
Approximation algorithms
for discrete

stochastic optimization problems

David B. Shmoys

Cornell University

Stochastic Optimization

• Way of modeling uncertainty.

• Exact data is unavailable or expensive – data is
uncertain, specified by a probability distribution.

Want to make the best decisions given this
uncertainty in the data.

• Dates back to 1950’s and the work of Dantzig.

• Applications in logistics, transportation models,
financial instruments, network design, production
planning, …

Two-Stage Recourse Model

Given : Probability distribution over inputs.

Stage I : Make some advance decisions – plan ahead
or hedge against uncertainty.

Observe the actual input scenario.

Stage II : Take recourse. Can augment earlier
solution paying a recourse cost.

Choose stage I decisions to minimize

(stage I cost) + (expected stage II recourse cost).

2-Stage Stochastic Facility Location

Distribution over clients gives
the set of clients to serve.

client set D

facility

Stage I: Open some facilities in
advance; pay cost fi for facility i.

Stage I cost = ∑(i opened) fi .stage I facility

2-Stage Stochastic Facility Location

Distribution over clients gives
the set of clients to serve.

client set D

facility

Stage I: Open some facilities in
advance; pay cost fi for facility i.

Stage I cost = ∑(i opened) fi .stage I facility

How is the probability distribution on clients specified?

• A short (polynomial) list of possibile scenarios;

• Independent probabilities that each client exists;

• A black box that can be sampled.

2-Stage Stochastic Facility Location

Distribution over clients gives
the set of clients to serve.

facility

Stage I: Open some facilities in
advance; pay cost fi for facility i.

Stage I cost = ∑(i opened) fi .stage I facility

Actual scenario A = { clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fi

A to open facility i. Assign clients in A to facilities.

Stage II cost = ∑ fi
A + (cost of serving clients in A).

i opened in
scenario A

2-Stage Stochastic Facility Location

Distribution over clients gives
the set of clients to serve.

facility

Stage I: Open some facilities in
advance; pay cost fi for facility i.

Stage I cost = ∑(i opened) fi .stage I facility

Actual scenario A = { clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fi

A to open facility i. Assign clients in A to facilities.

Stage II cost = ∑ fi
A + (cost of serving clients in A).

i opened in
scenario A

Want to decide which facilities to open in stage I.

Goal: Minimize Total Cost =

(stage I cost) + EA ⊆⊆⊆⊆DDDD [stage II cost for A].

We want to prove a worst-case guarantee.

Give an algorithm that “works well” on any instance,
and for any probability distribution.

A is an αααα-approximation algorithm if -
- A runs in polynomial time;
- A(I) ≤ αααα.OPT(I) on all instances I.

αααα is called the approximation ratio of A.

Goals of this Tutorial

• Focus on techniques of approximation algorithm design
LP-rounding
Primal-dual algorithms and analysis
Random sampling

• Five illustrative problems
Set cover problem
Facility location problem
Steiner tree problem
Traveling salesman problem
Maximum-weight on-time scheduling

Stochastic Set Cover (SSC)

Universe U = {e
1
, …, en }, subsets S1, S2, …, Sm ⊆⊆⊆⊆ U, set S has

weight ωS.

Deterministic problem: Pick a minimum weight collection of
sets that covers each element.

Stochastic version: Set of elements to be covered is given by
a probability distribution.
– choose some sets initially paying ωS for set S
– subset A ⊆⊆⊆⊆ U to be covered is revealed
– can pick additional sets paying WS for set S.

Minimize (ω-cost of sets picked in stage I) +
EA ⊆⊆⊆⊆U [WS -cost of new sets picked for scenario A].

An LP formulation

pA : probability of scenario A ⊆⊆⊆⊆ U.

xS : indicates if set S is picked in stage I.

yA,S : indicates if set S is picked in scenario A.

Minimize ∑S ωSxS + ∑A⊆U pA ∑SWSyA,S
subject to,

∑S:e∈S xS + ∑S:e∈S yA,S ≥ 1 for each A ⊆⊆⊆⊆ U, e∈∈∈∈A

xS, yA,S ≥ 0 for each S, A.

Exponential number of variables and exponential number
of constraints.

A Rounding Theorem (S & Swamy)

Stochastic Problem: LP can be solved in polynomial time.

Example: polynomial scenario setting

Deterministic problem: α-approximation algorithm A with
respect to the LP relaxation, A(I) ≤ α.LP-OPT(I) for each I.

Example: “the greedy algorithm” for set cover is a
log n-approximation algorithm w.r.t. LP relaxation.

Theorem: Can use such an α-approx. algorithm to get a
2α-approximation algorithm for stochastic set cover.

Rounding the LP
Assume LP can be solved in polynomial time.

Suppose we have an α-approximation algorithm wrt. the LP
relaxation for the deterministic problem.

Let E = {e : ∑S:e∈S xS ≥ ½}.

So (2x) is a fractional set cover for the set E ⇒ can “round” to get
an integer set cover SSSS for E of cost ∑S∈SSSS

ωS ≤ α(∑S 2ωSxS) .

SSSS is the first stage decision.

Let (x,y) : optimal solution with cost LP-OPT.

∑S:e∈S xS + ∑S:e∈S yA,S ≥ 1 for each A ⊆⊆⊆⊆ U, e∈A

⇒ for every element e, either

∑S:e∈S xS ≥ ½ OR in each scenario A : e∈A, ∑S:e∈S yA,S ≥ ½.

Sets

Elements

Rounding (contd.)

Set in S

Element in E

Consider any scenario A. Elements in A ∩∩∩∩ E are covered.

For every e ∈∈∈∈ A\E, it must be that ∑S:e∈S yA,S ≥ ½.

So (2yA) is a fractional set cover for A\E ⇒ can round to

get a set cover of W-cost ≤ α(∑S 2WSyA,S) .

A

Using this to augment S in scenario A, expected cost

≤ ∑S∈SSSS
ωS + 2α.∑ A⊆U pA (∑SWSyA,S) ≤ 2α.LP-OPT.

A Rounding Theorem

Stochastic Problem: LP can be solved in polynomial time.

Example: polynomial scenario setting

Deterministic problem: α-approximation algorithm A with
respect to the LP relaxation, A(I) ≤ α.LP-OPT(I) for each I.

Example: “the greedy algorithm” for set cover is a
log n-approximation algorithm w.r.t. LP relaxation.

Theorem: Can use such an α-approx. algorithm to get a
2α-approximation algorithm for stochastic set cover.

A Rounding Technique
Assume LP can be solved in polynomial time.

Suppose we have an α-approximation algorithm w.r.t. the LP
relaxation for the deterministic problem.

Let (x,y) : optimal solution with cost OPT.

∑S:e∈S xS + ∑S:e∈S yA,S ≥ 1 for each A ⊆⊆⊆⊆ U, e∈A

⇒ for every element e, either

∑S:e∈S xS ≥ ½ OR in each scenario A : e∈A, ∑S:e∈S yA,S ≥ ½.

Let E = {e : ∑S:e∈S xS ≥ ½}.

So (2x) is a fractional set cover for the set E ⇒ can “round” to
get an integer set cover SSSS of cost ∑S∈SSSS

ωS ≤ α(∑S 2ωSxS) .

SSSS is the first stage decision.

A Compact Formulation

pA : probability of scenario A ⊆⊆⊆⊆ U.

xS : indicates if set S is picked in stage I.

Minimize h(x) = ∑S ωSxS + f(x) s.t. xS ≥ 0 for each S

where, f(x) = ∑A⊆U pAfA(x)

and fA(x) = min. ∑SWSyA,S

s.t. ∑S:e∈S yA,S ≥ 1 – ∑S:e∈S xS for each e∈∈∈∈A

yA,S ≥ 0 for each S.

Equivalent to earlier LP.

Each fA(x) is convex, so f(x) and h(x) are convex functions.

Solving the Stochastic LP?
• The LP has exponential number of variables
and constraints, but can give other compact
formulation as convex program that focuses
on Stage I

• Can compute a fractional solution of cost at
most (1+ε)LP-OPT with probability at least
1-δ in time polynomial in input size and

λ = maxSWS/ωS
• Many approaches are possible, including

ellipsoid method and sample average
approximation [S&Swamy, Nemirovski&
Shapiro, Charikar, Chekuri, & Pál]

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

The Ellipsoid Method

Ellipsoid ≡ squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

Min c.x subject to x∈∈∈∈P.

P

The Ellipsoid Method

Min c.x subject to x∈∈∈∈P.

P

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

Ellipsoid ≡ squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

The Ellipsoid Method

Min c.x subject to x∈∈∈∈P.

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

If yi ∈∈∈∈P, use objective function cut

c.x ≤ c.yi to chop off polytope, half-
ellipsoid.c.x ≤ c.yi

Ellipsoid ≡ squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

P

The Ellipsoid Method

Min c.x subject to x∈∈∈∈P. Ellipsoid ≡ squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

If yi ∈∈∈∈P, use objective function cut

c.x ≤ c.yi to chop off polytope, half-
ellipsoid.

P

The Ellipsoid Method

Min c.x subject to x∈∈∈∈P.

P

x1, x2, …, xk: points lying in P. c.xk is a close to optimal value.

Ellipsoid ≡ squashed sphere

Start with ball containing polytope P.

yi = center of current ellipsoid.

If yi is infeasible, use violated inequality
to chop off infeasible half-ellipsoid.

New ellipsoid = min. volume ellipsoid
containing “unchopped” half-ellipsoid.

If yi ∈∈∈∈P, use objective function cut

c.x ≤ c.yi to chop off polytope, half-
ellipsoid.

x
1

x2

xk

x*

Ellipsoid for Convex Optimization

Min h(x) subject to x∈∈∈∈P.

P

Start with ball containing polytope P.

yi = center of current ellipsoid.

If yi is infeasible, use violated inequality.

If yi ∈∈∈∈P – how to make progress?
add inequality h(x) ≤ h(yi)? Separation
becomes difficult.

Ellipsoid for Convex Optimization

Min h(x) subject to x∈∈∈∈P.

P

Start with ball containing polytope P.

yi = center of current ellipsoid.

If yi ∈∈∈∈P – how to make progress?

d ∈∈∈∈ ℜ
n
is a subgradient of h(.) at u, if for every v, h(v)-h(u) ≥ d.(v-u).

Let d = subgradient at yi.

use subgradient cut d.(x–yi) ≤ 0.

add inequality h(x) ≤ h(yi)? Separation
becomes difficult.

Generate new min. volume ellipsoid.

If yi is infeasible, use violated inequality.

d

Ellipsoid for Convex Optimization

Min h(x) subject to x∈∈∈∈P.

P

Start with ball containing polytope P.

yi = center of current ellipsoid.

If yi ∈∈∈∈P – how to make progress?

d ∈∈∈∈ ℜ
n
is a subgradient of h(.) at u, if for every v, h(v)-h(u) ≥ d.(v-u).

Let d = subgradient at yi.

use subgradient cut d.(x–yi) ≤ 0.

Generate new min. volume ellipsoid.

x1, x2, …, xk: points in P. Can show, mini=1…k h(xi) ≤ OPT+ρ.

x*
x
1

x2

add inequality h(x) ≤ h(yi)? Separation
becomes difficult.

If yi is infeasible, use violated inequality.

Let d' = ε-subgradient at yi.

use ε-subgradient cut d'.(x–yi) ≤ 0.

Ellipsoid for Convex Optimization

Min h(x) subject to x∈∈∈∈P.

P

x1, x2, …, xk: points in P. Can show, mini=1…k h(xi) ≤ OPT/(1-ε) + ρ.

Start with ball containing polytope P.

yi = center of current ellipsoid.

If yi ∈∈∈∈P – how to make progress?
add inequality h(x) ≤ h(yi)? Separation
becomes difficult.

subgradient is difficult to compute.

If yi is infeasible, use violated inequality.

d' ∈∈∈∈ ℜ
n
is a ε-subgradient of h(.) at u, if ∀v∈∈∈∈P, h(v)-h(u) ≥ d'.(v-u) – ε.h(u).

d'

Subgradients and ε-subgradients

Vector d is a subgradient of h(.) at u,

if for every v, h(v) - h(u) ≥ d.(v-u).

Vector d' is an ε-subgradient of h(.) at u,

if for every v∈∈∈∈P, h(v) - h(u) ≥ d'.(v-u) – ε.h(u).

P = { x : 0 ≤ xS ≤ 1 for each set S }.

h(x) = ∑S ωSxS + ∑A⊆U pA fA(x) = ω.x + ∑A⊆U pA fA(x)

Lemma: Let d be a subgradient at u, and d' be a vector
such that dS – εωS ≤ d'S ≤ dS for each set S. Then,
d' is an ε-subgradient at point u.

Getting a “nice” subgradient

h(x) = ω.x + ∑A⊆U pA fA(x)

fA(x) = min. ∑SWSyA,S

s.t. ∑S:e∈S yA,S ≥ 1 – ∑S:e∈S xS

∀e∈∈∈∈A

yA,S ≥ 0 ∀S

Getting a “nice” subgradient

h(x) = ω.x + ∑A⊆U pA fA(x)

fA(x) = min. ∑SWSyA,S = max. ∑e∈∈∈∈A (1 – ∑S:e∈S xS) zA,e

s.t. ∑S:e∈S yA,S ≥ 1 – ∑S:e∈S xS s.t. ∑e∈∈∈∈A ∩∩∩∩S zA,e ≤ WS

∀e∈∈∈∈A ∀S

yA,S ≥ 0 ∀S zA,e ≥ 0 ∀e∈∈∈∈A

Getting a “nice” subgradient

h(x) = ω.x + ∑A⊆U pA fA(x)

fA(x) = min. ∑SWSyA,S = max. ∑e (1 – ∑S:e∈S xS) zA,e

s.t. ∑S:e∈S yA,S ≥ 1 – ∑S:e∈S xS s.t. ∑e∈∈∈∈S zA,e ≤ WS

∀e∈∈∈∈A ∀S

yA,S ≥ 0 ∀S zA,e = 0 ∀e∉∉∉∉A , zA,e ≥ 0 ∀e

Consider point u ∈∈∈∈ ℜ
n
. Let zA ≡ optimal dual solution for A at u.

Lemma: For any point v ∈∈∈∈ ℜ
n
, we have h(v) – h(u) ≥ d.(v-u) where

dS = ωS – ∑A⊆U pA ∑e∈∈∈∈S zA,e.

⇒ d is a subgradient of h(.) at point u.

Getting a “nice” subgradient
h(x) = ω.x + ∑A⊆U pA fA(x)

fA(x) = min. ∑SWSyA,S = max. ∑e (1 – ∑S:e∈S xS) zA,e

s.t. ∑S:e∈S yA,S ≥ 1 – ∑S:e∈S xS s.t. ∑e∈∈∈∈S zA,e ≤ WS

∀e∈∈∈∈A ∀S
yA,S ≥ 0 ∀S zA,e = 0 ∀e∉∉∉∉A, zA,e ≥ 0 ∀e

Consider point u ∈∈∈∈ ℜ
n
. Let zA ≡ optimal dual solution for A at u. So

fA(u) = ∑e (1 – ∑S:e∈S uS) zA,e.

For any other point v, zA is a feasible dual solution for A. So

fA(v) ≥ ∑e (1 – ∑S:e∈S vS) zA,e.

Get that h(v) – h(u) ≥ ∑S (ωS – ∑A⊆U pA ∑e∈∈∈∈S zA,e)(vS – uS) = d.(v-u) where

dS = ωS – ∑A⊆U pA ∑e∈∈∈∈S zA,e. So d is a subgradient of h(.) at point u.

Sample once from black box to get random scenario A.

Compute X with XS = ωS – ∑e∈∈∈∈S zA,e.

E[XS] = dS and Var[XS] ≤ WS.
2

Computing an ε-Subgradient
Given point u ∈∈∈∈ ℜ

n
. zA ≡ optimal dual solution for A at u.

Subgradient at u: dS = ωS – ∑A⊆U pA ∑e∈∈∈∈S zA,e .

Want: d' such that dS – εωS ≤ d'S ≤ dS for each S.

For each S, -WS ≤ dS ≤ ωS. Let λ = maxSWS /ωS.

Sample O(λ
2
/ε2.log(n/δ)) times to compute d' such that

Pr[∀S, dS – εωS ≤ d'S ≤ dS] ≥ 1-δ.

⇒ d' is an ε-subgradient at u with probability ≥ 1-δ.

Cannot evaluate h(.) – how to compute x = argmini=1…k h(xi)?

One last hurdle

x2x
1

d' : ε-subgradient

d'.(x-y) ≥ 0y

xk

Will find point x in the convex hull of x
1
,…, xk such that h(x)

is close to mini=1…k h(xi).

x
1

Take two points x1 and x2. Find point x
on x1–x2 line segment with value close to
min(h(x1), h(x2)) using bisection search.

x2

One last hurdle

Cannot evaluate h(.) – how to compute x = argmini=1…k h(xi)?

Will find point x in the convex hull of x
1
,…, xk such that h(x)

is close to mini=1…k h(xi).

xk
Take two points x1 and x2. Find point x on
x1–x2 line segment with value close to
min(h(x1), h(x2)) using bisection search.

x2x
1

x2

x
1

One last hurdle

Cannot evaluate h(.) – how to compute x = argmini=1…k h(xi)?

Will find point x in the convex hull of x
1
,…, xk such that h(x)

is close to mini=1…k h(xi).

xk
Take two points x1 and x2. Find point x on
x1–x2 line segment with value close to
min(h(x1), h(x2)) using bisection search.

x2x
1

x2

x
1

One last hurdle

Cannot evaluate h(.) – how to compute x = argmini=1…k h(xi)?

Will find point x in the convex hull of x
1
,…, xk such that h(x)

is close to mini=1…k h(xi).

xk
Take two points x1 and x2. Find point x on
x1–x2 line segment with value close to
min(h(x1), h(x2)) using bisection search.

x2x
1

x2

Stop when search interval is small enough.
Set x = either end point of remaining segment.

x
1

x
x

Iterate using x and x3,…, xk updating x
along the way.

One last hurdle

Cannot evaluate h(.) – how to compute x = argmini=1…k h(xi)?

Will find point x in the convex hull of x
1
,…, xk such that h(x)

is close to mini=1…k h(xi).

xk
Take two points x1 and x2. Find point x on
x1–x2 line segment with value close to
min(h(x1), h(x2)) using bisection search.

x2

x
1

x

One last hurdle

Cannot evaluate h(.) – how to compute x = argmini=1…k h(xi)?

Will find point x in the convex hull of x
1
,…, xk such that h(x)

is close to mini=1…k h(xi).

xk
Take two points x1 and x2. Find point x on
x1–x2 line segment with value close to
min(h(x1), h(x2)) using bisection search.

x2

Iterate using x and x3,…, xk updating x
along the way.x

1

One last hurdle

Cannot evaluate h(.) – how to compute x = argmini=1…k h(xi)?

Will find point x in the convex hull of x
1
,…, xk such that h(x)

is close to mini=1…k h(xi).

xk
Take two points x1 and x2. Find point x on
x1–x2 line segment with value close to
min(h(x1), h(x2)) using bisection search.

x2

Iterate using x and x3,…, xk updating x
along the way.x

1

One last hurdle

Cannot evaluate h(.) – how to compute x = argmini=1…k h(xi)?

Will find point x in the convex hull of x
1
,…, xk such that h(x)

is close to mini=1…k h(xi).

xk
Take two points x1 and x2. Find point x on
x1–x2 line segment with value close to
min(h(x1), h(x2)) using bisection search.

x2

Iterate using x and x3,…, xk updating x
along the way.

x

x
1

Can show that h(x) ≤ (mini=1…k h(xi) + k.ρ)/(1- ε)kN .

Putting it all together

Min h(x) subject to x∈∈∈∈P. � Can compute ε-subgradients.

Run ellipsoid algorithm.

Given yi = center of current ellipsoid.

Continue with smaller ellipsoid.

If yi is infeasible, use violated
inequality as a cut.

If yi ∈∈∈∈P use ε-subgradient cut.

P

x
1

x2

xk

x*

Generate points x
1
, x2, …, xk in P. Return x = argmini=1…k h(xi).

Get that h(x) ≤ OPT/(1-ε) + ρ.

Finally,

Get solution x with h(x) close to OPT.

Sample initially to detect if OPT = Ω(1/λ) – this allows
one to get a (1+ε).OPT guarantee.

Theorem: Compact convex program can be solved to
within a factor of (1 +ε) in polynomial time, with high
probability.

Gives a (2log n+ε)-approximation algorithm for the
stochastic set cover problem.

A Solvable Class of Stochastic LPs

Minimize h(x) = w.x + ∑A⊆U pAfA(x)

s.t. x ∈∈∈∈ ℜ
n
, x ≥ 0, x ∈∈∈∈P

where fA(x) = min. w
A.yA + c

A.rA

s.t. BrA ≥ j
A

DrA + TyA ≥ l A – Tx

yA ∈∈∈∈ ℜ
n
, rA ∈∈∈∈ ℜ

m
, yA ≥ 0, rA ≥ 0.

Theorem: Can get a (1+ε)-optimal solution for this class of
stochastic programs in polynomial time.

2-Stage Stochastic Facility Location

Distribution over clients gives
the set of clients to serve.

facility

Stage I: Open some facilities in
advance; pay cost fi for facility i.

Stage I cost = ∑(i opened) fi .stage I facility

Actual scenario A = { clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fi

A to open facility i. Assign clients in A to facilities.

Stage II cost = ∑ fi
A + (cost of serving clients in A).

i opened in
scenario A

A Convex Program
pA : probability of scenario A ⊆⊆⊆⊆ D.

yi : indicates if facility i is opened in stage I.

yA,i : indicates if facility i is opened in scenario A.

xA,ij : whether client j is assigned to facility i in scenario A.

Minimize h(y) = ∑i fi yi + g(y) s.t. yi ≥ 0 for each i

(SUFL-P)
where, g(y) = ∑A ⊆D pA gA(y)

and gA(y) = min. ∑i Fi yA,i + ∑j,i cij xA,ij

s.t. ∑i xA,ij ≥ 1 for each j∈∈∈∈A

xA,ij ≤ yi + yA,i for each i,j

xA,ij ,yA,i ≥ 0 for each i,j.

Lecture #2

A priori optimization (no recourse)

Given: Probability distribution over inputs.

In advance: Compute master plan.

Observe the actual input scenario.

In real time: Adapt master plan to scenario.

Compute master plan to minimize

expected real time cost.

The Traveling Salesman Problem (TSP)

Given input points, compute tour τ to minimize total length c(τ)

The Traveling Salesman Problem (TSP)

Given input points, compute tour τ to minimize total length c(τ)

The A Priori TSP

Given input points N and a distribution Π of active sets A 2 2N

Need to specify the probability that a given set A is active

The A Priori TSP

Given input points N and a distribution Π of active sets A 2 2N

Active Nodes

Need to specify the probability that a given set A is active

The A Priori TSP

Given input points N and a distribution Π of active sets A 2 2N,
compute master tour τ to minimize expected length of the tour τ
shortcut to serve only A

Active
nodes A

The A Priori TSP

Given input points N and a distribution Π of active sets A 2 2N,
compute master tour τ to minimize expected length of the tour τ
shortcut to serve only A

Active
nodes A

Shortcut tour on A

The A Priori TSP

Given input points N and a distribution Π of active sets A 2 2N,
compute tour τ to minimize expected length EA [c(τA)], where τA is
the tour τ shortcut to serve only A

Active
nodes A

Shortcut tour on A

The A Priori TSP

Given input points N and a distribution Π of active sets A 2 2N,
compute tour τ to minimize expected length EA [c(τA)], where τA is
the tour τ shortcut to serve only A

Active
nodes A

Optimal tour on A

The A Priori TSP

Given input points N and a distribution Π of active sets A 2 2N,
compute tour τ to minimize expected length EA [c(τA)], where τA is
the tour τ shortcut to serve only A

Active
nodes A

Shortcut tour on A

The A Priori TSP

How is the probability distribution on active set specified?

• A short (polynomial) list of possibile scenarios;

• Independent probabilities that each point is active;

• A black box that can be sampled.

Given input points N and a distribution Π of active sets A 2 2N,
compute tour ¿ to minimize expected length EA [c(τA)], where τA is
the tour τ shortcut to serve only A ⇒ τ * (optimal solution)

Goal: Find tour τ such that EA [c(τA)] ≤ ®EA [c(τ *A)] ⇒ ®OPT

(This is an ®-approximation algorithm for the a priori TSP.)

The A Priori TSP

How is the probability distribution on active set specified?

• A short (polynomial) list of possibile scenarios;

• Independent probabilities that each point is active;

• A black box that can be sampled.

Given input points N and a distribution Π of active sets A 2 2N,
compute tour ¿ to minimize expected length EA [c(τA)], where τA is
the tour τ shortcut to serve only A ⇒ τ * (optimal solution)

Goal: Find tour τ such that EA [c(τA)] ≤ ®EA [c(τ *A)] ⇒ ®OPT

(This is an ®-approximation algorithm for the a priori TSP.)

Some relevant history for a priori TSP
• Jaillet (1985, 1988), Bertsimas (1988), Jaillet, Bertsimas, &
Odoni (1990) introduce problem – analyze with probabilistic
assumptions on distances

• Schalekamp & S (2007) randomized O(log n)-approximation

• Maybecast problem Karger & Minkoff (2000)

• Rent-or-buy problem Gupta, Kumar, Pál, Roughgarden (2007)

• Stochastic Steiner Tree variants Gupta, Pál, Ravi, Sinha (2004)
Gupta, Ravi, Sinha (‘04), Hayraptian, Swamy, Tardos (‘05)
Garg, Gupta, Leonardi, Sankowski (2008)

• Universal TSP Bartholdi & Plazman (1989), Jia, Lin, Noubir,
Rajaraman & Sundaram, (2005), Hajiaghayi, Kleinberg &
Leighton (2006), Gupta, Hajiaghayi, Räcke (2006)

The One Random Sample Algorithm

1. Draw sample S ⊆ N according to Π (i.e., pick each point j
independently with probability pj)

2. Build minimum spanning tree on S

3. For each j ∉ S , connect j to its nearest neighbor in S

4. Build “double tree” tour of this tree ⇒ τ

Simplifying Assumption: ∃ node r with pr = 1 (wlog)

Theorem The one random sample algorithm is a
4-approximation algorithm for the a priori TSP.

Running the Algorithm
Sampled nodes S

Running the Algorithm
Sampled nodes S

Running the Algorithm
Sampled nodes S

Analyzing the Algorithm
Let Dj(S) be the distance from j to its nearest neighbor in S-{j}

Let MST(S) be the length of the minimum spanning tree on S

Goal: Analyze ES [EA [c(τA)]]

Fact 1. ES [Dj(S)] = ES [Dj| j ∉ S] = ES [Dj | j∈S] = EA [Dj(A)| j∈A]

Why? Choice of S-{j} is independent of whether j 2 S, and
S and A are independent draws from same distribution

Fact 2. MST(A) ≤ c(¿ *A) for each A µ N

Why? Tour ¿∗ shortcut to A still contains spanning tree

Fact 3. ∑j ≠ r 1(j ∈ A) Dj(A) ≤ c(τ*A) for all A

Why? Any tour on A “leaves” each node i by some edge

Let Dj(S) be the distance from j to its nearest neighbor in S-{j}

Let MST(S) be the length of the minimum spanning tree on S

Goal: analyze ES [EA [c(τA)]]

Fact 1. ES [Dj(S)] = ES [Dj| j ∉ S] = ES [Dj | j∈S] = EA [Dj(A)| j∈A]

Fact 2. MST(A) ≤ c(τ *A) for all A

Fact 3. ∑j ≠ r 1(j ∈ A) Dj(A) ≤ c(τ *A) for all A

Key Idea: always pay for backbone built on S (for any active A)

ES[EA[c(τA)]] ≤ ES[2MST(S)]+ES [EA [∑j ≠ r 1(j ∈ A) 1(j ∉ S) 2Dj(S)]]

= ES [2MST(S)] + ∑j≠r ES,A [1(j ∈ A)1(j ∉ S) 2Dj (S)]

= ES [2MST(S)] + 2∑j ≠ r pj (1-pj) ES[Dj(S)]

≤ 2(ES [MST(S)] + ∑j ≠ r pj ES[Dj(S)])

≤ 2 (OPT+OPT)

= 4OPT

Analyzing the Algorithm
Sampled nodes S

Analyzing the Algorithm
Sampled nodes S

Active set A

edges paid for
w.r.t. A in EA[]

Always pay for all of backbone and just those attached leaves you need

Cost of shortcut tour for A is at most twice the cost of these edges

Let Dj(S) be the distance from j to its nearest neighbor in S-{j}

Let MST(S) be the length of the minimum spanning tree on S

Goal: analyze ES [EA [c(τA)]]

Fact 1. ES [Dj(S)] = ES [Dj| j ∉ S] = ES [Dj | j∈S] = EA [Dj(A)| j∈A]

Fact 2. MST(A) ≤ c(τ *A) for all A

Fact 3. ∑j ≠ r 1(j ∈ A) Dj(A) ≤ c(τ *A) for all A

Key Idea: always pay for backbone built on S (for any active A)

ES[EA[c(τA)]] ≤ ES[2MST(S)]+ES [EA [∑j ≠ r 1(j ∈ A) 1(j ∉ S) 2Dj(S)]]

= ES [2MST(S)] + ∑j≠r ES,A [1(j ∈ A)1(j ∉ S) 2Dj (S)]

= ES [2MST(S)] + 2∑j ≠ r pj (1-pj) ES[Dj(S)]

≤ 2(ES [MST(S)] + ∑j ≠ r pj ES[Dj(S)])

≤ 2 (OPT+OPT)

= 4OPT

Let Dj(S) be the distance from j to its nearest neighbor in S-{j}

Let MST(S) be the length of the minimum spanning tree on S

Goal: analyze ES [EA [c(τA)]]

Fact 1. ES [Dj(S)] = ES [Dj| j ∉ S] = ES [Dj | j∈S] = EA [Dj(A)| j∈A]

Fact 2. MST(A) ≤ c(τ *A)) EA[MST(A)] · OPT

Fact 3. ∑j ≠ r 1(j ∈ A) Dj(A) ≤ c(τ *A)) ∑j ≠r pj EA[Dj(A)] · OPT

Key Idea: always pay for backbone built on S (for any active A)

ES[EA[c(τA)]] ≤ ES[2MST(S)]+ES [EA [∑j ≠ r 1(j ∈ A) 1(j ∉ S) 2Dj(S)]]

= ES [2MST(S)] + ∑j≠r ES,A [1(j ∈ A)1(j ∉ S) 2Dj (S)]

= ES [2MST(S)] + 2∑j ≠ r pj (1-pj) ES[Dj(S)]

≤ 2(ES [MST(S)] + ∑j ≠ r pj ES[Dj(S)])

≤ 2 (OPT+OPT)

= 4OPT

The One Random Sample Algorithm

1. Draw sample S ⊆ N according to Π (i.e., pick each point j
independently with probability pj)

2. Build minimum spanning tree on S

3. For each j ∉ S , connect j to its nearest neighbor in S

4. Build “double tree” tour of this tree ⇒ τ

Simplifying Assumption: ∃ node r with pr = 1 (wlog)

Theorem (S & Talwar) The one random sample
algorithm is a 4-approximation algorithm for the a
priori TSP.

Two Footnotes

Can be derandomized -

Let Dj(S) be the distance from j to its nearest neighbor in S-{j}

Let MST(S) be the length of the minimum spanning tree on S

Goal: analyze ES [EA [c(τA)]]

Fact 1. ES [Dj(S)] = ES [Dj| j ∉ S] = ES [Dj | j∈S] = EA [Dj(A)| j∈A]

Fact 2. MST(A) ≤ c(τ *A) for all A

Fact 3. ∑j ≠ r 1(j ∈ A) Dj(A) ≤ c(τ *A) for all A

Key Idea: always pay for backbone built on S (for any active A)

ES[EA[c(τA)]] ≤ ES[2MST(S)]+ES [EA [∑j ≠ r 1(j ∈ A) 1(j ∉ S) 2Dj(S)]]

= ES [2MST(S)] + ∑j≠r ES,A [1(j ∈ A)1(j ∉ S) 2Dj (S)]

= ES [2MST(S)] + 2∑j ≠ r pj (1-pj) ES[Dj(S)]

≤ 2(ES [MST(S)] + ∑j ≠ r pj ES[Dj(S)])

≤ 2 (OPT+OPT)

= 4OPT

Two Footnotes
Can be derandomized – Williamson & van Zuylen (2007)
show how to deterministically achieve twice guarantee for
rent-or-buy/connected facility location problem by the
method of conditional probabilities (by an LP estimate)

Assumption that pr = 1 is not needed;

Need only that Dj(S) is well defined.

Modify Π to condition on that each set has cardinality ≥ 2

Can sample according to this new distribution also, and this
just rescales things (any tour has cost 0 restricted to 0 or 1
points) but must be careful about dependence

Theorem (S & Talwar) There is a deterministic 8-
approximation algorithm for the a priori TSP in the
independent activation model

What about the black box model?

Recent work of Gorodezky, R. Kleinberg, S, &
Spencer shows that for a (slightly) restricted class of
algorithms can embed a universal computation in an
a priori one, and thereby show a non-constant
lower bound on performance guarantees possible
with a polynomial number of samples

2-Stage Steiner Tree Problem

Given a set of points N (with root) in a metric space,
integer inflation factor λ, and distribution over 2N

Stage I: install edges A1 – cost of e is ce

Set of active terminals T ⊆ N is selected (including root)

Stage II: install edges AII s.t. AI ∪ AII is Steiner tree on T -
cost of edge e is λce

Goal: Minimize
(cost of edges installed in stage I) +
λλλλ ET ⊆ N [cost of edges installed for scenario T].

An Example

active node root node

First stage

Second stage

An Example

active node root node

First stage

Second stage

Deterministic Steiner Tree

Steiner nodes S

Walking “around” optimal Steiner tree gives connected graph, so
can view as connected graph on just terminal nodes (by shortcuts)

Deterministic Steiner Tree

Steiner nodes S

Walking “around” optimal Steiner tree gives connected graph, so
can view as connected graph on just terminal nodes (by shortcuts)

Deterministic Steiner Tree

Steiner nodes S

Walking “around” optimal Steiner tree gives connected graph, so
can view as connected graph on just terminal nodes (by shortcuts)

Hence, MST
costs at most
twice optimal
Steiner tree !

Boosted Sampling Algorithm
(Gupta, Pál, Ravi, Sinha)

• Draw λ independent samples S1, S2, …, Sλ → S

• First stage decision: compute minimum spanning tree (MST)
for S (including root), and install those edges → Alg1

• Observe scenario T (independently drawn from same dist)

• Compute (rooted) minimum spanning tree on S ∪ T,
(but make cost of edges Alg1 all 0)
and let e[j] be edge from j to its parent

• Let AlgII ← { e[j] : j ∈ T }

First Stage Cost
Optimal cost Z* = c(Opt1) + λ ET ⊆ N [c(OptII(T))]

We compute MST on S ← S1 ∪… ∪ Sλ for Stage I

(this is 2-approximation for S)

How expensive is it to connect S? Could use

OptI ∪ OptII (S1) ∪… ∪ OptII(Sλ)

Each Si is identical random T so its expected cost is

c(OptI) + λ ET ⊆ N [c(OptII (T))] → Z
*

Since MST is 2-approximation algorithm ⇒

expected Stage I cost is at most 2Z*

Cost sharing role of parental edge

• Build a MST on a set S ∪ T (plus root)

• Focus on parental edge e[j] for each j ∈ S ∪ T

• Total edge cost is ∑j ∈ S ∪ T ce[j]

• But this is ≤ twice cost of optimal Steiner tree
on S ∪ T

• Attribute share ce[j]/2 of optimal cost to j

• Total share cost is ≤ optimal Steiner tree cost

Second Stage Cost
• Algorithm computes Steiner tree for S1 ∪… ∪ Sλ ∪ T

• Consider T ← Opt1 ∪ OptII(S1) ∪…∪ OptII (Sλ) ∪ OptII(T)

• Role of λ+1 sets, S1,….,Sλ, T is symmetric

• E[c(T)] ≤ c(OptI) + (λ+1) E[c(OptII (Si))] ≤ (λ+1)/λ Z*

• Form D1,…,Dλ by deleting nodes in multiple sets

• ∑ j ∈ T-S ce[j] + ∑i ∑j ∈ Di
ce[j] ≤ 2c(T)

• By symmetry, E[∑ j ∈ T-S ce[j]] ≤ 2c(T)/(λ+1)

• Hence, E[∑j ∈ T-S ce[j]] ≤ 2Z
* / λ ⇒ Stage II cost ≤ 2Z*!

⇒ Boosted Sampling is 4-approximation algorithm

2-Stage Stochastic Facility Location

Distribution over clients gives
the set of clients to serve.

facility

Stage I: Open some facilities in
advance; pay cost fi for facility i.

Stage I cost = ∑(i opened) fi .stage I facility

Actual scenario A = { clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fi

A to open facility i. Assign clients in A to facilities.

Stage II cost = ∑ fi
A + (cost of serving clients in A).

i opened in
scenario A

Deterministic Facility Location

Minimize ∑i fiyi + ∑j,i dj cijxij

subject to ∑i xij ≥ 1 ∀∀∀∀j

xij ≤ yi ∀∀∀∀i, j

xij,yi ≥ 0 ∀∀∀∀i, j

yi : indicates if facility i is open.

xij : indicates if client j is assigned to facility i.

dj is the demand at client j

A Convex Program
pA : probability of scenario A ⊆⊆⊆⊆ D.

yi : indicates if facility i is opened in stage I.

yA,i : indicates if facility i is opened in scenario A.

xA,ij : whether client j is assigned to facility i in scenario A.

Minimize h(y) = ∑i fi yi + g(y) s.t. yi ≥ 0 for each i

(SUFL-P)
where, g(y) = ∑A ⊆D pA gA(y)

and gA(y) = min. ∑i Fi yA,i + ∑j,i cij xA,ij

s.t. ∑i xA,ij ≥ 1 for each j∈∈∈∈A

xA,ij ≤ yi + yA,i for each i,j

xA,ij ,yA,i ≥ 0 for each i,j.

Rounding (SUFL-P)

Let y : optimal solution with cost OPT.

(xA,yA) : optimal solution for scenario A.

Goal: Decouple stage I and the stage II scenarios.

stage I facility : yi
stage II facility : yA,i

Assign j∈∈∈∈A exclusively to stage I facilities, or to stage II facilities.

OR

Rounding (contd.)
stage I facility : yi stage II facility : yA,i

j

Set xA,ij = bA,ij+ rA,ij , where

bA,ij ≤ yi and rA,ij ≤ yA,i

∑i bA,ij + ∑i rA,ij ≥ 1

Rounding (contd.)
stage I facility : yi stage II facility : yA,i

j

j j

Set xA,ij = bA,ij+ rA,ij , where

bA,ij ≤ yi and rA,ij ≤ yA,i

∑i bA,ij + ∑i rA,ij ≥ 1

≥ ½ OR ≥ ½

+

Rounding (contd.)
∑i bA,ij ≥ ½ ⇒ (2bA,ij) is a feasible assignment for j with

facility variables 2yi.

∑i rA,ij ≥ ½ ⇒ (2rA,ij) is a feasible assignment for j with
facility variables 2yA,i.

Have an α-approx. algorithm for UFL wrt. LP relaxation.

Stage I

• Solve UFL instance: facility set F with costs fi,
client set D = {(j,A) : ∑i bA,ij ≥ ½ }, (j,A) has demand pA .

• ({2bA,ij }(j,A)∈D , 2y) is a feasible fractional solution.

• Obtain integer solution: gives facilities to open in stage I.

• Takes care of client j in each scenario A where ∑i bA,ij ≥ ½ .

Rounding (contd.)
Stage II, scenario A

• Assign j∈ A such that ∑i bA,ij ≥ ½ to stage I facility.
⇒ Only need to assign remaining clients with ∑i rA,ij ≥ ½ .

• Solve UFL instance: facility set F with costs Fi ,
client set DA = { j∈ A : ∑i rA,ij ≥ ½ }.

• ({2rA,ij }j∈DA, 2yA) is a feasible fractional solution.

• “Round” to get an integer solution
– determines what other facilities to open in scenario A,

– how to assign clients in DA.

Shows a 2α integrality gap for stochastic UFL-LP. Modify slightly
to get a 3.23-approximation algorithm for stochastic UFL.

Lecture #3

Stochastic Set Cover (SSC)

Universe U = {e
1
, …, en }, subsets S1, S2, …, Sm ⊆⊆⊆⊆ U, set S has

weight ωS.

Deterministic problem: Pick a minimum weight collection of
sets that covers each element.

Stochastic version: Set of elements to be covered is given by
a probability distribution.
– choose some sets initially paying ωS for set S
– subset A ⊆⊆⊆⊆ U to be covered is revealed
– can pick additional sets paying WS for set S.

Minimize (ω-cost of sets picked in stage I) +
EA ⊆⊆⊆⊆U [WS -cost of new sets picked for scenario A].

Stochastic Set Covering LP
pA : probability of scenario A ⊆⊆⊆⊆ U.

xS : indicates if set S is picked in stage I.

yA,S : indicates if set S is picked in scenario A.

Minimize ∑S ωSxS + ∑A⊆U pA ∑SWSyA,S
subject to,

∑S:e∈S xS + ∑S:e∈S yA,S ≥ 1 for each A ⊆⊆⊆⊆ U, e∈∈∈∈A

xS, yA,S ≥ 0 for each S, A.

Exponential number of variables and exponential number
of constraints.

Inflation factor ¸ = maxSWS/ωS

Sample Average Approximation
Sample Average Approximation (SAA) method:

– Sample initially N times from scenario distribution

– Solve 2-stage problem estimating pA with frequency of occurrence of
scenario A

How large should N be?

Kleywegt, Shapiro & Homem De-Mello 01: bound N by variance of a certain
quantity – need not be polynomially bounded even for our class of programs.

SwamyS 05: show using ε-subgradients that for our class, N can be poly-
bounded.

Nemirovskii & Shapiro: show that for stochastic set cover LP with non-
scenario dependent costs, KSH01 gives polynomial bound on N for
(preprocessing + SAA) algorithm. Later also without preprocessing.

Charikar, Chekuri, & Pal 05: give elegant “Chernoff”-based proof that an
α-approximation for polynomial-scenario setting yields (1+ε)α-approximation
for black box setting

A Compact Formulation

pA : probability of scenario A ⊆⊆⊆⊆ U.

xS : indicates if set S is picked in stage I.

Minimize h(x) = ∑S ωSxS + f(x) s.t. xS ≥ 0 for each S

where, f(x) = ∑A⊆U pAfA(x)

and fA(x) = min. ∑SWSyA,S

s.t. ∑S:e∈S yA,S ≥ 1 – ∑S:e∈S xS for each e∈∈∈∈A

yA,S ≥ 0 for each S.

Equivalent to earlier LP.

Each fA(x) is convex, so f(x) and h(x) are convex functions.

Sample Average Approximation
Sample Average Approximation (SAA) method:

– Sample N times from distribution

– Estimate pA by qA = frequency of occurrence of scenario A

(P) minx∈∈∈∈P (h(x) = ω.x + ∑A⊆U pA fA(x))
(SAA-P) minx∈∈∈∈P (h'(x) = ω.x + ∑A⊆U qA fA(x))

To show: With poly-bounded N, if x solves (SAA-P) then h(x) ≈ OPT.

Let zA ≡ optimal dual solution for scenario A at point u ∈∈∈∈ ℜ
m
.

⇒ du with du,S = ωS – ∑A⊆U qA ∑e∈∈∈∈S zA,e is a subgradient of h'(.) at u.

Lemma: With high probability, for “many” points u in P,

du is a subgradient of h'(.) at u,
du is an approximate subgradient of h(.) at u.

Establishes “closeness” of h(.) and h'(.) and suffices to prove result.

Intuition: Can run ellipsoid on both (P) and (SAA-P) using the same
vector du at feasible point u.

Sample Average Approximation
Sample Average Approximation (SAA) method:

– Sample initially N times from scenario distribution

– Solve 2-stage problem estimating pA with frequency of occurrence of
scenario A

How large should N be?

Kleywegt, Shapiro & Homem De-Mello 01: bound N by variance of a certain
quantity – need not be polynomially bounded even for our class of programs.

SwamyS 05: show using ε-subgradients that for our class, N can be poly-
bounded.

Nemirovskii & Shapiro: show that for stochastic set cover LP with non-
scenario dependent costs, KSH01 gives polynomial bound on N for
(preprocessing + SAA) algorithm. Later also without preprocessing.

Charikar, Chekuri, & Pal 05: give elegant “Chernoff”-based proof that an
α-approximation for polynomial-scenario setting yields (1+ε)α-approximation
for black box setting

Sample Average Approximation
(Charikar, Chekuri, and Pál)

Sample Average Approximation (SAA) method:

– Sample N times from distribution

– Estimate pA by qA = frequency of occurrence of
scenario A

(P) minx∈∈∈∈P (h(x) = ω.x + ∑A⊆U pA fA(x))
(SAA-P) minx∈∈∈∈P (h'(x) = ω.x + ∑A⊆U qA fA(x))

Prove just a weak version – let x' be a minimizer of h' – we want
to show that for N polynomial, then x' is also of objective
function value within a factor of 1+², with probability 1-∂

Chernoff Bound – Let Xk 2 [0,1], k=1,…,M, be ind. r.v.s & let X
=∑k Xk. Then, for any ² > 0

Pr[|X-E[X]| > ²M] · 2 exp(-²2 M)

We’ll take N = c ¸2 n log (1/∂) (1/²4)

Sample Average Approximation (SAA) method:

– Sample N times from distribution

– Estimate pA by qA = freq. of occurrence of scenario A

(P) OPT = minx∈∈∈∈P (h(x) = ω.x + ∑A⊆U pA fA(x) =ωx + f(x))
(SAA-P) minx∈∈∈∈P (h'(x) = ω.x + ∑A⊆U qA fA(x) =ωx + f'(x))

Divide scenarios into high and low: say A is high if fA(0) ¸ ¸OPT/²

By def’n of ¸: for each x & A, fA(0) · ¸ωx + fA(x)

Lemma: Let p be probability that A is high; then p · (1/¸)²/(1-²).

Proof: OPT = ωx* + EA[fA(x*)] for optimal x*.

¸ p EA[fA(x*) | A high] ¸ p EA[fA(0)-¸ωx*| A high]

¸ p [¸ OPT/² - ¸ OPT]=p OPT ¸ (1-²)/² qed

Three Key Properties
f(x) = ωx + ∑AµU pA fA(x)

fhi(x) = ∑A high pA fA(x) & flo(x) = f(x) – fhi (x) – ωx

and analogous for f'

• For each x, |flo (x) – f'lo(x)| · ²OPT w.h.p.

• For each x, f'hi(0) – f'hi(x) · 2²ωx w.h.p.
• For each x, fhi(0) – fhi(x) · 2²ωx .

Three Key Properties
f(x) = ωx + ∑AµU pA fA(x) & f' replace p by q

fhi(x) = ∑A high pA fA(x) & flo(x) = f(x) – fhi (x) – ωx

and analogous for f'

• For each x, |flo (x) – f'lo(x)| · ²OPT w.h.p.

• For each x, f'hi(0) – f'hi(x) · 2²ωx w.h.p.
• For each x, fhi(0) – fhi(x) · 2²ωx .
For SAA minimizer x': (by above + fhi(x) · fhi(0))

f(x') – f'(x') · ²OPT + 2²ωx' + fhi(0) – f'hi(0)

f'(x*) – f(x*) · ²OPT + 2²ωx* + f'hi(0) – fhi(0))

f(x') – 2²ωx' · f(x*) + 2²ωx* + 2²OPT)

(1–2²)f(x') · (1+4²)OPT !!

+

Three Key Properties

• For each x, |flo (x) – f'lo(x)| · ²OPT w.h.p.

• For each x, f'hi(0) – f'hi(x) · 2²ωx w.h.p.
• For each x, fhi(0) – fhi(x) · 2²ωx .
Lemma. With probability 1-∂, the fraction of high
scenarios is at most 2²/¸ (by Chernoff)

This yields 2nd and 3rd properties directly.

For 1st, view f'lo(x) as the mean of N independent
random variable Fi that is fA(x) if A is low, but
0 otherwise

Apply Chernoff bound to (1/N)∑i Fi/[¸ OPT/²] to
get 1st property

Maximum-weight on-time set
Jobs N = {1,2,…,n} - job j has set of allowed time intervals
Sj = {[s1j,e1j),…,[skj,ekj)} with corresponding weights wij

Deterministic problem: Pick a maximum-weight collection of
intervals ≤ 1 per job and at each time

Time

Height =
Weight

Maximum-weight on-time set
Jobs N = {1,2,…,n} - job j has set of allowed time intervals
Sj = {[s1j,e1j),…,[skj,ekj)} with corresponding weights wij

Deterministic problem: Pick a maximum-weight collection of
intervals ≤ 1 per job and at each time

Time

Height =
Weight

Optimal selection
is shaded

Maximum-weight on-time set
Jobs N = {1,2,…,n} - job j has set of allowed time intervals
Sj = {[s1j,e1j),…,[skj,ekj)} with corresponding weights wij

Deterministic problem: Pick a maximum-weight collection of
intervals ≤ 1 per job and at each time

Linear Programming Relaxation
Let Tt be the set of intervals (for all jobs) containing time t : (i,j)

xij : indicates whether [sij,eij) selected for job j

Maximize ∑i,j wij xij

Subject to ∑i xij ≤ 1, for each j=1,…,n
∑(i,j) ∈ Tt

xij ≤ 1 for each t
xij ≥ 0 for each i,j

Theorem [Bar-Noy, Bar-Yehuda, Freund, Naor, & Schieber]
Primal-dual 2-approximation algorithm for max-weight schedule

2-Stage Stochastic Variant

Scenario A ⊆ N of active jobs occurs with probability pA

Stage I: Choose set D ⊆ N of jobs to defer to subcontractor
and receive small weight ωj for each j ∈ D

Stage II: Given realized scenario A, make selection TA where
(i,j) ∈ TA⇒ j ∈ A-D and has weight Wij

Goal: Maximize the total expected weight scheduled (where
expectation is with respect to active subset probabilities)

A Primal-Dual Theorem

Theorem: [S & Sozio] We can (adapt the 2-approximation
algorithm for deterministic setting to) obtain a 2-
approximation algorithm for stochastic maximum-weight on-
time scheduling.

Note: it is trivial to obtain a 4-approximation algorithm (flip
a coin and either decide to either put all of your eggs in
Stage I or Stage II) and almost as simple to obtain a
3-approximation algorithm

We focus first on the polynomial-scenario model

Maximum-weight on-time set
Jobs N = {1,2,…,n} - job j has set of allowed time intervals
Sj = {[s1j,e1j),…,[skj,ekj)} with corresponding weights wij

Deterministic problem: Pick a maximum-weight collection of
intervals ≤ 1 per job and at each time

Linear Programming Relaxation
Let Tt be the set of intervals (for all jobs) containing time t : (i,j)

xij : indicates whether [sij,eij) selected for job j

Maximize ∑i,j wij xij

Subject to ∑i xij ≤ 1 for each j=1,…,n
∑(i,j) ∈ Tt

xij ≤ 1 for each t
xij ≥ 0 for each i,j

Theorem [Bar-Noy, Bar-Yehuda, Freund, Naor, & Schieber]
Primal-dual 2-approximation algorithm for max-weight schedule

Dual Linear Program
Let Tt be the set of intervals (for all jobs) containing time t

Minimize ∑j uj + ∑t vt
Subject to

uj + ∑t: (i,j) ∈ Tt
vt ≥ wij for each (i,j)

uj, vt ≥ 0

The primal-dual algorithm has two phases:

•first it constucts a feasible dual solution, while building a stack of
possible pairs (i,j) to be selected;

•next it pops the stack, selecting any pair that doesn’t conflict with
those already selected;

•amortization shows dual cost is at most twice the value of the primal.

Dual Linear Program
Let Tt be the set of intervals (for all jobs) containing time t

Minimize ∑t uj + ∑t vt

Subject to

uj + ∑t: (i,j) ∈ Tt
vt ≥ wij for each (i,j)

uj, vt ≥ 0

The primal-dual algorithm has two phases:

•first it constucts a feasible dual solution, while building a stack of
possible pairs (i,j) to be selected;

•next it pops the stack, selecting any pair that doesn’t conflict with
those already selected;

•amortization shows dual cost is at most twice the cost of the primal.

For dual solution (u,v)
call (i,j) covered if this
constraint is satisfied

The Primal-Dual Algorithm of Bar-Noy et al.
• Pick the uncovered interval (i,j) with the earliest ending point t*

• Compute its deficit δ = wij - uj - ∑t: (i,j) ∈ Tt
vt

• Increase uj and vt* by δ/2 (so now (i,j) is tight)

Time

Height =
Weight

t*

The Primal-Dual Algorithm of Bar-Noy et al.
• Pick the uncovered interval (i,j) with the earliest ending point t*

• Compute its deficit δ = wij - uj - ∑t: (i,j) ∈ Tt
vt

• Increase uj and vt* by δ/2 (so now (i,j) is tight)

Time

Height
=Deficit

The Primal-Dual Algorithm of Bar-Noy et al.
• Pick the uncovered interval (i,j) with the earliest ending point t*

• Compute its deficit δ = wij - uj - ∑t: (i,j) ∈ Tt
vt

• Increase uj and vt* by δ/2 (so now (i,j) is tight)

• Keep “stack” of tight (i,j)’s

• Pop them off an add to selection if they don’t conflict with ones
chosen already

Time

The Primal-Dual Algorithm of Bar-Noy et al.
• Pick the uncovered interval (i,j) with the earliest ending point t*

• Compute its deficit δ = wij - uj - ∑t: (i,j) ∈ Tt
vt

• Increase uj and vt* by δ/2 (so now (i,j) is tight)

• Keep “stack” of tight (i,j)’s

• Pop them off an add to selection if they don’t conflict with ones
chosen already

•Analysis: every selected interval is tight; every iteration adds δ to
dual objective and contributes at least δ/2 to “paying for” selected
(i,j)’s; hence, dual objective is at most twice amount paid!!

Time

Linear Programming Relaxation for 2-Stage Problem
Let Tt be the set of intervals (for all jobs) containing time t

xj : indicates whether job j is deferred in stage I

yij(S): indicates whether [sij,eij) selected for job j in stage II
for scenario S

Maximize ∑j ωjxj + ∑i,j,S pSWij yij(S)

Subject to xj + ∑i yij (S) ≤ 1, for each j,S
∑(i,j) ∈ Tt

yij(S) ≤ 1, for each t,S
xj , yij (S) ≥ 0 for each i,j,S

DUAL Minimize ∑j,S uj (S) + ∑t,S vt (S)

Subject to ∑S uj(S)≥ ωj for each j

uj(S) + ∑t: (i,j) ∈ Tt
vt(S) ≥ p(S) Wij for each (i,j), S

uj (S), vt(S) ≥ 0

A Simple 2-Stage Algorithm

For each scenario A ⊆ N with probability pA >0

run the deterministic algorithm with job set A where
weight of job j for [sij,eij) is pAWij

let uj (A) denote the dual values constucted by the algorithm

Stage I: Let D be the set of jobs j for which

ωj > ∑A uj(A)

Stage II: Given realized scenario A,

recompute first phase of algorithm (to get duals)

but in second phase never select (i,j) for j ∈ D

Main Idea of Analysis

What is 2-stage dual? Block-structured by scenario A with
additional linking constraints:

A1

A2

Am

∑A uj(S) ≥ ωj ∀ j

Each
block is
just like
determ.
problem

So we can adapt the scenario-by-scenario constuction as
building a feasible dual solution for the 2-stage linear relaxation

What about black box model?

Just use sampling to estimate the deferral rule! - use M samples

For each sampled scenario A ⊆ N run deterministic algorithm
with job set A where weight of job j for [sij,eij) is Wij to
obtain dual values uj(A) – let Ak be k

th sample
Stage I: Let D be the set of jobs j for which

(1+ε) ωj > (1/M) ∑k uj(Ak)
Stage II: Given realized scenario A, compute TA and then

recompute first phase of algorithm (to get duals)
but in second phase never select (i,j) for j ∈ D

Number of samples needed is polynomial in n, 1/ε, and λ = maxjWj/ωj

Similar to “sample average approximation” results of [Swamy & S,
Shapiro & Nemirovski, and Charikar, Chekuri, & Pál]

Some Additional Details

Previously used profits equal to pAWij for i
th interval

of job j in scenario A – what now?

Ignore pA – call rescaled duals uj*(A) where
uj(A) = pA uj*(A)

Had used r = ∑A pA uj(A) as threshold

Now use r* = ∑κ (1/M) uj* (Ak) instead

Use Chernoff bounds to prove r* ¼ r w/high prob.

Chernoff – Let Xk 2 [0,1] , k=1,…,M be ind. r.v.s &
let X = ∑k Xk . Then, for any ² > 0

Pr[|X-E[X]| > ² M] · 2 exp(-²2 M)

What are the [0,1] random variables?

What about black box model?

Just use sampling to estimate the deferral rule! - use M samples

For each sampled scenario A ⊆ N run deterministic algorithm
with job set A where weight of job j for [sij,eij) is Wij to
obtain dual values uj(A) – let Ak be k

th sample
Stage I: Let D be the set of jobs j for which

(1+ε) ωj > (1/M) ∑k uj(Ak)
Stage II: Given realized scenario A, compute TA and then

recompute first phase of algorithm (to get duals)
but in second phase never select (i,j) for j ∈ D

Number of samples needed is polynomial in n, 1/ε, and λ = maxjWj/ωj

Similar to “sample average approximation” results of [Swamy & S,
Shapiro & Nemirovski, and Charikar, Chekuri, & Pál]

Applying the Chernoff Bound

Let Xk = uj*(Ak) /(¸ ωj)

Why is Xk 2 [0,1]?

There is some i such that

uj* (Ak) ·Wij (perhaps i that became tight)
and so uj*(Ak) ·Wij · ¸ ωj
Now take M= £((¸2/²2) log (n/°)) to get

Pr[|X-E[X]| > ²M/¸] ·exp(-²2M/ ¸2) ,

Pr[| r* - r | > ² ωj] · °/n

And apply “union bound” to get failure for all
jobs j occurs with probability at most °

Another 2-Stage Stochastic Variant

Scenario A ⊆ N of active jobs occurs with probability pA

Stage I: Choose set C⊆ N of jobs j to commit to service and get
weight ωj

Stage II: Given realized scenario A, make selection TA where
∃ (i,j) ∈ TA for each j ∈ C plus some additional ones

Goal: Maximize the total expected weight scheduled

Bad News: There is an approximation-preserving
reduction from the deterministic maximum independent
set problem, and hence no “reasonable” performance
guarantee can be proved (unless P=NP).

2-Stage Stochastic Facility Location

Distribution over clients gives
the set of clients to serve.

facility

Stage I: Open some facilities in
advance; pay cost fi for facility i.

Stage I cost = ∑(i opened) fi .stage I facility

Actual scenario A = { clients to serve}, materializes.

Stage II: Can open more facilities to serve clients in A; pay
cost fi

A to open facility i. Assign clients in A to facilities.

Stage II cost = ∑ fi
A + (cost of serving clients in A).

i opened in
scenario A

Several Ways to Skin The Cat
Facility Location Yet Again

• Can apply LP-rounding approach as done for set
covering [S & Swamy]

• Can apply the boosted sampling approach if the
second stage costs are proportional

• In polynomial scenario setting can adapt primal-dual
algorithm of Jain & Vazirani for deterministic
version to get 3-approximation algorithm [Mahdian]

• Can then apply result Sample Average
Approximation result of [Charikar, Chekuri, & Pál]
to extend to “black box” model

Discrete Stochastic Optimization
and

Approximation Algorithms
• Area of emerging importance
• Rich source of algorithmic questions
• Can one prove a strong result for approximate
stochastic dynamic programming? [Levi Roundy & S]
[Halman, Klabjan, Mostagir, Orlin & Simchi-Levi]

• When is sampling information good enough to
derive near-optimal solutions?

• Reconsider some well-studied problems but now in
“black box” model, not just specific distributions

• Expectation is not enough

Thank You.

