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Motivation: Auction

• suppose we want to auction off a single
item to one of n potential buyers in U

• every bidder i ∈ U has a valuation vi for
receiving the item

• valuation is only known to i and not to the
auctioneer

• every bidder i announces a bid bi

Mechanism: protocol that based on the bids determines a
winner of the auction and a selling price p
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Motivation: Auction

Selfishness: every player wants to maximize his net gain
(vi − p)qi , where qi = 1 if i is the winner and qi = 0 otherwise.

Goal: economic efficiency, i.e., sell the item to the buyer with
maximum valuation.

Question: Can efficiency be achieved although valuations are
private?
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Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid

• buyers have an incentive to underbid

Second-Price Auction (Vickrey Auction ’61): sell the item to
the buyer with the highest bid and charge the second-highest
bid

• buyers bid their valuations truthfully, i.e., bi = vi

• economic efficiency is achieved
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Group-Strategyproof
Cost Sharing Mechanisms



Cooperative Cost Sharing

Setting:
• set of players are interested in receiving some service
• provision of service incurs a (player-set dependent) cost that

needs to be shared among the players
• players act strategically: aim at receiving service at low

individual price
• players can coordinate their strategies

Applications: sharing the cost of public investments, access to
network, etc.

Goal: design selection and payment scheme such that

• it is in every player’s self-interest to behave truthfully
• payments of selected players cover the service cost
• player selection is “socially efficient”
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Motivating Example
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Given:
• network N = (V ,E , c)
• set of players U = [n]
• player i ∈ U requests

connection between si , ti

Cost Function:
C(S) = min. cost to satisfy all
requests of players in S ⊆ U

Example: C({1,3,4}) = 5
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C(S) = min. cost to satisfy all
requests of players in S ⊆ U

Example: C({1,2,3,4}) = 6

Guido Schäfer Cost Sharing and Approximation Algorithms 7



Motivating Example
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Player i ∈ U:
• valuation vi (private!)
• bid bi (public)
• goal: maximize vi − pi

Cost Sharing Mechanism:
• selects a set Q of players

whose requests are satisfied
• determines a payment pi for

every i ∈ Q to distribute the
cost C(Q)
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Objectives:

1 Truthfulness: bidding
truthfully is a dominant
strategy for every player

2 Budget Balance: payments
recover solution cost

3 Efficiency: selected player set
realizes “social efficiency”
objective
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Cost Sharing Model

Given:
• set U of players (interested in some service)
• every player i ∈ U:

• valuation vi : value (private!) of the service
• bid bi : maximum amount he is willing to pay

• player-set dependent cost function C : 2U → R
+

• defined implicitly: cost function of combinatorial optimization
problem P (e.g., Steiner forest, scheduling, etc.)

• C(S) = optimal solution cost for player set S ⊆ U
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Cost Sharing Mechanism

Cost Sharing Mechanism M: collects bids (bi)i∈U from players
and computes

• set Q ⊆ U of players that receive service (selection scheme)
Notation: qi = 1 if i ∈ Q and qi = 0 otherwise

• payment pi for every player i ∈ U to distribute the cost C(Q)
(payment scheme)

1 No Positive Transfer: pi ≥ 0 for all i ∈ Q

2 Voluntary Participation: pi = 0 for all i /∈ Q and pi ≤ bi for
all i ∈ Q

3 Consumer Sovereignty: for every i ∈ U there exists a bid
b∗

i for which i is guaranteed to receive service
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Truthfulness

Strategic Behavior: every player i ∈ U acts selfishly and
attempts to maximize his quasi-linear utility function:

ui(q,p) := qi(vi − pi)

⇒ player i will misreport his valuation (bi 6= vi ) if this leads to
larger utility

Strategyproofness: utility of every player i ∈ U is maximized if
he bids truthfully bi = vi (independently of other players’ bids)

Group-Strategyproofness: same holds true even if players
form coalitions to coordinate their bids
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Illustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S ⊆ U

ui (q̃, p̃) ≥ ui (q, p) ∀i ∈ S ⇒ ui (q̃, p̃) = ui (q, p) ∀i ∈ S

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

ui

players

bi = vi ∀i ∈ S

coalition S
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“Classical” Objectives

1 Budget Balance: payments equal servicing cost
∑

i∈Q

pi = C(Q)

2 Group-Strategyproofness

3 Efficiency: assuming truthful bidding, selected player set
maximizes social welfare

∑

i∈Q

vi − C(Q) = max
S⊆U

∑

i∈S

vi − C(S)
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Computational Issues

Want to design mechanisms that are computationally efficient

Problems:

1 underlying optimization problem P is often computationally
hard

2 truthfulness, budget balance and efficiency cannot be
achieved simultaneously [Green et al. ’76] [Roberts ’79]

[Feigenbaum et al., TCS ’03]

Solutions:

1 use approximation algorithm to compute an approximate
solution of cost C̄(Q) ≤ β · C(Q) where β ≥ 1

2 consider different (but equivalent) social efficiency objective
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Approximate Budget Balance and Efficiency

Approximate Budget Balance: cost sharing mechanism M is
β-budget balanced if

C̄(Q) ≤
∑

i∈Q

pi ≤ β · C(Q) (β ≥ 1)

Define the social cost of a set S ⊆ U as

Π(S) :=
∑

i /∈S

vi + C(S) =
∑

i∈U

vi −
(

∑

i∈S

vi − C(S)
)

Approximate Efficiency: cost sharing mechanism M is
α-approximate if, assuming truthful bidding,

∑

i /∈Q

vi + C̄(Q) ≤ α · min
S⊆U

Π(S) (α ≥ 1)

[Roughgarden and Sundararajan, JACM ’09]
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Objectives at a Glance

1 Computational Efficiency

2 Approximate Budget Balance:

C̄(Q) ≤
∑

i∈Q

pi ≤ β · C(Q) (β ≥ 1)

3 Group-Strategyproofness

4 Approximate Efficiency:

∑

i /∈Q

vi + C̄(Q) ≤ α · min
S⊆U

{

∑

i /∈S

vi + C(S)

}

(α ≥ 1)
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Tricks of the Trade

How to achieve

β-budget balance?
(

C̄(Q) ≤
∑

i∈Q

pi ≤ β · C(Q)

)

Guido Schäfer Cost Sharing and Approximation Algorithms 17



Tricks of the Trade

How to achieve

group-strategyproofness?

(Not everybody in the coalition is better
off by misreporting his valuation.)
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Moulin’s Framework

Cost Sharing Function: ξ : U × 2U → R
+

ξi(S) = cost share of player i with respect to set S ⊆ U

β-Budget Balance:

C̄(S) ≤
∑

i∈S

ξi(S) ≤ β · C(S) ∀S ⊆ U

Cross-Monotonicity: cost share of player i does not decrease
if other players leave the game:

∀S ⊆ T , ∀i ∈ S : ξi(S) ≥ ξi(T )
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Moulin’s Framework

Moulin Mechanism M(ξ):
1: Initialize: Q ← U
2: If for each player i ∈ Q: ξi(Q) ≤ bi then STOP
3: Otherwise, remove from Q all players with ξi(Q) > bi and

repeat

Theorem

If ξ is cross-monotonic and β-budget balanced, then the Moulin
mechanism M(ξ) is group-strategyproof and β-budget balanced.

[Moulin, SCW ’99]
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Tricks of the Trade

How to achieve

α-approximability?




∑

i /∈Q

vi + C̄(Q) ≤ α ·min
S⊆U

∑

i 6∈S

vi + C(S)
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Summability

Suppose we are given an arbitrary order σ on the players in U.
Order each subset S ⊆ U according to σ:

S := {i1, . . . , i|S|} with ij ≺σ ik for all 1 ≤ j < k ≤ |S|.

Let Sj refer to the first j players of S.

A cost sharing function ξ is α-summable if for every order σ of
the players in U

∀S ⊆ U :

|S|
∑

j=1

ξij (Sj) ≤ α · C(S)
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Summability and Approximability

Theorem

Let ξ be a cross-monotonic cost sharing function and let α, β be
the smallest numbers such that ξ is α-summable and β-budget
balanced. Then the Moulin mechanism M(ξ) is
(α+ β)-approximate and no better than max{α, β}-approximate.

[Roughgarden, Sundararajan, JACM ’09]
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Moulin Mechanisms: Known Results I

Upper bounds β
[Moulin, Shenker, ET ’01] submodular cost 1
[Jain, Vazirani, STOC ’01] minimum spanning tree 1

Steiner tree and TSP 2
[Pál, Tardos, FOCS ’03] facility location 3

single-sink rent-or-buy 15
[Leonardi, Schäfer, EC ’03],
[Gupta et al., APPROX ’04]

single-sink rent-or-buy 4

[Leonardi, Schäfer, EC ’03] connected facility location 30
[Könemann, Leonardi, Schäfer, SODA ’05] Steiner forest 2
[Gupta et al., SODA ’07] price-collecting Steiner forest 3
[Bleischwitz, Monien, CIAC ’07] makespan scheduling 2

Lower bounds β
[Immorlica et al., SODA ’05] set cover, vertex cover nc

facility location 3
[Könemann et al., SODA ’05] Steiner tree 2
[Bleischwitz, Monien, CIAC ’07] makespan scheduling 2
[Brenner, Schäfer, STACS ’07] completion time scheduling, etc. n/c
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Moulin Mechanisms: Known Results II

β α
[Roughgarden, Sundararajan, STOC ’06] submodular cost 1 Θ(log n)

Steiner tree 2 Θ(log2 n)
[Chawla et al., WINE ’06] Steiner forest 2 Θ(log2 n)
[Roughgarden, Sundararajan, IPCO ’07] facility location 3 Θ(log n)

SROB 4 Θ(log2 n)
[Gupta et al., SODA ’07] price-collecting SF 3 Θ(log2 n)
[Brenner, Schäfer, STACS ’07] makespan scheduling 2 Θ(log n)

cost-stable problems Ω(log n)
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Cross-Monotonic Cost Shares for
Steiner Forest



Steiner Forest Game

Goal: design a cost sharing mechanism for the Steiner forest
game

• graph G = (V ,E) with edge costs c : E → R
+

• player i requests connection between terminals si , ti ∈ V
identify players with terminal pairs: U = {(s1, t1), . . . , (sn, tn)}
• C(S) = cost of a minimum cost Steiner forest connecting all

terminal pairs in S ⊆ U

Theorem

There is a cross-monotonic and 2-budget balanced cost sharing
function for the Steiner forest game.

[Könemann, Leonardi, Schäfer, van Zwam, SICOMP ’08]
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Primal-Dual Steiner Forest Algorithm

Fix a set Q ⊆ U of terminal pairs. We sketch the primal-dual
algorithm AKR(Q) of [Agrawal, Klein, Ravi, SICOMP ’95] for the
Steiner forest problem with terminal pair set Q.

A subset S ⊆ V of nodes is a Steiner cut if it separates at least
one terminal pair (s, t) ∈ Q. Let S be the set of all such cuts.

S

s

t

Observation: for every Steiner
cut S ∈ S, any feasible Steiner
forest must contain at least one
of the red edges

δ(S) = {uv ∈ E : u ∈ S, v /∈ S}
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Undirected Cut Formulation

Integer Program:

min
∑

e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

xe ∈ {0,1} ∀e ∈ E
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Undirected Cut Formulation

Primal LP:
min

∑

e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

xe ≥ 0 ∀e ∈ E
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Undirected Cut Formulation

Primal LP:
min

∑

e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

xe ≥ 0 ∀e ∈ E

Dual LP:
max

∑

S∈S

yS

s.t.
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ∈ S
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Visualizing the Dual

y{s1}

y{t2}

s1

t2

t1 s2

e

The dual yS of Steiner cut S is
visualized as moat around S of
radius yS

An edge e is said to be tight if
its corresponding dual
constraint is tight:

∑

S:e∈δ(S)

yS = ce
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Visualizing the Dual

y{s1}

y{t2}
y{s1,t2}

s1

t2

t1 s2

e

The dual yS of Steiner cut S is
visualized as moat around S of
radius yS

An edge e is said to be tight if
its corresponding dual
constraint is tight:

∑

S:e∈δ(S)

yS = ce
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High-Level Description

Execution of AKR can be seen as a process over time τ :

• (F τ , yτ ) = forest and dual packing
• terminal v is active if it is separated from its mate in F τ

• F̄ τ = subgraph induced by tight edges with respect to yτ

• connected components of F̄ τ are called moats
• moat is active if it contains an active terminal

Algorithm AKR:
1: F 0 = ∅, y0 = 0
2: repeat
3: simultaneously increase duals of all active moats until

some path P between two active terminals becomes tight
4: add tight segments of P to the current forest F τ

5: until all terminals are inactive
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Illustration: AKR

τ = 0.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 0.3

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 1.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32



Illustration: AKR

τ = 1.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32



Illustration: AKR

τ = 1.5

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 1.5

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 2.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 2.5

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 3.5

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 4.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 5.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Illustration: AKR

τ = 5.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Approximation Guarantee

Theorem

The algorithm AKR(Q) computes a feasible forest F for terminal
pair set Q and a feasible dual (yS)S∈S such that

c(F ) ≤

(

2−
1
k

)

∑

S∈S

yS ≤

(

2−
1
k

)

OPT(Q),

where k is the number of terminal pairs in Q.
[Agrawal, Klein, Ravi, SICOMP ’95]

Idea: run AKR and distribute (twice) the total dual among the
terminals
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Sharing the Dual Growth

s1

s2

s3

t1

t2

t3

Example:
• all terminals are active

• grow active moats by ǫ

• growth of each moat is shared
evenly among active terminals:

s1 : ǫ/3

t2 : ǫ/2

t1 : ǫ
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Example:
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Sharing the Dual Growth

s1

s2

s3

t1

t2

t3

ǫ

aτ
v = number of active terminals in

the moat containing v at time τ

Suppose terminal v ∈ Q becomes
inactive at time T . Define the cost
share of v as

ξv (Q) =

∫ T

0

1
aτ

v
dτ

For terminal pair (s, t) ∈ Q:

ξst(Q) = 2 · (ξs(Q) + ξt(Q))
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Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 0.0

s1 s2 s3 t3 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.0 0.0 0.0 0.0 0.0 0.0
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Independent Activity Time

Question: How long would a terminal pair need to connect if all
other terminal pairs were absent?

4.5

s1 s2 s3 t3 t2 t13 1 1 3

Death time: for each terminal pair (s, t) ∈ U define

d(s) = d(t) = d(s, t) := 1
2c(s, t),

where c(s, t) is cost of minimum-cost s, t-path.
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Cross-Monotonic Primal-Dual Algorithm

New Activity Notion: terminals s, t are active until time d(s, t)

Primal-Dual Algorithm KLS: as before, but with modified
activity notion

Cost Shares: define cost share of terminal v ∈ Q as:

ξv (Q) =

∫ d(v)

0

1
aτ

v
dτ

Theorem

The cost shares ξ computed by KLS are cross-monotonic and
2-budget balanced.

[Könemann, Leonardi, Schäfer, van Zwam, SICOMP ’08]
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Example

τ = 0.0

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.0 0.0 0.0 0.0 0.0 0.0
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Example
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Example

τ = 5.5
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Proving Cross-Monotonicity

Lemma

The cost shares ξ computed by KLS are cross-monotonic.

Proof (sketch):
Mτ (v) = moat of v at time τ in KLS(Q), Q ⊆ U
Mτ

0(v) = moat of v at time τ in KLS(Q0), Q0 = Q \ {(s, t)}

Obs.: death-times of terminals are instance independent!

Mτ
0(v) active ⇒ Mτ (v) active

⇒ Mτ
0(v) ⊆M

τ (v)

⇒ aτ
0(v) ≤ aτ (v)

ξv (Q) =

∫ d(v)

0

1
aτ (v)

dτ ≤
∫ d(v)

0

1
aτ

0(v)
dτ = ξv (Q0)
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Proving Cross-Monotonicity
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Proving Budget Balance

Lemma

The cost shares ξ computed by KLS are 2-budget balanced.

Proof (sketch):
(F , y) = forest and dual computed by KLS(Q), Q ⊆ U. Then

c(F ) ≤ 2
∑

S

yS =
∑

i∈Q

ξsi ti

But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that

∑

yS ≤ OPT(Q)!

Idea: charge dual growth against an optimal forest F ∗ for Q.
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Proving Budget Balance

Let Q = {(s1, t1), . . . , (sk , tk )} such that

d(s1, t1) ≤ · · · ≤ d(sk , tk )

Define precedence order on terminals:

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Terminal v is responsible at time τ if u ≺ v for all u ∈ Mτ (v).
Define r τ (v) = 1 if v is responsible at time τ and r τ (v) = 0
otherwise. Let the responsibility time of v be

r(v) =
∫ d(v)

0
r τ (v)dτ

Intuition: No sharing of dual growth; the responsible terminal
gets it all! Suffices to bound total responsibility time by OPT(Q).
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Proving Budget Balance

v1

v2

v3

v4

v5

v6

Consider a tree T ∈ F ∗ and assume
that T spans terminals {v1, . . . , vp}.

Every terminal v that is responsible at
time τ loads a distinct part of T . Note:
argument applies if there are at least
two responsible terminals at time τ .

Let vp be the terminal with highest
responsibility time. Then

p−1
∑

i=1

r(vi ) ≤ c(T ).

Note: vp ’s mate is in T as well.
⇒ r(vp) ≤ d(vp) ≤

1
2c(T )
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Further Consequences

Suppose our modified Steiner forest algorithm produces forest
F and (infeasible) dual y for terminal pair set Q.

Surprisingly, can still show

c(F ) ≤ (2− 1/k) ·OPT(Q)

Our dual is often much better than the AKR-dual!

1
s1 s2 sk−1 sk t1t2tk−1tk

OPT(Q) 2k − 1
Standard AKR-dual k
Our dual 2k − 1

Guido Schäfer Cost Sharing and Approximation Algorithms 45



Lifted-Cut Dual for Steiner Forests

Recall: death-times induce precedence order ≺ on terminals

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Associate each cut S ⊆ V with a terminal

Example: v ≺ v̄ ≺ w ≺ w̄

w

v

w̄

v̄

S ∈ Sw

w

v

w̄

v̄

S ∈ Nw

S ∈ Nw̄
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Lifted-Cut Dual for Steiner Forests

OPTLC = max
∑

S⊆V

yS

s.t.
∑

S⊆V :e∈δ(S)

yS ≤ ce ∀e ∈ E

∑

S∈Sv

yS +
∑

S∈Nv

yS ≤ d(v) ∀v ∈ R

yS ≥ 0 ∀S ⊆ V

Theorem

1 OPTUC ≤ OPTLC ≤ OPT
2 IP/LC gap is about 2
3 Additional strength of LC can be used to prove better

approximation ratio of AKR for certain instances

[Könemann, Leonardi, Schäfer, van Zwam, SICOMP ’08]
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Related Results and Extensions

There is no (2− ǫ)-budget balance cross-monotonic cost
sharing scheme for the Steiner tree problem

[Könemann, Leonardi, Schäfer, van Zwam, SICOMP ’08]

KLS is Θ(log2 n)-approximate with respect to social cost
[Chawla, Roughgarden, Sundararajan, WINE ’06]

Similar idea yields 3-budget balanced, Θ(log2 n)-approximate,
cross-monotonic cost sharing function for the price-collecting
Steiner forest problem

[Gupta, Könemann, Leonardi, Ravi, Schäfer, SODA ’07]
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General Connectivity Problems

Idea:
• every player i has a cut-requirement function fi : 2V → {0,1}
• model general connectivity game via the following LP

min
∑

e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ fi(S) ∀S ⊆ V , ∀i ∈ U

xe ∈ {0, 1} ∀e ∈ E

• adapt approximation framework by Goemans and Williamson
to obtain O(1)-budget balance, cross-monotonic cost sharing
function [Könemann, Leonardi, Schäfer, Wheatley, manuscript]

Guido Schäfer Cost Sharing and Approximation Algorithms 49



Conclusions and Open Problems



Conclusions

Moulin’s framework enables to derive group-strategyproof cost
sharing mechanisms through cross-monotonic cost sharing
functions.

Have techniques at hand to bound social cost efficiency of
Moulin mechanisms.

Trade-off between budget balance and social cost
approximation guarantees of Moulin mechanisms are
well-understood for several fundamental optimization problems.

Designing cross-monotonic cost sharing functions may lead to
new insights that are useful in other contexts.
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Characterization of GSP Mechanisms

Group-Strategyproof
Cost Sharing Mechanisms
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Cost Sharing Mechanisms

Moulin
Mechanisms
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Characterization of GSP Mechanisms

Group-Strategyproof
Cost Sharing Mechanisms

Moulin
Mechanisms

Characterization has recently been given
[Pountourakis and Vidali, ESA ’10]
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Open Problems

Open Problem: Can we exploit the characterization of
group-strategyproof cost sharing mechanisms algorithmically?

Open Problem: Are there other general techniques to derive
group-strategyproof cost sharing mechanisms?

Open Problem: What are the trade-offs between
group-strategyproofness and budget balance and social cost
approximation guarantees?
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