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Motivation: Auction

e suppose we want to auction off a single
item to one of n potential buyers in U

e every bidder i € U has a valuation v; for
receiving the item

e valuation is only known to i and not to the
auctioneer

e every bidder i announces a bid b;

Mechanism: protocol that based on the bids determines a
winner of the auction and a selling price p
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Motivation: Auction

Selfishness: every player wants to maximize his net gain
(vi — p)di, where g; = 1 if i is the winner and g; = O otherwise.

Goal: economic efficiency, i.e., sell the item to the buyer with
maximum valuation.

Question: Can efficiency be achieved although valuations are
private?
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Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid
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Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid

¢ buyers have an incentive to underbid
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Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid

¢ buyers have an incentive to underbid

Second-Price Auction (Vickrey Auction '61): sell the item to
the buyer with the highest bid and charge the second-highest
bid
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Vickrey’s Truthful Mechanism

First-Price Auction: sell the item to the buyer with the highest
bid and charge his bid

¢ buyers have an incentive to underbid

Second-Price Auction (Vickrey Auction '61): sell the item to
the buyer with the highest bid and charge the second-highest
bid

¢ buyers bid their valuations truthfully, i.e., b; = v;

e economic efficiency is achieved
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Cooperative Cost Sharing

Setting:
e set of players are interested in receiving some service
e provision of service incurs a (player-set dependent) cost that
needs to be shared among the players
e players act strategically: aim at receiving service at low
individual price
e players can coordinate their strategies

Applications: sharing the cost of public investments, access to
network, etc.

Goal: design selection and payment scheme such that

e it is in every player’s self-interest to behave truthfully
e payments of selected players cover the service cost
e player selection is “socially efficient”
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Motivating Example

Given:
e network N = (V,E, c)
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Motivating Example

Given:

e network N = (V,E, c)
e set of players U = [n]
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Motivating Example

Given:
e network N = (V,E, c)
e set of players U = [n]
e player i € U requests
connection between s;, {;

S3,S4
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Motivating Example

Given:
e network N = (V,E, c)
e set of players U = [n]
e player i € U requests
connection between s;, {;

Cost Function:
t; C(S) = min. cost to satisfy all
requests of playersin S C U

S3,S4
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Motivating Example

Given:
e network N = (V,E, c)
e set of players U = [n]
e player i € U requests
connection between s;, {;

Cost Function:
t; C(S) = min. cost to satisfy all
requests of playersin S C U

Example: C({1,3,4}) =5

S3,S4
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Motivating Example

Given:
e network N = (V,E, c)
e set of players U = [n]
e player i € U requests
connection between s;, {;

Cost Function:
t; C(S) = min. cost to satisfy all
requests of playersin S C U

Example: C({1,2,3,4}) =6

S3,S4
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Motivating Example

Player i € U:
e valuation v; (private!)

S3,S4
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Motivating Example

Player i € U:
e valuation v; (private!)
o (public)

S3,S4
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Motivating Example

Player i € U:
e valuation v; (private!)
o (public)

e goal: maximize v; — p;

S3,S4
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Motivating Example

Player i € U:

e valuation v; (private!)
o (public)
e goal: maximize v; — p;

Cost Sharing Mechanism:

e selects a set Q of players
whose requests are satisfied

S3,S4
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Motivating Example

Player i € U:

e valuation v; (private!)
o (public)
e goal: maximize v; — p;

Cost Sharing Mechanism:

e selects a set Q of players

O t3 whose requests are satisfied
/1 e determines a payment p; for
every i € Q to distribute the

1,52 cost C(Q)

S3,S4

Guido Schafer Cost Sharing and Approximation Algorithms



Motivating Example

t2

@ /0 Objectives:

Truthfulness: bidding
truthfully is a dominant
strategy for every player

Budget Balance: payments
recover solution cost

t -
3 Efficiency: selected player set
realizes “social efficiency”
S1,S; objective

S3,S4

Guido Schafer Cost Sharing and Approximation Algorithms



Cost Sharing Model

Given:
e set U of players (interested in some service)

e every playeri € U:
e valuation v;: value (private!) of the service
e bid bj: maximum amount he is willing to pay
« player-set dependent cost function C : 2Y — R*

e defined implicitly: cost function of combinatorial optimization
problem P (e.g., Steiner forest, scheduling, etc.)
e C(S) = optimal solution cost for player setS C U
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Cost Sharing Mechanism

Cost Sharing Mechanism M: collects bids (b;)icy from players
and computes

e set Q C U of players that receive service (selection scheme)
Notation: q; = 1ifi € Q and g; = 0 otherwise

e payment p; for every player i € U to distribute the cost C(Q)
(payment scheme)

No Positive Transfer: p; > 0foralli € Q

Voluntary Participation: p; =0 foralli ¢ Q and p; < b; for
allieQ

Consumer Sovereignty: for every i € U there exists a bid
b’ for which i is guaranteed to receive service
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Truthfulness

Strategic Behavior: every player i € U acts selfishly and
attempts to maximize his quasi-linear utility function:

ui(d, p) :== di(vi — pi)

= player i will misreport his valuation (b; # v;) if this leads to
larger utility
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Truthfulness

Strategic Behavior: every player i € U acts selfishly and
attempts to maximize his quasi-linear utility function:

ui(d, p) :== di(vi — pi)

= player i will misreport his valuation (b; # v;) if this leads to
larger utility

Strategyproofness: utility of every player i € U is maximized if
he bids truthfully b; = v; (independently of other players’ bids)
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Truthfulness

Strategic Behavior: every player i € U acts selfishly and
attempts to maximize his quasi-linear utility function:

ui(d, p) :== di(vi — pi)

= player i will misreport his valuation (b; # v;) if this leads to
larger utility

Strategyproofness: utility of every player i € U is maximized if
he bids truthfully b; = v; (independently of other players’ bids)

Group-Strategyproofness: same holds true even if players
form coalitions to coordinate their bids
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lllustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S C U
ui(@,p) > ui(a,p) viesS = ui(4,p)=ui(a,p) Vies

(q,p): outcome if b; = v; for everyi € S
(g,p): outcome if b = - foreveryi € S
i bij=v; VieS
L | players

coalition S
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lllustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S C U
JieS: uw(d,p)>u(a,p) = JeS: u@p) <u(ap)

(q,p): outcome if b; = v; for everyi € S
(g,p): outcome if b = - foreveryi € S
i bij=v; VieS

I

L | players
coalition S
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lllustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S C U
JieS: uw(d,p)>u(a,p) = JeS: u@p) <u(ap)

(q,p): outcome if b; = v; for everyi € S
(g,p): outcome if b = - foreveryi € S
i bi=- Vies
L | players

coalition S
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lllustration: Group-Strategyproofness

Definition
A cost sharing mechanism M is group-strategyproof iff for all S C U
JieS: uw(d,p)>u(a,p) = JeS: u@p) <u(ap)

(q,p): outcome if b; = v; for everyi € S
(g,p): outcome if b = - foreveryi € S
i bi=- Vies
I I players
coalition S
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“Classical” Objectives

Budget Balance: payments equal servicing cost

Y pi=C(Q)

i€Q
Group-Strategyproofness

Efficiency: assuming truthful bidding, selected player set
maximizes social welfare

> Vi—C(Q)=max} vi—C(S)

i€Q =" ies
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Computational Issues

Want to design mechanisms that are computationally efficient

Problems:
underlying optimization problem P is often computationally
hard
truthfulness, budget balance and efficiency cannot be
achieved simultaneously [Green et al.'76] [Roberts '79]
[Feigenbaum et al., TCS '03]
Solutions:

use approximation algorithm to compute an approximate
solution of cost C(Q) < - C(Q) where 5 > 1

consider different (but equivalent) social efficiency objective
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Approximate Budget Balance and Efficiency

Approximate Budget Balance:  cost sharing mechanism M is
[5-budget balanced if

CQ <> m<B-C@Q) (B=1)
ieQ
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Approximate Budget Balance and Efficiency

Approximate Budget Balance:  cost sharing mechanism M is
[5-budget balanced if

CQ <> m<B-C@Q) (B=1)
ieQ

Define the social cost ofasetS C U as

|_|(S) ::Zvi —I—C(S) = ZVi — (Zvi - C(S))

i¢S ieU ieS
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Approximate Budget Balance and Efficiency

Approximate Budget Balance:  cost sharing mechanism M is
[5-budget balanced if

CQ <> m<B-C@Q) (B=1)
ieQ
Define the social costofasetS C U as
|_|(S) ::Zvi —I—C(S) = ZVi — (Zvi — C(S))
i¢S ieU ieS

Approximate Efficiency: cost sharing mechanism M is
a-approximate if, assuming truthful bidding,

> vi+CQ <o minn(s) (a>1)

i¢Q
[Roughgarden and Sundararajan, JACM '09]
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Objectives at a Glance

Computational Efficiency

Approximate Budget Balance:

CQ <> p<B-CQ) (B=1)
ieQ

Group-Strategyproofness

Approximate Efficiency:

D vi+C(Q) <a-min {Zvi +C(S)} (> 1)

: SCU .
i¢Q = i¢S
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Tricks of the Trade

How to achieve

B-budget balance?

(é(Q) <> p<p C(Q))

1€Q
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Tricks of the Trade

How to achieve
group-strategyproofness’?

(Not everybody in the coalition is better
off by misreporting his valuation.)
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Moulin’s Framework

Cost Sharing Function: ¢ :U x 2Y - R*
& (S) = cost share of player i with respectto set S C U

5-Budget Balance:

C(S) <> &(S)<B-C(S) vsScu
ies
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Moulin’s Framework

Cost Sharing Function: ¢ :U x2Y — R*
& (S) = cost share of player i with respectto set S C U

5-Budget Balance:

C(S) <> &(S)<B-C(S) vsScu
ies

Cross-Monotonicity:  cost share of player i does not decrease
if other players leave the game:

VSCT,VieS: &(S)=>&(T)
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Moulin’s Framework

Moulin Mechanism M (¢):
1: Initialize: Q < U
2: If for each playeri € Q: &(Q) < b; then STOP
3: Otherwise, remove from Q all players with & (Q) > b; and
repeat

Theorem

If £ is cross-monotonic and -budget balanced, then the Moulin
mechanism M(¢&) is group-strategyproof and 3-budget balanced.
[Moulin, SCW '99]
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Tricks of the Trade

How to achieve

a-approximability?

> vi+C(Q)<a-mind v +C(S)
s >Higs
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Summability

Suppose we are given an arbitrary order ¢ on the players in U.
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Summability

Suppose we are given an arbitrary order ¢ on the players in U.
Order each subset S C U according to o

S = {iy,...,ijs|} with ij <, ik forall 1 <j <k <|[S|.
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Summability

Suppose we are given an arbitrary order ¢ on the players in U.
Order each subset S C U according to o

S = {iy,...,ijs|} with ij <, ik forall 1 <j <k <|[S|.

Let S; refer to the first j players of S.
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Summability

Suppose we are given an arbitrary order ¢ on the players in U.
Order each subset S C U according to o

S = {iy,...,ijs|} with ij <, ik forall 1 <j <k <|[S|.
Let S; refer to the first j players of S.

A cost sharing function £ is a-summable if for every order o of
the players in U

S|
VSCU: D> §(S)<a-C(S)
j=1
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Summability and Approximability

Theorem

Let £ be a cross-monotonic cost sharing function and let «, 8 be
the smallest numbers such that £ is a-summable and $-budget
balanced. Then the Moulin mechanism M(§) is

(o + B)-approximate and no better than max{«, 3 }-approximate.
[Roughgarden, Sundararajan, JACM '09]

Guido Schéfer
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Moulin Mechanisms: Known Results |

Upper bounds B8
[Moulin, Shenker, ET '01] submodular cost 1
[Jain, Vazirani, STOC '01] minimum spanning tree 1
Steiner tree and TSP 2
[Pal, Tardos, FOCS '03] facility location 3
single-sink rent-or-buy 15
[Leonardi, Schéfer, EC '03], single-sink rent-or-buy 4
[Gupta et al., APPROX '04]
[Leonardi, Schéfer, EC '03] connected facility location 30
[K&nemann, Leonardi, Schafer, SODA '05] Steiner forest 2
[Gupta et al., SODA '07] price-collecting Steiner forest 3
[Bleischwitz, Monien, CIAC '07] makespan scheduling 2
Lower bounds 8
[Immorlica et al., SODA '05] set cover, vertex cover n¢
facility location 3
[K&nemann et al., SODA '05] Steiner tree 2
[Bleischwitz, Monien, CIAC '07] makespan scheduling 2
[Brenner, Schafer, STACS '07] completion time scheduling, etc. n/c
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Upper bounds B8
[Moulin, Shenker, ET '01] submodular cost 1
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[Gupta et al., APPROX '04]
[Leonardi, Schéfer, EC '03] connected facility location 30
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Moulin Mechanisms: Known Results Il

B«

[Roughgarden, Sundararajan, STOC '06] submodular cost 1 ©(logn)

Steiner tree 2 ©(log?n)
[Chawla et al., WINE '06] Steiner forest 2 ©(log?n)
[Roughgarden, Sundararajan, IPCO '07] facility location 3  ©(logn)

SROB 4 O(log?n)
[Gupta et al., SODA '07] price-collecting SF 3 ©(log®n)
[Brenner, Schéafer, STACS '07] makespan scheduling 2  ©(logn)

cost-stable problems Q(logn)
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Steiner Forest Game

Goal: design a cost sharing mechanism for the Steiner forest
game
e graph G = (V,E) with edge costs ¢ : E — R™
e player i requests connection between terminals s;,t; € V
identify players with terminal pairs: U = {(s1,t1),...,(Sn,th)}
¢ C(S) = cost of a minimum cost Steiner forest connecting all
terminal pairsin S C U

Theorem

There is a cross-monotonic and 2-budget balanced cost sharing
function for the Steiner forest game.

[Kénemann, Leonardi, Schéfer, van Zwam, SICOMP ’'08]
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Primal-Dual Steiner Forest Algorithm

Fix a set Q C U of terminal pairs. We sketch the primal-dual
algorithm AKR(Q) of [Agrawal, Klein, Ravi, SICOMP '95] for the
Steiner forest problem with terminal pair set Q.

A subset S C V of nodes is a Steiner cut if it separates at least
one terminal pair (s,t) € Q. Let S be the set of all such cuts.

S . .
Observation: for every Steiner
cut S € S, any feasible Steiner
forest must contain at least one
of the red edges

t
s (S)={uveE :ueS,v¢Ss}
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Undirected Cut Formulation

Integer Program:
min- ) " Ce - Xe

s.t. Z Xe>1 VSeS
ecd(S)
Xe €{0,1} Vee€E
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Undirected Cut Formulation

Primal LP:
min- ) " Ce - Xe
ecE
s.t. Z Xe>1 VSeS
ecd(S)

Xe >0 VeeE
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Undirected Cut Formulation

Primal LP: Dual LP:
min- ) " Ce - Xe max Y ys
ecE Ses
st. > x>1 VSeS st. > ys<ce VecE
ecs(s) S:ec(S)
Xe >0 VecE ys >0 vVSes

Guido Schafer Cost Sharing and Approximation Algorithms



Visualizing the Dual

The dual yg of Steiner cut S is
visualized as moat around S of
radius yg

Y{tz}

S1
Y{s1}

ty S2
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Visualizing the Dual

t The dual yg of Steiner cut S is
= visualized as moat around S of
radius yg
7 An edge e is said to be tight if
its corresponding dual
e constraint is tight:

Z Ys = Ce

5 5 S:e€s(S)
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Visualizing the Dual

S1

Guido Schéfer

5]

Y{s1}

to

-~

Yo} Y{s1.t}

S2

The dual yg of Steiner cut S is
visualized as moat around S of
radius yg

An edge e is said to be tight if
its corresponding dual
constraint is tight:

Z Ys = Ce

S:e€s(S)
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High-Level Description

Execution of AKR can be seen as a process over time 7:

e (F7,y™) = forest and dual packing

e terminal v is active if it is separated from its mate in F™

e F™ = subgraph induced by tight edges with respectto y”
« connected components of F” are called moats

e moat is active if it contains an active terminal

Algorithm AKR:
1: F0=0,y°=0
2: repeat
3: simultaneously increase duals of all active moats until
some path P between two active terminals becomes tight
add tight segments of P to the current forest F™
until all terminals are inactive

a A
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lllustration: AKR

T=0.0
ty
2.5
5.5
3 2 4 3
(] @ @ @
S1 S3 3 S2 t2
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lllustration: AKR

7=0.3
5]
2.5
55
3 2 4 3
o— —0——0— —0—
S1 S3 t3 S2 1]
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lllustration: AKR
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lllustration: AKR
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lllustration: AKR

T=15
]
25
55
3 2 4 3
© —O0 O— ©
S1 S3 t3 S2 to
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lllustration: AKR

T=15
]
25
55
3 2 4 3
o —0——0— o
S1 S3 t3 S2 to

Guido Schafer Cost Sharing and Approximation Algorithms



lllustration: AKR

T=2.0
]
25
5.5
& 2 4 3
© O O— O
S1 S3 t3 S2 to
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lllustration: AKR

T=25
<]
2.5
5.5
& 2 4 3
© O O— O
S1 S3 t3 S2 to
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lllustration: AKR

7=35
]
2.5
5.5
3 2 4 3
(o] O O0— O
S1 S3 t3 S2 to
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lllustration: AKR

7=4.0
]
2.5
5.5
3 2 4 13
(o] O O0— O
S1 S3 t3 S2 to
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lllustration: AKR

7=5.0
]
2.5
55
3 2 4 13
(o] O O0— O
S1 S3 t3 S2 to
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lllustration: AKR

T=>5.0
]
25
5.5
3 2 4 3
O O O O
S1 S3 t3 S2 t
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Approximation Guarantee

Theorem

The algorithm AKR(Q) computes a feasible forest F for terminal
pair set Q and a feasible dual (ys)ses such that

1 1
c(F) < (2 - E) > ys < <2 - E) OPT(Q),
Ses
where k is the number of terminal pairs in Q.

[Agrawal, Klein, Ravi, SICOMP '95]

Idea: run AKR and distribute (twice) the total dual among the
terminals
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Sharing the Dual Growth

Example:
¢ all terminals are active
ot

//

P ~
S1 //<\
\\
S2 \\/.tS
ta

S3
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Sharing the Dual Growth

Example:
¢ all terminals are active
-~ ’.tl .

-~ e grow active moats by e

S1 //<\
\\
> N

S3 €
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Sharing the Dual Growth

t
E7) \\/. 3

Example:
e all terminals are active
e grow active moats by ¢

¢ growth of each moat is shared
evenly among active terminals:

S;:€¢/3
t2:6/2
t]_SE

Guido Schéfer
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Sharing the Dual Growth

a; = number of active terminals in
the moat containing v at time 7

_ ot Suppose terminal v € Q becomes
7 inactive at time T. Define the cost
il /K\\ share of v as
N
t3 T
S2 N 1
" w)= [ Lo
S5 i 0 ay

For terminal pair (s,t) € Q:

t(Q) =2 (6(Q) + &(Q))
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Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11),(S2,t2),(S3,t3)}, Qo = Q \ {(S3,13)}

AKR(Q) 531 532 533 &3 &z 5[1

0.0 0.0 0.0 0.0 0.0 0.0 =00
Sy S S3 f3 ty
4 1 1 1 4
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Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11),(S2,t2),(S3,t3)}, Qo = Q \ {(S3,13)}

AKR(Q) 531 532 533 &3 &z 5[1

05 05 05 05 05 05 =05
Sy S, Sz f3 ty
4 T T uk 4
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Sharing the Dual Growth
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Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11),(S2,t2),(S3,t3)}, Qo = Q \ {(S3,13)}

AKR(Q) 531 532 533 &3 &z 5[1

05 05 05 05 05 05 =05
Sy S, Sz f3 ty
4 T T uk 4

Guido Schafer Cost Sharing and Approximation Algorithms



Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11), (S2,12), (S3,13)}, Qo = Q \ {(S3,13)}

AKR(Q) 551 532 553 &3 Elz gll

35 05 05 05 05 35 =35
Sy W ) ty
4 T T uk 4

Guido Schafer Cost Sharing and Approximation Algorithms



Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11), (S2,12), (S3,13)}, Qo = Q \ {(S3,13)}

AKR(Q) 551 532 553 &3 Elz gll

35 05 05 05 05 35 =35
Sy W ) ty
4 T T uk 4

Guido Schafer Cost Sharing and Approximation Algorithms



Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11), (S2,12), (S3,13)}, Qo = Q \ {(S3,13)}

AKR(Q) 551 532 553 &3 Elz gll

35 05 05 05 05 35 =35
St W ) ty
4 T T uk 4

Guido Schafer Cost Sharing and Approximation Algorithms



Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11),(S2,t2),(S3,t3)}, Qo = Q \ {(S3,13)}

531 532 553 &3 &z 5[1
AKR(Q) 35 05 05 05 05 35 =00

gS 1 532 553 &3 512 ftl
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Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11),(S2,t2),(S3,t3)}, Qo = Q \ {(S3,13)}
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Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11),(S2,t2),(S3,t3)}, Qo = Q \ {(S3,13)}
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Sharing the Dual Growth
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other terminal pairs. Impossible to achieve cross-monotonicity.
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Sharing the Dual Growth

Problem: Activity time of terminal may depend on presence of
other terminal pairs. Impossible to achieve cross-monotonicity.

Example: Q = {(s1,11), (S2,12), (S3,13)}, Qo = Q \ {(S3,13)}

Esi &s, &ss Ss & &y
AKRQ) 35705 05 05 05 35 I

§S1 532 553 &3 &2 £t1
AKR(Q) 5515 — - 15 25
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Independent Activity Time

Question: How long would a terminal pair need to connect if all
other terminal pairs were absent?

Death time: for each terminal pair (s,t) € U define
d(s) =d(t) = d(s,t) := c(s,1),

where c(s,t) is cost of minimum-cost s, t-path.
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Cross-Monotonic Primal-Dual Algorithm

New Activity Notion:  terminals s,t are active until time d(s,t)

Primal-Dual Algorithm KLS: as before, but with modified
activity notion

Cost Shares: define cost share of terminal v € Q as:

dw) 1
Sv(Q)Z/O ~dr

ay

Theorem

The cost shares £ computed by KLS are cross-monotonic and
2-budget balanced.

[Kénemann, Leonardi, Schéfer, van Zwam, SICOMP ’'08]
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Proving Cross-Monotonicity

Lemma
The cost shares ¢ computed by KLS are cross-monotonic.
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Proving Cross-Monotonicity

Lemma
The cost shares ¢ computed by KLS are cross-monotonic.

Proof (sketch):
MT7(v) = moat of v at time 7 in KLS(Q), Q C U
MG (v) = moat of v at time 7 in KLS(Qp), Qo = Q \ {(s,1)}
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Proving Cross-Monotonicity

Lemma
The cost shares ¢ computed by KLS are cross-monotonic.

Proof (sketch):
MT7(v) = moat of v at time 7 in KLS(Q), Q C U
MG (v) = moat of v at time 7 in KLS(Qp), Qo = Q \ {(s,1)}

Obs.: death-times of terminals are instance independent!
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Proving Cross-Monotonicity

Lemma
The cost shares ¢ computed by KLS are cross-monotonic.

Proof (sketch):
MT7(v) = moat of v at time 7 in KLS(Q), Q C U
MG (v) = moat of v at time 7 in KLS(Qp), Qo = Q \ {(s,1)}

Obs.: death-times of terminals are instance independent!

MG(v) active = M7 (v) active
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Proving Cross-Monotonicity

Lemma
The cost shares ¢ computed by KLS are cross-monotonic.

Proof (sketch):
MT7(v) = moat of v at time 7 in KLS(Q), Q C U
MG (v) = moat of v at time 7 in KLS(Qp), Qo = Q \ {(s,1)}

Obs.: death-times of terminals are instance independent!
MG(v) active = M7 (v) active
= Mg(v) S M7(v)
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Proving Cross-Monotonicity

Lemma
The cost shares ¢ computed by KLS are cross-monotonic.

Proof (sketch):
MT7(v) = moat of v at time 7 in KLS(Q), Q C U
MG (v) = moat of v at time 7 in KLS(Qp), Qo = Q \ {(s,1)}

Obs.: death-times of terminals are instance independent!
MG(v) active = M7 (v) active
= Mg(v) S M7(v)
= aj(v)<a’(v)
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Lemma
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Proving Budget Balance

Lemma
The cost shares £ computed by KLS are 2-budget balanced.
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Proving Budget Balance

Lemma
The cost shares £ computed by KLS are 2-budget balanced.

Proof (sketch):
(F,y) = forest and dual computed by KLS(Q), Q C U.
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Proving Budget Balance

Lemma
The cost shares £ computed by KLS are 2-budget balanced.

Proof (sketch):
(F,y) = forest and dual computed by KLS(Q), Q C U. Then

c(F) < zzys = ngiti
S

ieQ
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Proving Budget Balance

Lemma
The cost shares £ computed by KLS are 2-budget balanced.

Proof (sketch):
(F,y) = forest and dual computed by KLS(Q), Q C U. Then

C(F) g ZZyS = ngiti
s icQ
But: y is not dual feasible since some active moats do not
correspond to Steiner cuts.
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Proving Budget Balance

Lemma
The cost shares £ computed by KLS are 2-budget balanced.

Proof (sketch):
(F,y) = forest and dual computed by KLS(Q), Q C U. Then

c(F) < 2z:ys = Zﬁsiti
s icQ
But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that )" ys < OPT(Q)!
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Proving Budget Balance

Lemma
The cost shares £ computed by KLS are 2-budget balanced.

Proof (sketch):
(F,y) = forest and dual computed by KLS(Q), Q C U. Then

c(F) < 2z:ys = Zﬁsiti
s icQ
But: y is not dual feasible since some active moats do not
correspond to Steiner cuts. Can still show that )" ys < OPT(Q)!

Idea: charge dual growth against an optimal forest F* for Q.
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Proving Budget Balance

Let Q = {(s1,t1),.-.,(Sk,t)} such that

d(sl7tl) S S d(Sk,tk)

Guido Schafer Cost Sharing and Approximation Algorithms



Proving Budget Balance

Let Q = {(s1,t1),.-.,(Sk,t)} such that
d(sl7tl) S e S d(Sk,tk)
Define precedence order on terminals:

S <t <SSy <tr <+ <5 <
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Proving Budget Balance

Let Q = {(s1,t1),.-.,(Sk,t)} such that
d(sg,t1) < -+ <d(sk,t)
Define precedence order on terminals:
Sp <1 <Sp <th<--- <S¢ <ty

Terminal v is responsible at time 7 ifu < v forallu € M7(v).
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Proving Budget Balance

Let Q = {(s1,t1),.-.,(Sk,t)} such that
d(sg,t1) < -+ <d(sk,t)
Define precedence order on terminals:
Sp <1 <Sp <th<--- <S¢ <ty

Terminal v is responsible at time 7 ifu < v forallu € M7(v).
Definer™(v) = 1if v is responsible at time 7 and r"(v) =0
otherwise. Let the responsibility time of v be

dv)
r(v) :/0 r(v)dr
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Proving Budget Balance

Let Q = {(s1,t1),.-.,(Sk,t)} such that
d(sg,t1) < -+ <d(sk,t)
Define precedence order on terminals:
Sp <1 <Sp <th<--- <S¢ <ty

Terminal v is responsible at time 7 ifu < v forallu € M7(v).
Definer™(v) = 1if v is responsible at time 7 and r"(v) =0
otherwise. Let the responsibility time of v be

dv)
r(v) :/0 r(v)dr

Intuition: No sharing of dual growth; the responsible terminal
gets it all!

Guido Schafer Cost Sharing and Approximation Algorithms



Proving Budget Balance

Let Q = {(s1,t1),.-.,(Sk,t)} such that
d(sg,t1) < -+ <d(sk,t)
Define precedence order on terminals:
Sp <1 <Sp <th<--- <S¢ <ty

Terminal v is responsible at time 7 ifu < v forallu € M7(v).
Definer™(v) = 1if v is responsible at time 7 and r"(v) =0
otherwise. Let the responsibility time of v be

dv)
r(v) :/0 r(v)dr

Intuition: No sharing of dual growth; the responsible terminal
gets it all! Suffices to bound total responsibility time by OPT(Q).
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Proving Budget Balance

Consider atree T € F* and assume
that T spans terminals {vq,...,vp}.

Vg

Vi
Ve

Vg
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Proving Budget Balance

Consider atree T € F* and assume
that T spans terminals {vq,...,vp}.

Every terminal v that is responsible at
time 7 loads a distinct part of T.

Vg

Vi
Ve

Vg
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Proving Budget Balance

Consider atree T € F* and assume
that T spans terminals {vq,...,vp}.

Every terminal v that is responsible at

time 7 loads a distinct part of T. Note:
Vy argument applies if there are at least

two responsible terminals at time 7.

Vi
Ve

Vg

Guido Schafer Cost Sharing and Approximation Algorithms



Proving Budget Balance

Consider atree T € F* and assume
that T spans terminals {vq,...,vp}.
Every terminal v that is responsible at
time 7 loads a distinct part of T. Note:

Vy argument applies if there are at least
two responsible terminals at time 7.

Vi Let vp be the terminal with highest
Ve responsibility time. Then

V5 p—1
V3 r(vi) <c(T).

Il
iN
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Proving Budget Balance

Consider atree T € F* and assume
that T spans terminals {vq,...,vp}.
Every terminal v that is responsible at
time 7 loads a distinct part of T. Note:
Vy argument applies if there are at least
two responsible terminals at time 7.
Vs Let vp be the terminal with highest
Ve responsibility time. Then
Vg p-1
V3 r(vi) <c(T).
i=1

Note: vp’'s mate isin T as well.
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Proving Budget Balance

Consider atree T € F* and assume
that T spans terminals {vq,...,vp}.

Every terminal v that is responsible at

time 7 loads a distinct part of T. Note:
Vy argument applies if there are at least

two responsible terminals at time 7.

Vs Let vp be the terminal with highest
Ve responsibility time. Then
Vg p-1
V3 r(vi) <c(T).
i=1

Note: vp’'s mate isin T as well.
= r1(Vp) < d(vp) < 2¢(T) O
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Further Consequences

Suppose our modified Steiner forest algorithm produces forest
F and (infeasible) dual y for terminal pair set Q.

Surprisingly, can still show

c(F) <(2-1/k) -OPT(Q)
Our dual is often much better than the AKR-dual!

—0—0—0—0——
S1 So Sk—1Sk 1tk tk—1 b 11

OPT(Q) 2k —1
Standard AKR-dual k
Our dual 2k — 1
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Lifted-Cut Dual for Steiner Forests

Recall: death-times induce precedence order < on terminals
S <t <SSy <tr <+ <5 <

Associate each cut S C V with a terminal

Example: v <V <w <wW

S e Ny

S e Sy \Y} \Y} S € oo
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Lifted-Cut Dual for Steiner Forests

OPTLC = maX Z Ys

scv
s.t. Z ys < Ce Ve € E
SCV:ecs(s)
Zys+ Zys < d(v) WeR
SesSy SeNy
ys > 0 VS CV

Theorem

OPTyc < OPT c < OPT

IP/LC gap is about 2

Additional strength of LC can be used to prove better
approximation ratio of AKR for certain instances

[Kbnemann, Leonardi, Schéafer, van Zwam, SICOMP '08]
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Related Results and Extensions

There is no (2 — €)-budget balance cross-monotonic cost

sharing scheme for the Steiner tree problem
[Kénemann, Leonardi, Schéafer, van Zwam, SICOMP '08]

KLS is ©(log? n)-approximate with respect to social cost
[Chawla, Roughgarden, Sundararajan, WINE '06]

Similar idea yields 3-budget balanced, @(Iog2 n)-approximate,
cross-monotonic cost sharing function for the price-collecting

Steiner forest problem
[Gupta, Kbnemann, Leonardi, Ravi, Schafer, SODA '07]
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General Connectivity Problems

Idea:

« every player i has a cut-requirement function f, : 2¥ — {0,1}
e model general connectivity game via the following LP

min Zce “Xe

ecE

st. Y Xxe>f(S) VSCV,vieUu
ecs(S)
xe € {0,1} Vee€E

e adapt approximation framework by Goemans and Williamson
to obtain O(1)-budget balance, cross-monotonic cost sharing
function [Kénemann, Leonardi, Schafer, Wheatley, manuscript]
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Conclusions

Moulin’s framework enables to derive group-strategyproof cost
sharing mechanisms through cross-monotonic cost sharing
functions.

Have technigues at hand to bound social cost efficiency of
Moulin mechanisms.

Trade-off between budget balance and social cost
approximation guarantees of Moulin mechanisms are
well-understood for several fundamental optimization problems.

Designing cross-monotonic cost sharing functions may lead to
new insights that are useful in other contexts.
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Characterization of GSP Mechanisms

Group-Strategyproof
Cost Sharing Mechanisms
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Characterization of GSP Mechanisms

Group-Strategyproof
Cost Sharing Mechanisms

Characterization has recently been given
[Pountourakis and Vidali, ESA '10]

Moulin
Mechanisms
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Open Problems

Open Problem: Can we exploit the characterization of
group-strategyproof cost sharing mechanisms algorithmically?

Open Problem: Are there other general techniques to derive
group-strategyproof cost sharing mechanisms?

Open Problem: What are the trade-offs between
group-strategyproofness and budget balance and social cost
approximation guarantees?
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