1+e) 0 > (1M) 3, u(A)

Stage lI: Given realized scenario A, compute T, and then
recompute first phase of algorithm (to get duals)
but in second phase never select (i,j) forje D

Number of samples needed is polynomial in n, 1/¢, and A = max; Wi/,

Similar to “sample average approximation” results of [Swamy & S,
Shapiro & Nemirovski, and Charikar, Chekuri, & Pal]

Applying the Chernoff Bound

Let X, = u*(Ay /(, ®,)
Why is X, 2 [0,1]?
There is some i such that
u* (A, * W, (perhaps i that became tight)
and so uj*(Ak) "W, o
Now take M= £((,%/??) log (n/°)) to get
Pr{IX-E[X]| > 2M/,] exp(-**M/ ?) ,
Prl|r'-r|>2a]" °/n
And apply “union bound” to get failure for all
jobs j occurs with probability at most °

Another 2-Stage Stochastic Variant

Scenario A N of active jobs occurs with probability p,
Stage |: Choose set Cc N of jobs j to commit to service and get
weight o,
Stage lI: Given realized scenario A, make selection T, where
3 (i,j) € T, for each j € C plus some additional ones

Goal: Maximize the total expected weight scheduled

Bad News: There is an approximation-preserving
reduction from the deterministic maximum independent
set problem, and hence no “reasonable” performance
guarantee can be proved (unless P=NP).

2-Stage Stochastic Facility Location

n Distribution over clients gives
o the set of clients to serve.
O m = Stage I: Open some facilities in
advance; pay cost f. for facility i.

[facility M stage I facility Stage I cost = 2 i gpened) fi-

Actual scenario A = { @ clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fA to open facility i. Assign clients in A to facilities.

Stage Il cost =) . opened in fA + (cost of serving clients in A).
scenario A

Several Ways to Skin The Cat
Facility Location Yet Again

Can apply LP-rounding approach as done for set
covering [S & Swamy]

Can apply the boosted sampling approach if the
second stage costs are proportional

In polynomial scenario setting can adapt primal-dual
algorithm of Jain & Vazirani for deterministic
version to get 3-approximation algorithm [Mahdian]

Can then apply result Sample Average
Approximation result of [Charikar, Chekuri, & Pal]
to extend to “black box” model

Discrete Stochastic Optimization
and

Approximation Algorithms
Area of emerging importance
Rich source of algorithmic questions

Can one prove a strong result for approximate
stochastic dynamic programming? [Levi Roundy & S]
[Halman, Klabjan, Mostagir, Orlin & Simchi-Levi]

When is sampling information good enough to
derive near-optimal solutions!?

Reconsider some well-studied problems but now in
“black box” model, not just specific distributions

Expectation is not enough

Thank You.

