
Cost Sharing and Approximation
Algorithms
— Lecture 1 —

Guido Schäfer
CWI Amsterdam / VU University Amsterdam

g.schaefer@cwi.nl

ADFOCS 2010
11th Max Planck Advanced Course on the Foundations of Computer Science

August 2–6, 2010, Saarbrücken, Germany

Motivation: Auction

• suppose we want to auction off a single
item to one of n potential buyers in U

• every bidder i ∈ U has a valuation vi for
receiving the item

• valuation is only known to i and not to the
auctioneer

• every bidder i announces a bid bi

Mechanism: protocol that based on the bids determines a
winner of the auction and a selling price p

Guido Schäfer Cost Sharing and Approximation Algorithms 2

Motivation: Auction

Selfishness: every player wants to maximize his net gain
(vi − p)qi , where qi = 1 if i is the winner and qi = 0 otherwise.

Goal: economic efficiency, i.e., sell the item to the buyer with
maximum valuation.

Question: Can efficiency be achieved although valuations are
private?

Guido Schäfer Cost Sharing and Approximation Algorithms 3

Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid

• buyers have an incentive to underbid

Second-Price Auction (Vickrey Auction ’61): sell the item to
the buyer with the highest bid and charge the second-highest
bid

• buyers bid their valuations truthfully, i.e., bi = vi

• economic efficiency is achieved

Guido Schäfer Cost Sharing and Approximation Algorithms 4

Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid

• buyers have an incentive to underbid

Second-Price Auction (Vickrey Auction ’61): sell the item to
the buyer with the highest bid and charge the second-highest
bid

• buyers bid their valuations truthfully, i.e., bi = vi

• economic efficiency is achieved

Guido Schäfer Cost Sharing and Approximation Algorithms 4

Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid

• buyers have an incentive to underbid

Second-Price Auction (Vickrey Auction ’61): sell the item to
the buyer with the highest bid and charge the second-highest
bid

• buyers bid their valuations truthfully, i.e., bi = vi

• economic efficiency is achieved

Guido Schäfer Cost Sharing and Approximation Algorithms 4

Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid

• buyers have an incentive to underbid

Second-Price Auction (Vickrey Auction ’61): sell the item to
the buyer with the highest bid and charge the second-highest
bid

• buyers bid their valuations truthfully, i.e., bi = vi

• economic efficiency is achieved

Guido Schäfer Cost Sharing and Approximation Algorithms 4

Group-Strategyproof
Cost Sharing Mechanisms

Cooperative Cost Sharing

Setting:
• set of players are interested in receiving some service
• provision of service incurs a (player-set dependent) cost that

needs to be shared among the players
• players act strategically: aim at receiving service at low

individual price
• players can coordinate their strategies

Applications: sharing the cost of public investments, access to
network, etc.

Goal: design selection and payment scheme such that

• it is in every player’s self-interest to behave truthfully
• payments of selected players cover the service cost
• player selection is “socially efficient”

Guido Schäfer Cost Sharing and Approximation Algorithms 6

Motivating Example

2

2

2

2

2

1

2

1

1

1

2

1

1

Given:
• network N = (V ,E , c)
• set of players U = [n]
• player i ∈ U requests

connection between si , ti

Cost Function:
C(S) = min. cost to satisfy all
requests of players in S ⊆ U

Example: C({1,3,4}) = 5

Guido Schäfer Cost Sharing and Approximation Algorithms 7

Motivating Example

2

2

2

2

2

1

2

1

1

1

2

1

1

Given:
• network N = (V ,E , c)
• set of players U = [n]
• player i ∈ U requests

connection between si , ti

Cost Function:
C(S) = min. cost to satisfy all
requests of players in S ⊆ U

Example: C({1,3,4}) = 5

Guido Schäfer Cost Sharing and Approximation Algorithms 7

Motivating Example

s1, s2

t1

t2

t3

s3, s4

t4

2

2

2

2

2

1

2

1

1

1

2

1

1

Given:
• network N = (V ,E , c)
• set of players U = [n]
• player i ∈ U requests

connection between si , ti

Cost Function:
C(S) = min. cost to satisfy all
requests of players in S ⊆ U

Example: C({1,3,4}) = 5

Guido Schäfer Cost Sharing and Approximation Algorithms 7

Motivating Example

s1, s2

t1

t2

t3

s3, s4

t4

2

2

2

2

2

1

2

1

1

1

2

1

1

Given:
• network N = (V ,E , c)
• set of players U = [n]
• player i ∈ U requests

connection between si , ti

Cost Function:
C(S) = min. cost to satisfy all
requests of players in S ⊆ U

Example: C({1,3,4}) = 5

Guido Schäfer Cost Sharing and Approximation Algorithms 7

Motivating Example

s1, s2

t1

t2

t3

s3, s4

t4

2

2

2

2

2

1

2

1

1

1

2

1

1

Given:
• network N = (V ,E , c)
• set of players U = [n]
• player i ∈ U requests

connection between si , ti

Cost Function:
C(S) = min. cost to satisfy all
requests of players in S ⊆ U

Example: C({1,3,4}) = 5

Guido Schäfer Cost Sharing and Approximation Algorithms 7

Motivating Example

s1, s2

t1

t2

t3

s3, s4

t4

2

2

2

2

2

1

2

1

1

1

2

1

1

Given:
• network N = (V ,E , c)
• set of players U = [n]
• player i ∈ U requests

connection between si , ti

Cost Function:
C(S) = min. cost to satisfy all
requests of players in S ⊆ U

Example: C({1,2,3,4}) = 6

Guido Schäfer Cost Sharing and Approximation Algorithms 7

Motivating Example

s1, s2

t1

t2

t3

s3, s4

t4

Player i ∈ U:
• valuation vi (private!)
• bid bi (public)
• goal: maximize vi − pi

Cost Sharing Mechanism:
• selects a set Q of players

whose requests are satisfied
• determines a payment pi for

every i ∈ Q to distribute the
cost C(Q)

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Motivating Example

s1, s2

t1
2

t2
1
2

t3
3
2

s3, s4

t4

2

Player i ∈ U:
• valuation vi (private!)
• bid bi (public)
• goal: maximize vi − pi

Cost Sharing Mechanism:
• selects a set Q of players

whose requests are satisfied
• determines a payment pi for

every i ∈ Q to distribute the
cost C(Q)

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Motivating Example

s1, s2

t1
2

t2
1
2

t3
3
2

s3, s4

t4

2

Player i ∈ U:
• valuation vi (private!)
• bid bi (public)
• goal: maximize vi − pi

Cost Sharing Mechanism:
• selects a set Q of players

whose requests are satisfied
• determines a payment pi for

every i ∈ Q to distribute the
cost C(Q)

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Motivating Example

s1, s2

t1
2

t2
1
2

t3
3
2

s3, s4

t4

2

Player i ∈ U:
• valuation vi (private!)
• bid bi (public)
• goal: maximize vi − pi

Cost Sharing Mechanism:
• selects a set Q of players

whose requests are satisfied
• determines a payment pi for

every i ∈ Q to distribute the
cost C(Q)

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Motivating Example

s1, s2

t1
2/2

t2
1
2/0

t3
3
2/1

s3, s4

t4

2/2

Player i ∈ U:
• valuation vi (private!)
• bid bi (public)
• goal: maximize vi − pi

Cost Sharing Mechanism:
• selects a set Q of players

whose requests are satisfied
• determines a payment pi for

every i ∈ Q to distribute the
cost C(Q)

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Motivating Example

s1, s2

t1
2/2

t2
1
2/0

t3
3
2/1

s3, s4

t4

2/2

Objectives:

1 Truthfulness: bidding
truthfully is a dominant
strategy for every player

2 Budget Balance: payments
recover solution cost

3 Efficiency: selected player set
realizes “social efficiency”
objective

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Cost Sharing Model

Given:
• set U of players (interested in some service)
• every player i ∈ U:

• valuation vi : value (private!) of the service
• bid bi : maximum amount he is willing to pay

• player-set dependent cost function C : 2U → R
+

• defined implicitly: cost function of combinatorial optimization
problem P (e.g., Steiner forest, scheduling, etc.)

• C(S) = optimal solution cost for player set S ⊆ U

Guido Schäfer Cost Sharing and Approximation Algorithms 9

Cost Sharing Mechanism

Cost Sharing Mechanism M: collects bids (bi)i∈U from players
and computes

• set Q ⊆ U of players that receive service (selection scheme)
Notation: qi = 1 if i ∈ Q and qi = 0 otherwise

• payment pi for every player i ∈ U to distribute the cost C(Q)
(payment scheme)

1 No Positive Transfer: pi ≥ 0 for all i ∈ Q

2 Voluntary Participation: pi = 0 for all i /∈ Q and pi ≤ bi for
all i ∈ Q

3 Consumer Sovereignty: for every i ∈ U there exists a bid
b∗

i for which i is guaranteed to receive service

Guido Schäfer Cost Sharing and Approximation Algorithms 10

Truthfulness

Strategic Behavior: every player i ∈ U acts selfishly and
attempts to maximize his quasi-linear utility function:

ui(q,p) := qi(vi − pi)

⇒ player i will misreport his valuation (bi 6= vi) if this leads to
larger utility

Strategyproofness: utility of every player i ∈ U is maximized if
he bids truthfully bi = vi (independently of other players’ bids)

Group-Strategyproofness: same holds true even if players
form coalitions to coordinate their bids

Guido Schäfer Cost Sharing and Approximation Algorithms 11

Truthfulness

Strategic Behavior: every player i ∈ U acts selfishly and
attempts to maximize his quasi-linear utility function:

ui(q,p) := qi(vi − pi)

⇒ player i will misreport his valuation (bi 6= vi) if this leads to
larger utility

Strategyproofness: utility of every player i ∈ U is maximized if
he bids truthfully bi = vi (independently of other players’ bids)

Group-Strategyproofness: same holds true even if players
form coalitions to coordinate their bids

Guido Schäfer Cost Sharing and Approximation Algorithms 11

Truthfulness

Strategic Behavior: every player i ∈ U acts selfishly and
attempts to maximize his quasi-linear utility function:

ui(q,p) := qi(vi − pi)

⇒ player i will misreport his valuation (bi 6= vi) if this leads to
larger utility

Strategyproofness: utility of every player i ∈ U is maximized if
he bids truthfully bi = vi (independently of other players’ bids)

Group-Strategyproofness: same holds true even if players
form coalitions to coordinate their bids

Guido Schäfer Cost Sharing and Approximation Algorithms 11

Illustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S ⊆ U

ui (q̃, p̃) ≥ ui (q, p) ∀i ∈ S ⇒ ui (q̃, p̃) = ui (q, p) ∀i ∈ S

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

ui

players

bi = vi ∀i ∈ S

coalition S

Guido Schäfer Cost Sharing and Approximation Algorithms 12

Illustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S ⊆ U

∃i ∈ S : ui(q̃, p̃) > ui(q, p) ⇒ ∃j ∈ S : uj(q̃, p̃) < uj(q, p)

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

ui

players

bi = vi ∀i ∈ S

coalition S

Guido Schäfer Cost Sharing and Approximation Algorithms 12

Illustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S ⊆ U

∃i ∈ S : ui(q̃, p̃) > ui(q, p) ⇒ ∃j ∈ S : uj(q̃, p̃) < uj(q, p)

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

ui

players

bi = · ∀i ∈ S

coalition S

Guido Schäfer Cost Sharing and Approximation Algorithms 12

Illustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S ⊆ U

∃i ∈ S : ui(q̃, p̃) > ui(q, p) ⇒ ∃j ∈ S : uj(q̃, p̃) < uj(q, p)

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

ui

players

bi = · ∀i ∈ S

coalition S

Guido Schäfer Cost Sharing and Approximation Algorithms 12

“Classical” Objectives

1 Budget Balance: payments equal servicing cost
∑

i∈Q

pi = C(Q)

2 Group-Strategyproofness

3 Efficiency: assuming truthful bidding, selected player set
maximizes social welfare

∑

i∈Q

vi − C(Q) = max
S⊆U

∑

i∈S

vi − C(S)

Guido Schäfer Cost Sharing and Approximation Algorithms 13

Computational Issues

Want to design mechanisms that are computationally efficient

Problems:

1 underlying optimization problem P is often computationally
hard

2 truthfulness, budget balance and efficiency cannot be
achieved simultaneously [Green et al. ’76] [Roberts ’79]

[Feigenbaum et al., TCS ’03]

Solutions:

1 use approximation algorithm to compute an approximate
solution of cost C̄(Q) ≤ β · C(Q) where β ≥ 1

2 consider different (but equivalent) social efficiency objective

Guido Schäfer Cost Sharing and Approximation Algorithms 14

Approximate Budget Balance and Efficiency

Approximate Budget Balance: cost sharing mechanism M is
β-budget balanced if

C̄(Q) ≤
∑

i∈Q

pi ≤ β · C(Q) (β ≥ 1)

Define the social cost of a set S ⊆ U as

Π(S) :=
∑

i /∈S

vi + C(S) =
∑

i∈U

vi −
(

∑

i∈S

vi − C(S)
)

Approximate Efficiency: cost sharing mechanism M is
α-approximate if, assuming truthful bidding,

∑

i /∈Q

vi + C̄(Q) ≤ α · min
S⊆U

Π(S) (α ≥ 1)

[Roughgarden and Sundararajan, JACM ’09]

Guido Schäfer Cost Sharing and Approximation Algorithms 15

Approximate Budget Balance and Efficiency

Approximate Budget Balance: cost sharing mechanism M is
β-budget balanced if

C̄(Q) ≤
∑

i∈Q

pi ≤ β · C(Q) (β ≥ 1)

Define the social cost of a set S ⊆ U as

Π(S) :=
∑

i /∈S

vi + C(S) =
∑

i∈U

vi −
(

∑

i∈S

vi − C(S)
)

Approximate Efficiency: cost sharing mechanism M is
α-approximate if, assuming truthful bidding,

∑

i /∈Q

vi + C̄(Q) ≤ α · min
S⊆U

Π(S) (α ≥ 1)

[Roughgarden and Sundararajan, JACM ’09]

Guido Schäfer Cost Sharing and Approximation Algorithms 15

Approximate Budget Balance and Efficiency

Approximate Budget Balance: cost sharing mechanism M is
β-budget balanced if

C̄(Q) ≤
∑

i∈Q

pi ≤ β · C(Q) (β ≥ 1)

Define the social cost of a set S ⊆ U as

Π(S) :=
∑

i /∈S

vi + C(S) =
∑

i∈U

vi −
(

∑

i∈S

vi − C(S)
)

Approximate Efficiency: cost sharing mechanism M is
α-approximate if, assuming truthful bidding,

∑

i /∈Q

vi + C̄(Q) ≤ α · min
S⊆U

Π(S) (α ≥ 1)

[Roughgarden and Sundararajan, JACM ’09]

Guido Schäfer Cost Sharing and Approximation Algorithms 15

Objectives at a Glance

1 Computational Efficiency

2 Approximate Budget Balance:

C̄(Q) ≤
∑

i∈Q

pi ≤ β · C(Q) (β ≥ 1)

3 Group-Strategyproofness

4 Approximate Efficiency:

∑

i /∈Q

vi + C̄(Q) ≤ α · min
S⊆U

{

∑

i /∈S

vi + C(S)

}

(α ≥ 1)

Guido Schäfer Cost Sharing and Approximation Algorithms 16

Tricks of the Trade

How to achieve

β-budget balance?
(

C̄(Q) ≤
∑

i∈Q

pi ≤ β · C(Q)

)

Guido Schäfer Cost Sharing and Approximation Algorithms 17

Tricks of the Trade

How to achieve

group-strategyproofness?

(Not everybody in the coalition is better
off by misreporting his valuation.)

Guido Schäfer Cost Sharing and Approximation Algorithms 18

Moulin’s Framework

Cost Sharing Function: ξ : U × 2U → R
+

ξi(S) = cost share of player i with respect to set S ⊆ U

β-Budget Balance:

C̄(S) ≤
∑

i∈S

ξi(S) ≤ β · C(S) ∀S ⊆ U

Cross-Monotonicity: cost share of player i does not decrease
if other players leave the game:

∀S ⊆ T , ∀i ∈ S : ξi(S) ≥ ξi(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 19

Moulin’s Framework

Cost Sharing Function: ξ : U × 2U → R
+

ξi(S) = cost share of player i with respect to set S ⊆ U

β-Budget Balance:

C̄(S) ≤
∑

i∈S

ξi(S) ≤ β · C(S) ∀S ⊆ U

Cross-Monotonicity: cost share of player i does not decrease
if other players leave the game:

∀S ⊆ T , ∀i ∈ S : ξi(S) ≥ ξi(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 19

Moulin’s Framework

Moulin Mechanism M(ξ):
1: Initialize: Q ← U
2: If for each player i ∈ Q: ξi(Q) ≤ bi then STOP
3: Otherwise, remove from Q all players with ξi(Q) > bi and

repeat

Theorem

If ξ is cross-monotonic and β-budget balanced, then the Moulin
mechanism M(ξ) is group-strategyproof and β-budget balanced.

[Moulin, SCW ’99]

Guido Schäfer Cost Sharing and Approximation Algorithms 20

Tricks of the Trade

How to achieve

α-approximability?

∑

i /∈Q

vi + C̄(Q) ≤ α ·min
S⊆U

∑

i 6∈S

vi + C(S)

Guido Schäfer Cost Sharing and Approximation Algorithms 21

Summability

Suppose we are given an arbitrary order σ on the players in U.
Order each subset S ⊆ U according to σ:

S := {i1, . . . , i|S|} with ij ≺σ ik for all 1 ≤ j < k ≤ |S|.

Let Sj refer to the first j players of S.

A cost sharing function ξ is α-summable if for every order σ of
the players in U

∀S ⊆ U :

|S|
∑

j=1

ξij (Sj) ≤ α · C(S)

Guido Schäfer Cost Sharing and Approximation Algorithms 22

Summability

Suppose we are given an arbitrary order σ on the players in U.
Order each subset S ⊆ U according to σ:

S := {i1, . . . , i|S|} with ij ≺σ ik for all 1 ≤ j < k ≤ |S|.

Let Sj refer to the first j players of S.

A cost sharing function ξ is α-summable if for every order σ of
the players in U

∀S ⊆ U :

|S|
∑

j=1

ξij (Sj) ≤ α · C(S)

Guido Schäfer Cost Sharing and Approximation Algorithms 22

Summability

Suppose we are given an arbitrary order σ on the players in U.
Order each subset S ⊆ U according to σ:

S := {i1, . . . , i|S|} with ij ≺σ ik for all 1 ≤ j < k ≤ |S|.

Let Sj refer to the first j players of S.

A cost sharing function ξ is α-summable if for every order σ of
the players in U

∀S ⊆ U :

|S|
∑

j=1

ξij (Sj) ≤ α · C(S)

Guido Schäfer Cost Sharing and Approximation Algorithms 22

Summability

Suppose we are given an arbitrary order σ on the players in U.
Order each subset S ⊆ U according to σ:

S := {i1, . . . , i|S|} with ij ≺σ ik for all 1 ≤ j < k ≤ |S|.

Let Sj refer to the first j players of S.

A cost sharing function ξ is α-summable if for every order σ of
the players in U

∀S ⊆ U :

|S|
∑

j=1

ξij (Sj) ≤ α · C(S)

Guido Schäfer Cost Sharing and Approximation Algorithms 22

Summability and Approximability

Theorem

Let ξ be a cross-monotonic cost sharing function and let α, β be
the smallest numbers such that ξ is α-summable and β-budget
balanced. Then the Moulin mechanism M(ξ) is
(α+ β)-approximate and no better than max{α, β}-approximate.

[Roughgarden, Sundararajan, JACM ’09]

Guido Schäfer Cost Sharing and Approximation Algorithms 23

Moulin Mechanisms: Known Results I

Upper bounds β
[Moulin, Shenker, ET ’01] submodular cost 1
[Jain, Vazirani, STOC ’01] minimum spanning tree 1

Steiner tree and TSP 2
[Pál, Tardos, FOCS ’03] facility location 3

single-sink rent-or-buy 15
[Leonardi, Schäfer, EC ’03],
[Gupta et al., APPROX ’04]

single-sink rent-or-buy 4

[Leonardi, Schäfer, EC ’03] connected facility location 30
[Könemann, Leonardi, Schäfer, SODA ’05] Steiner forest 2
[Gupta et al., SODA ’07] price-collecting Steiner forest 3
[Bleischwitz, Monien, CIAC ’07] makespan scheduling 2

Lower bounds β
[Immorlica et al., SODA ’05] set cover, vertex cover nc

facility location 3
[Könemann et al., SODA ’05] Steiner tree 2
[Bleischwitz, Monien, CIAC ’07] makespan scheduling 2
[Brenner, Schäfer, STACS ’07] completion time scheduling, etc. n/c

Guido Schäfer Cost Sharing and Approximation Algorithms 24

Moulin Mechanisms: Known Results I

Upper bounds β
[Moulin, Shenker, ET ’01] submodular cost 1
[Jain, Vazirani, STOC ’01] minimum spanning tree 1

Steiner tree and TSP 2
[Pál, Tardos, FOCS ’03] facility location 3

single-sink rent-or-buy 15
[Leonardi, Schäfer, EC ’03],
[Gupta et al., APPROX ’04]

single-sink rent-or-buy 4

[Leonardi, Schäfer, EC ’03] connected facility location 30
[Könemann, Leonardi, Schäfer, SODA ’05] Steiner forest 2
[Gupta et al., SODA ’07] price-collecting Steiner forest 3
[Bleischwitz, Monien, CIAC ’07] makespan scheduling 2

Lower bounds β
[Immorlica et al., SODA ’05] set cover, vertex cover nc

facility location 3
[Könemann et al., SODA ’05] Steiner tree 2
[Bleischwitz, Monien, CIAC ’07] makespan scheduling 2
[Brenner, Schäfer, STACS ’07] completion time scheduling, etc. n/c

Guido Schäfer Cost Sharing and Approximation Algorithms 24

Moulin Mechanisms: Known Results II

β α
[Roughgarden, Sundararajan, STOC ’06] submodular cost 1 Θ(log n)

Steiner tree 2 Θ(log2 n)
[Chawla et al., WINE ’06] Steiner forest 2 Θ(log2 n)
[Roughgarden, Sundararajan, IPCO ’07] facility location 3 Θ(log n)

SROB 4 Θ(log2 n)
[Gupta et al., SODA ’07] price-collecting SF 3 Θ(log2 n)
[Brenner, Schäfer, STACS ’07] makespan scheduling 2 Θ(log n)

cost-stable problems Ω(log n)

Guido Schäfer Cost Sharing and Approximation Algorithms 25

Cross-Monotonic Cost Shares for
Steiner Forest

Steiner Forest Game

Goal: design a cost sharing mechanism for the Steiner forest
game

• graph G = (V ,E) with edge costs c : E → R
+

• player i requests connection between terminals si , ti ∈ V
identify players with terminal pairs: U = {(s1, t1), . . . , (sn, tn)}
• C(S) = cost of a minimum cost Steiner forest connecting all

terminal pairs in S ⊆ U

Theorem

There is a cross-monotonic and 2-budget balanced cost sharing
function for the Steiner forest game.

[Könemann, Leonardi, Schäfer, van Zwam, SICOMP ’08]

Guido Schäfer Cost Sharing and Approximation Algorithms 27

Primal-Dual Steiner Forest Algorithm

Fix a set Q ⊆ U of terminal pairs. We sketch the primal-dual
algorithm AKR(Q) of [Agrawal, Klein, Ravi, SICOMP ’95] for the
Steiner forest problem with terminal pair set Q.

A subset S ⊆ V of nodes is a Steiner cut if it separates at least
one terminal pair (s, t) ∈ Q. Let S be the set of all such cuts.

S

s

t

Observation: for every Steiner
cut S ∈ S, any feasible Steiner
forest must contain at least one
of the red edges

δ(S) = {uv ∈ E : u ∈ S, v /∈ S}

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Undirected Cut Formulation

Integer Program:

min
∑

e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

xe ∈ {0,1} ∀e ∈ E

Guido Schäfer Cost Sharing and Approximation Algorithms 29

Undirected Cut Formulation

Primal LP:
min

∑

e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

xe ≥ 0 ∀e ∈ E

Guido Schäfer Cost Sharing and Approximation Algorithms 29

Undirected Cut Formulation

Primal LP:
min

∑

e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

xe ≥ 0 ∀e ∈ E

Dual LP:
max

∑

S∈S

yS

s.t.
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ∈ S

Guido Schäfer Cost Sharing and Approximation Algorithms 29

Visualizing the Dual

y{s1}

y{t2}

s1

t2

t1 s2

e

The dual yS of Steiner cut S is
visualized as moat around S of
radius yS

An edge e is said to be tight if
its corresponding dual
constraint is tight:

∑

S:e∈δ(S)

yS = ce

Guido Schäfer Cost Sharing and Approximation Algorithms 30

Visualizing the Dual

y{s1}

y{t2}

s1

t2

t1 s2

e

The dual yS of Steiner cut S is
visualized as moat around S of
radius yS

An edge e is said to be tight if
its corresponding dual
constraint is tight:

∑

S:e∈δ(S)

yS = ce

Guido Schäfer Cost Sharing and Approximation Algorithms 30

Visualizing the Dual

y{s1}

y{t2}
y{s1,t2}

s1

t2

t1 s2

e

The dual yS of Steiner cut S is
visualized as moat around S of
radius yS

An edge e is said to be tight if
its corresponding dual
constraint is tight:

∑

S:e∈δ(S)

yS = ce

Guido Schäfer Cost Sharing and Approximation Algorithms 30

High-Level Description

Execution of AKR can be seen as a process over time τ :

• (F τ , yτ) = forest and dual packing
• terminal v is active if it is separated from its mate in F τ

• F̄ τ = subgraph induced by tight edges with respect to yτ

• connected components of F̄ τ are called moats
• moat is active if it contains an active terminal

Algorithm AKR:
1: F 0 = ∅, y0 = 0
2: repeat
3: simultaneously increase duals of all active moats until

some path P between two active terminals becomes tight
4: add tight segments of P to the current forest F τ

5: until all terminals are inactive

Guido Schäfer Cost Sharing and Approximation Algorithms 31

Illustration: AKR

τ = 0.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 0.3

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 1.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 1.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 1.5

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 1.5

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 2.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 2.5

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 3.5

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 4.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 5.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Illustration: AKR

τ = 5.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Approximation Guarantee

Theorem

The algorithm AKR(Q) computes a feasible forest F for terminal
pair set Q and a feasible dual (yS)S∈S such that

c(F) ≤

(

2−
1
k

)

∑

S∈S

yS ≤

(

2−
1
k

)

OPT(Q),

where k is the number of terminal pairs in Q.
[Agrawal, Klein, Ravi, SICOMP ’95]

Idea: run AKR and distribute (twice) the total dual among the
terminals

Guido Schäfer Cost Sharing and Approximation Algorithms 33

Sharing the Dual Growth

s1

s2

s3

t1

t2

t3

Example:
• all terminals are active

• grow active moats by ǫ

• growth of each moat is shared
evenly among active terminals:

s1 : ǫ/3

t2 : ǫ/2

t1 : ǫ

Guido Schäfer Cost Sharing and Approximation Algorithms 34

Sharing the Dual Growth

s1

s2

s3

t1

t2

t3

ǫ

Example:
• all terminals are active

• grow active moats by ǫ

• growth of each moat is shared
evenly among active terminals:

s1 : ǫ/3

t2 : ǫ/2

t1 : ǫ

Guido Schäfer Cost Sharing and Approximation Algorithms 34

Sharing the Dual Growth

s1

s2

s3

t1

t2

t3

ǫ

Example:
• all terminals are active

• grow active moats by ǫ

• growth of each moat is shared
evenly among active terminals:

s1 : ǫ/3

t2 : ǫ/2

t1 : ǫ

Guido Schäfer Cost Sharing and Approximation Algorithms 34

Sharing the Dual Growth

s1

s2

s3

t1

t2

t3

ǫ

aτ
v = number of active terminals in

the moat containing v at time τ

Suppose terminal v ∈ Q becomes
inactive at time T . Define the cost
share of v as

ξv (Q) =

∫ T

0

1
aτ

v
dτ

For terminal pair (s, t) ∈ Q:

ξst(Q) = 2 · (ξs(Q) + ξt(Q))

Guido Schäfer Cost Sharing and Approximation Algorithms 34

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 0.0

s1 s2 s3 t3 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.0 0.0 0.0 0.0 0.0 0.0

Guido Schäfer Cost Sharing and Approximation Algorithms 35

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 0.5

s1 s2 s3 t3 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.5 0.5 0.5 0.5 0.5 0.5

Guido Schäfer Cost Sharing and Approximation Algorithms 35

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 0.5

s1 s2 s3 t3 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.5 0.5 0.5 0.5 0.5 0.5

Guido Schäfer Cost Sharing and Approximation Algorithms 35

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 0.5

s1 s2 s3 t3 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.5 0.5 0.5 0.5 0.5 0.5

Guido Schäfer Cost Sharing and Approximation Algorithms 35

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 3.5

s1 s2 s3 t3 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

Guido Schäfer Cost Sharing and Approximation Algorithms 35

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 3.5

s1 s2 s3 t3 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

Guido Schäfer Cost Sharing and Approximation Algorithms 35

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 3.5

s1 s2 s3 t3 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

Guido Schäfer Cost Sharing and Approximation Algorithms 35

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 0.0

s1 s2 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

AKR(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.0 0.0 – – 0.0 0.0

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 0.5

s1 s2 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

AKR(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.5 0.5 – – 0.5 0.5

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 1.5

s1 s2 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

AKR(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
1.5 1.5 – – 1.5 1.5

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 1.5

s1 s2 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

AKR(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
1.5 1.5 – – 1.5 1.5

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 1.5

s1 s2 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

AKR(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
1.5 1.5 – – 1.5 1.5

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 2.5

s1 s2 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

AKR(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
2.5 1.5 – – 1.5 2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 2.5

s1 s2 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

AKR(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
2.5 1.5 – – 1.5 2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1, t1), (s2, t2), (s3, t3)}, Q0 = Q \ {(s3, t3)}

τ = 2.5

s1 s2 t2 t1
4 1 1 1 4

AKR(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
3.5 0.5 0.5 0.5 0.5 3.5

AKR(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
2.5 1.5 – – 1.5 2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Independent Activity Time

Question: How long would a terminal pair need to connect if all
other terminal pairs were absent?

4.5

s1 s2 s3 t3 t2 t13 1 1 3

Death time: for each terminal pair (s, t) ∈ U define

d(s) = d(t) = d(s, t) := 1
2c(s, t),

where c(s, t) is cost of minimum-cost s, t-path.

Guido Schäfer Cost Sharing and Approximation Algorithms 37

Cross-Monotonic Primal-Dual Algorithm

New Activity Notion: terminals s, t are active until time d(s, t)

Primal-Dual Algorithm KLS: as before, but with modified
activity notion

Cost Shares: define cost share of terminal v ∈ Q as:

ξv (Q) =

∫ d(v)

0

1
aτ

v
dτ

Theorem

The cost shares ξ computed by KLS are cross-monotonic and
2-budget balanced.

[Könemann, Leonardi, Schäfer, van Zwam, SICOMP ’08]

Guido Schäfer Cost Sharing and Approximation Algorithms 38

Example

τ = 0.0

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.0 0.0 0.0 0.0 0.0 0.0

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 0.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.5 0.5 0.5 0.5 0.5 0.5

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 0.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.5 0.5 0.5 0.5 0.5 0.5

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 0.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.5 0.5 0.5 0.5 0.5 0.5

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 1.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
1.5 1.0 0.5 0.5 1.0 1.5

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 1.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
1.5 1.0 0.5 0.5 1.0 1.5

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 2.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
2.5 1.0 0.5 0.5 1.0 2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 2.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
2.5 1.0 0.5 0.5 1.0 2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 5.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 5.5

s1 s2 s3 t3 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example

τ = 0.0

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.0 0.0 – – 0.0 0.0

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example

τ = 0.5

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
0.5 0.5 – – 0.5 0.5

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example

τ = 1.5

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
1.5 1.5 – – 1.5 1.5

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example

τ = 1.5

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
1.5 1.5 – – 1.5 1.5

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example

τ = 1.5

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
1.5 1.5 – – 1.5 1.5

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example

τ = 2.5

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
2.5 1.5 – – 1.5 2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example

τ = 2.5

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
2.5 1.5 – – 1.5 2.5

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example

τ = 5.5

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.5 – – 1.5 4.0

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example

τ = 5.5

s1 s2 t2 t1

4 1 1 1 4

KLS(Q)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.0 0.5 0.5 1.0 4.0

KLS(Q0)
ξs1 ξs2 ξs3 ξt3 ξt2 ξt1
4.0 1.5 – – 1.5 4.0

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Proving Cross-Monotonicity

Lemma

The cost shares ξ computed by KLS are cross-monotonic.

Proof (sketch):
Mτ (v) = moat of v at time τ in KLS(Q), Q ⊆ U
Mτ

0(v) = moat of v at time τ in KLS(Q0), Q0 = Q \ {(s, t)}

Obs.: death-times of terminals are instance independent!

Mτ
0(v) active ⇒ Mτ (v) active

⇒ Mτ
0(v) ⊆M

τ (v)

⇒ aτ
0(v) ≤ aτ (v)

ξv (Q) =

∫ d(v)

0

1
aτ (v)

dτ ≤
∫ d(v)

0

1
aτ

0(v)
dτ = ξv (Q0)

Guido Schäfer Cost Sharing and Approximation Algorithms 41

Proving Cross-Monotonicity

Lemma

The cost shares ξ computed by KLS are cross-monotonic.

Proof (sketch):
Mτ (v) = moat of v at time τ in KLS(Q), Q ⊆ U
Mτ

0(v) = moat of v at time τ in KLS(Q0), Q0 = Q \ {(s, t)}

Obs.: death-times of terminals are instance independent!

Mτ
0(v) active ⇒ Mτ (v) active

⇒ Mτ
0(v) ⊆M

τ (v)

⇒ aτ
0(v) ≤ aτ (v)

ξv (Q) =

∫ d(v)

0

1
aτ (v)

dτ ≤
∫ d(v)

0

1
aτ

0(v)
dτ = ξv (Q0)

Guido Schäfer Cost Sharing and Approximation Algorithms 41

Proving Cross-Monotonicity

Lemma

The cost shares ξ computed by KLS are cross-monotonic.

Proof (sketch):
Mτ (v) = moat of v at time τ in KLS(Q), Q ⊆ U
Mτ

0(v) = moat of v at time τ in KLS(Q0), Q0 = Q \ {(s, t)}

Obs.: death-times of terminals are instance independent!

Mτ
0(v) active ⇒ Mτ (v) active

⇒ Mτ
0(v) ⊆M

τ (v)

⇒ aτ
0(v) ≤ aτ (v)

ξv (Q) =

∫ d(v)

0

1
aτ (v)

dτ ≤
∫ d(v)

0

1
aτ

0(v)
dτ = ξv (Q0)

Guido Schäfer Cost Sharing and Approximation Algorithms 41

Proving Cross-Monotonicity

Lemma

The cost shares ξ computed by KLS are cross-monotonic.

Proof (sketch):
Mτ (v) = moat of v at time τ in KLS(Q), Q ⊆ U
Mτ

0(v) = moat of v at time τ in KLS(Q0), Q0 = Q \ {(s, t)}

Obs.: death-times of terminals are instance independent!

Mτ
0(v) active ⇒ Mτ (v) active

⇒ Mτ
0(v) ⊆M

τ (v)

⇒ aτ
0(v) ≤ aτ (v)

ξv (Q) =

∫ d(v)

0

1
aτ (v)

dτ ≤
∫ d(v)

0

1
aτ

0(v)
dτ = ξv (Q0)

Guido Schäfer Cost Sharing and Approximation Algorithms 41

Proving Cross-Monotonicity

Lemma

The cost shares ξ computed by KLS are cross-monotonic.

Proof (sketch):
Mτ (v) = moat of v at time τ in KLS(Q), Q ⊆ U
Mτ

0(v) = moat of v at time τ in KLS(Q0), Q0 = Q \ {(s, t)}

Obs.: death-times of terminals are instance independent!

Mτ
0(v) active ⇒ Mτ (v) active

⇒ Mτ
0(v) ⊆M

τ (v)

⇒ aτ
0(v) ≤ aτ (v)

ξv (Q) =

∫ d(v)

0

1
aτ (v)

dτ ≤
∫ d(v)

0

1
aτ

0(v)
dτ = ξv (Q0)

Guido Schäfer Cost Sharing and Approximation Algorithms 41

Proving Cross-Monotonicity

Lemma

The cost shares ξ computed by KLS are cross-monotonic.

Proof (sketch):
Mτ (v) = moat of v at time τ in KLS(Q), Q ⊆ U
Mτ

0(v) = moat of v at time τ in KLS(Q0), Q0 = Q \ {(s, t)}

Obs.: death-times of terminals are instance independent!

Mτ
0(v) active ⇒ Mτ (v) active

⇒ Mτ
0(v) ⊆M

τ (v)

⇒ aτ
0(v) ≤ aτ (v)

ξv (Q) =

∫ d(v)

0

1
aτ (v)

dτ ≤
∫ d(v)

0

1
aτ

0(v)
dτ = ξv (Q0)

Guido Schäfer Cost Sharing and Approximation Algorithms 41

Proving Cross-Monotonicity

Lemma

The cost shares ξ computed by KLS are cross-monotonic.

Proof (sketch):
Mτ (v) = moat of v at time τ in KLS(Q), Q ⊆ U
Mτ

0(v) = moat of v at time τ in KLS(Q0), Q0 = Q \ {(s, t)}

Obs.: death-times of terminals are instance independent!

Mτ
0(v) active ⇒ Mτ (v) active

⇒ Mτ
0(v) ⊆M

τ (v)

⇒ aτ
0(v) ≤ aτ (v)

ξv (Q) =

∫ d(v)

0

1
aτ (v)

dτ ≤
∫ d(v)

0

1
aτ

0(v)
dτ = ξv (Q0)

Guido Schäfer Cost Sharing and Approximation Algorithms 41

Proving Budget Balance

Lemma

The cost shares ξ computed by KLS are 2-budget balanced.

Proof (sketch):
(F , y) = forest and dual computed by KLS(Q), Q ⊆ U. Then

c(F) ≤ 2
∑

S

yS =
∑

i∈Q

ξsi ti

But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that

∑

yS ≤ OPT(Q)!

Idea: charge dual growth against an optimal forest F ∗ for Q.

Guido Schäfer Cost Sharing and Approximation Algorithms 42

Proving Budget Balance

Lemma

The cost shares ξ computed by KLS are 2-budget balanced.

Proof (sketch):
(F , y) = forest and dual computed by KLS(Q), Q ⊆ U. Then

c(F) ≤ 2
∑

S

yS =
∑

i∈Q

ξsi ti

But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that

∑

yS ≤ OPT(Q)!

Idea: charge dual growth against an optimal forest F ∗ for Q.

Guido Schäfer Cost Sharing and Approximation Algorithms 42

Proving Budget Balance

Lemma

The cost shares ξ computed by KLS are 2-budget balanced.

Proof (sketch):
(F , y) = forest and dual computed by KLS(Q), Q ⊆ U. Then

c(F) ≤ 2
∑

S

yS =
∑

i∈Q

ξsi ti

But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that

∑

yS ≤ OPT(Q)!

Idea: charge dual growth against an optimal forest F ∗ for Q.

Guido Schäfer Cost Sharing and Approximation Algorithms 42

Proving Budget Balance

Lemma

The cost shares ξ computed by KLS are 2-budget balanced.

Proof (sketch):
(F , y) = forest and dual computed by KLS(Q), Q ⊆ U. Then

c(F) ≤ 2
∑

S

yS =
∑

i∈Q

ξsi ti

But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that

∑

yS ≤ OPT(Q)!

Idea: charge dual growth against an optimal forest F ∗ for Q.

Guido Schäfer Cost Sharing and Approximation Algorithms 42

Proving Budget Balance

Lemma

The cost shares ξ computed by KLS are 2-budget balanced.

Proof (sketch):
(F , y) = forest and dual computed by KLS(Q), Q ⊆ U. Then

c(F) ≤ 2
∑

S

yS =
∑

i∈Q

ξsi ti

But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that

∑

yS ≤ OPT(Q)!

Idea: charge dual growth against an optimal forest F ∗ for Q.

Guido Schäfer Cost Sharing and Approximation Algorithms 42

Proving Budget Balance

Lemma

The cost shares ξ computed by KLS are 2-budget balanced.

Proof (sketch):
(F , y) = forest and dual computed by KLS(Q), Q ⊆ U. Then

c(F) ≤ 2
∑

S

yS =
∑

i∈Q

ξsi ti

But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that

∑

yS ≤ OPT(Q)!

Idea: charge dual growth against an optimal forest F ∗ for Q.

Guido Schäfer Cost Sharing and Approximation Algorithms 42

Proving Budget Balance

Let Q = {(s1, t1), . . . , (sk , tk)} such that

d(s1, t1) ≤ · · · ≤ d(sk , tk)

Define precedence order on terminals:

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Terminal v is responsible at time τ if u ≺ v for all u ∈ Mτ (v).
Define r τ (v) = 1 if v is responsible at time τ and r τ (v) = 0
otherwise. Let the responsibility time of v be

r(v) =
∫ d(v)

0
r τ (v)dτ

Intuition: No sharing of dual growth; the responsible terminal
gets it all! Suffices to bound total responsibility time by OPT(Q).

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Proving Budget Balance

Let Q = {(s1, t1), . . . , (sk , tk)} such that

d(s1, t1) ≤ · · · ≤ d(sk , tk)

Define precedence order on terminals:

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Terminal v is responsible at time τ if u ≺ v for all u ∈ Mτ (v).
Define r τ (v) = 1 if v is responsible at time τ and r τ (v) = 0
otherwise. Let the responsibility time of v be

r(v) =
∫ d(v)

0
r τ (v)dτ

Intuition: No sharing of dual growth; the responsible terminal
gets it all! Suffices to bound total responsibility time by OPT(Q).

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Proving Budget Balance

Let Q = {(s1, t1), . . . , (sk , tk)} such that

d(s1, t1) ≤ · · · ≤ d(sk , tk)

Define precedence order on terminals:

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Terminal v is responsible at time τ if u ≺ v for all u ∈ Mτ (v).
Define r τ (v) = 1 if v is responsible at time τ and r τ (v) = 0
otherwise. Let the responsibility time of v be

r(v) =
∫ d(v)

0
r τ (v)dτ

Intuition: No sharing of dual growth; the responsible terminal
gets it all! Suffices to bound total responsibility time by OPT(Q).

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Proving Budget Balance

Let Q = {(s1, t1), . . . , (sk , tk)} such that

d(s1, t1) ≤ · · · ≤ d(sk , tk)

Define precedence order on terminals:

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Terminal v is responsible at time τ if u ≺ v for all u ∈ Mτ (v).
Define r τ (v) = 1 if v is responsible at time τ and r τ (v) = 0
otherwise. Let the responsibility time of v be

r(v) =
∫ d(v)

0
r τ (v)dτ

Intuition: No sharing of dual growth; the responsible terminal
gets it all! Suffices to bound total responsibility time by OPT(Q).

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Proving Budget Balance

Let Q = {(s1, t1), . . . , (sk , tk)} such that

d(s1, t1) ≤ · · · ≤ d(sk , tk)

Define precedence order on terminals:

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Terminal v is responsible at time τ if u ≺ v for all u ∈ Mτ (v).
Define r τ (v) = 1 if v is responsible at time τ and r τ (v) = 0
otherwise. Let the responsibility time of v be

r(v) =
∫ d(v)

0
r τ (v)dτ

Intuition: No sharing of dual growth; the responsible terminal
gets it all! Suffices to bound total responsibility time by OPT(Q).

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Proving Budget Balance

Let Q = {(s1, t1), . . . , (sk , tk)} such that

d(s1, t1) ≤ · · · ≤ d(sk , tk)

Define precedence order on terminals:

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Terminal v is responsible at time τ if u ≺ v for all u ∈ Mτ (v).
Define r τ (v) = 1 if v is responsible at time τ and r τ (v) = 0
otherwise. Let the responsibility time of v be

r(v) =
∫ d(v)

0
r τ (v)dτ

Intuition: No sharing of dual growth; the responsible terminal
gets it all! Suffices to bound total responsibility time by OPT(Q).

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Proving Budget Balance

v1

v2

v3

v4

v5

v6

Consider a tree T ∈ F ∗ and assume
that T spans terminals {v1, . . . , vp}.

Every terminal v that is responsible at
time τ loads a distinct part of T . Note:
argument applies if there are at least
two responsible terminals at time τ .

Let vp be the terminal with highest
responsibility time. Then

p−1
∑

i=1

r(vi) ≤ c(T).

Note: vp ’s mate is in T as well.
⇒ r(vp) ≤ d(vp) ≤

1
2c(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 44

Proving Budget Balance

v1

v2

v3

v4

v5

v6

Consider a tree T ∈ F ∗ and assume
that T spans terminals {v1, . . . , vp}.

Every terminal v that is responsible at
time τ loads a distinct part of T . Note:
argument applies if there are at least
two responsible terminals at time τ .

Let vp be the terminal with highest
responsibility time. Then

p−1
∑

i=1

r(vi) ≤ c(T).

Note: vp ’s mate is in T as well.
⇒ r(vp) ≤ d(vp) ≤

1
2c(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 44

Proving Budget Balance

v1

v2

v3

v4

v5

v6

Consider a tree T ∈ F ∗ and assume
that T spans terminals {v1, . . . , vp}.

Every terminal v that is responsible at
time τ loads a distinct part of T . Note:
argument applies if there are at least
two responsible terminals at time τ .

Let vp be the terminal with highest
responsibility time. Then

p−1
∑

i=1

r(vi) ≤ c(T).

Note: vp ’s mate is in T as well.
⇒ r(vp) ≤ d(vp) ≤

1
2c(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 44

Proving Budget Balance

v1

v2

v3

v4

v5

v6

Consider a tree T ∈ F ∗ and assume
that T spans terminals {v1, . . . , vp}.

Every terminal v that is responsible at
time τ loads a distinct part of T . Note:
argument applies if there are at least
two responsible terminals at time τ .

Let vp be the terminal with highest
responsibility time. Then

p−1
∑

i=1

r(vi) ≤ c(T).

Note: vp ’s mate is in T as well.
⇒ r(vp) ≤ d(vp) ≤

1
2c(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 44

Proving Budget Balance

v̄6

v2

v3

v4

v5

v6

Consider a tree T ∈ F ∗ and assume
that T spans terminals {v1, . . . , vp}.

Every terminal v that is responsible at
time τ loads a distinct part of T . Note:
argument applies if there are at least
two responsible terminals at time τ .

Let vp be the terminal with highest
responsibility time. Then

p−1
∑

i=1

r(vi) ≤ c(T).

Note: vp ’s mate is in T as well.
⇒ r(vp) ≤ d(vp) ≤

1
2c(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 44

Proving Budget Balance

v̄6

v2

v3

v4

v5

v6

Consider a tree T ∈ F ∗ and assume
that T spans terminals {v1, . . . , vp}.

Every terminal v that is responsible at
time τ loads a distinct part of T . Note:
argument applies if there are at least
two responsible terminals at time τ .

Let vp be the terminal with highest
responsibility time. Then

p−1
∑

i=1

r(vi) ≤ c(T).

Note: vp ’s mate is in T as well.
⇒ r(vp) ≤ d(vp) ≤

1
2c(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 44

Further Consequences

Suppose our modified Steiner forest algorithm produces forest
F and (infeasible) dual y for terminal pair set Q.

Surprisingly, can still show

c(F) ≤ (2− 1/k) ·OPT(Q)

Our dual is often much better than the AKR-dual!

1
s1 s2 sk−1 sk t1t2tk−1tk

OPT(Q) 2k − 1
Standard AKR-dual k
Our dual 2k − 1

Guido Schäfer Cost Sharing and Approximation Algorithms 45

Lifted-Cut Dual for Steiner Forests

Recall: death-times induce precedence order ≺ on terminals

s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sk ≺ tk

Associate each cut S ⊆ V with a terminal

Example: v ≺ v̄ ≺ w ≺ w̄

w

v

w̄

v̄

S ∈ Sw

w

v

w̄

v̄

S ∈ Nw

S ∈ Nw̄

Guido Schäfer Cost Sharing and Approximation Algorithms 46

Lifted-Cut Dual for Steiner Forests

OPTLC = max
∑

S⊆V

yS

s.t.
∑

S⊆V :e∈δ(S)

yS ≤ ce ∀e ∈ E

∑

S∈Sv

yS +
∑

S∈Nv

yS ≤ d(v) ∀v ∈ R

yS ≥ 0 ∀S ⊆ V

Theorem

1 OPTUC ≤ OPTLC ≤ OPT
2 IP/LC gap is about 2
3 Additional strength of LC can be used to prove better

approximation ratio of AKR for certain instances

[Könemann, Leonardi, Schäfer, van Zwam, SICOMP ’08]

Guido Schäfer Cost Sharing and Approximation Algorithms 47

Related Results and Extensions

There is no (2− ǫ)-budget balance cross-monotonic cost
sharing scheme for the Steiner tree problem

[Könemann, Leonardi, Schäfer, van Zwam, SICOMP ’08]

KLS is Θ(log2 n)-approximate with respect to social cost
[Chawla, Roughgarden, Sundararajan, WINE ’06]

Similar idea yields 3-budget balanced, Θ(log2 n)-approximate,
cross-monotonic cost sharing function for the price-collecting
Steiner forest problem

[Gupta, Könemann, Leonardi, Ravi, Schäfer, SODA ’07]

Guido Schäfer Cost Sharing and Approximation Algorithms 48

General Connectivity Problems

Idea:
• every player i has a cut-requirement function fi : 2V → {0,1}
• model general connectivity game via the following LP

min
∑

e∈E

ce · xe

s.t.
∑

e∈δ(S)

xe ≥ fi(S) ∀S ⊆ V , ∀i ∈ U

xe ∈ {0, 1} ∀e ∈ E

• adapt approximation framework by Goemans and Williamson
to obtain O(1)-budget balance, cross-monotonic cost sharing
function [Könemann, Leonardi, Schäfer, Wheatley, manuscript]

Guido Schäfer Cost Sharing and Approximation Algorithms 49

Conclusions and Open Problems

Conclusions

Moulin’s framework enables to derive group-strategyproof cost
sharing mechanisms through cross-monotonic cost sharing
functions.

Have techniques at hand to bound social cost efficiency of
Moulin mechanisms.

Trade-off between budget balance and social cost
approximation guarantees of Moulin mechanisms are
well-understood for several fundamental optimization problems.

Designing cross-monotonic cost sharing functions may lead to
new insights that are useful in other contexts.

Guido Schäfer Cost Sharing and Approximation Algorithms 51

Characterization of GSP Mechanisms

Group-Strategyproof
Cost Sharing Mechanisms

Guido Schäfer Cost Sharing and Approximation Algorithms 52

Characterization of GSP Mechanisms

Group-Strategyproof
Cost Sharing Mechanisms

Moulin
Mechanisms

Guido Schäfer Cost Sharing and Approximation Algorithms 52

Characterization of GSP Mechanisms

Group-Strategyproof
Cost Sharing Mechanisms

Moulin
Mechanisms

?
Guido Schäfer Cost Sharing and Approximation Algorithms 52

Characterization of GSP Mechanisms

Group-Strategyproof
Cost Sharing Mechanisms

Moulin
Mechanisms

Characterization has recently been given
[Pountourakis and Vidali, ESA ’10]

Guido Schäfer Cost Sharing and Approximation Algorithms 52

Open Problems

Open Problem: Can we exploit the characterization of
group-strategyproof cost sharing mechanisms algorithmically?

Open Problem: Are there other general techniques to derive
group-strategyproof cost sharing mechanisms?

Open Problem: What are the trade-offs between
group-strategyproofness and budget balance and social cost
approximation guarantees?

Guido Schäfer Cost Sharing and Approximation Algorithms 53

	Group-Strategyproof Cost Sharing Mechanisms
	Motivation
	Model
	Objectives
	Tricks of the Trade
	Known Results

	Cross-Monotonic Cost Shares for Steiner Forest
	Steiner Forest Game
	Steiner Forest Algorithm
	Steiner Forest Cost Sharing Algorithm
	Cross-Monotonicity
	Budget Balance
	Further Consequences

	Conclusions and Open Problems

