Cost Sharing and Approximation Algorithms

- Lecture 2 -

Guido Schäfer
CWI Amsterdam / VU University Amsterdam
g.schaefer@cwi.nl

ADFOCS 2010

11th Max Planck Advanced Course on the Foundations of Computer Science August 2-6, 2010, Saarbrücken, Germany

Moulin Mechanisms:

- realize strong notion of group-strategyproofness
- driven by cross-monotonic cost sharing schemes
- example: Steiner forest (by-products: new insights, algorithm, LP formulation)

Trade-Off Group-Strategyproofness vs. Approximation:

- constant budget balance and polylogarithmic social cost factors for Steiner tree, Steiner forest, facility location
- gap between best achievable approximation guarantee and budget balance factor of Moulin mechanisms (sometimes significant!)

Moulin Mechanisms: Limitations and New Trade-Offs

Inefficiency of Moulin Mechanisms

Moulin mechanisms may have poor budget balance or social cost approximation guarantees

Examples:

	β	α
vertex cover	n^{c}	$\Omega(\log n)$
set cover	n	$\Omega(\log n)$
facility location	3	$\Omega\left(\log _{2} n\right)$
Steiner tree	2	$\Omega\left(\log ^{2} n\right)$
makespan scheduling	2	$\Omega\left(\log ^{n}\right)$

Limitations of Moulin Mechanisms

Theorem

Suppose there is a set $S \subseteq U$ such that

$$
C(S) \geq \beta \cdot \sum_{i \in S} C(\{i\}) .
$$

Then there is no Moulin mechanism that is $(\beta-\varepsilon)$-budget balance for any $\varepsilon>0$.
[Brenner, Schäfer, TCS '08]

Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:

- set of n jobs, job i has processing time p_{i}
- m identical machines, no preemption
- completion time of job $i: C_{i}$
- Goal: compute schedule such that $\sum_{i} C_{i}$ is minimized

Consequence: $(n+1) / 2$ lower bound on budget balance for minimum completion time scheduling problem $1\left|p_{i}=1\right| \sum_{i} C_{i}$

Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:

- set of n jobs, job i has processing time p_{i}
- m identical machines, no preemption
- completion time of job $i: C_{i}$
- Goal: compute schedule such that $\sum_{i} C_{i}$ is minimized

Consequence: $(n+1) / 2$ lower bound on budget balance for minimum completion time scheduling problem $1\left|p_{i}=1\right| \sum_{i} C_{i}$
\qquad

Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:

- set of n jobs, job i has processing time p_{i}
- m identical machines, no preemption
- completion time of job $i: C_{i}$
- Goal: compute schedule such that $\sum_{i} C_{i}$ is minimized

Consequence: $(n+1) / 2$ lower bound on budget balance for minimum completion time scheduling problem $1\left|p_{i}=1\right| \sum_{i} C_{i}$

$$
C(S)=n(n+1) / 2
$$

Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:

- set of n jobs, job i has processing time p_{i}
- m identical machines, no preemption
- completion time of job $i: C_{i}$
- Goal: compute schedule such that $\sum_{i} C_{i}$ is minimized

Consequence: $(n+1) / 2$ lower bound on budget balance for minimum completion time scheduling problem $1\left|p_{i}=1\right| \sum_{i} C_{i}$

$$
C(\{i\})=1
$$

Limitations of Moulin Mechanisms

Theorem

Suppose that

$$
C(S) \geq \frac{1}{\delta} \cdot C(U) \quad \forall S \subseteq U, S \neq \emptyset .
$$

Then there exists no Moulin mechanism that is $\left(\frac{H_{n}}{\delta}-\varepsilon\right)$-approximate for any $\varepsilon>0$.
[Brenner, Schäfer, TCS '08]

Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:

- set of n jobs, job i has processing time p_{i}
- m identical machines, no preemption
- makespan: maximum completion time over all jobs
- Goal: compute schedule that minimizes makespan

Consequence: H_{n} lower bound on social cost approximation for minimum makespan problem $P\left|p_{i}=1\right| C_{\text {max }}$

Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:

- set of n jobs, job i has processing time p_{i}
- midentical machines, no preemption
- makespan: maximum completion time over all jobs
- Goal: compute schedule that minimizes makespan

Consequence: H_{n} lower bound on social cost approximation for minimum makespan problem $P\left|p_{i}=1\right| C_{\text {max }}$

Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:

- set of n jobs, job i has processing time p_{i}
- midentical machines, no preemption
- makespan: maximum completion time over all jobs
- Goal: compute schedule that minimizes makespan

Consequence: H_{n} lower bound on social cost approximation for minimum makespan problem $P\left|p_{i}=1\right| C_{\text {max }}$

$$
C(U)=1
$$

Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:

- set of n jobs, job i has processing time p_{i}
- m identical machines, no preemption
- makespan: maximum completion time over all jobs
- Goal: compute schedule that minimizes makespan

Consequence: H_{n} lower bound on social cost approximation for minimum makespan problem $P\left|p_{i}=1\right| C_{\text {max }}$

$$
C(\{1, \ldots, i\})=1
$$

Public Excludable Good

Public Excludable Good Problem:

$$
C(S)=1 \quad \forall S \subseteq U, S \neq \emptyset \quad \text { and } \quad C(\emptyset)=0
$$

Examples:

- minimum spanning tree, Steiner tree, Steiner forest
- vertex cover, set cover, facility location
- makespan scheduling

Theorem

Every truthful mechanism for the public excludable good problem that is β-budget balanced is no better than $\Omega(\log n / \beta)$-approximate.
[Dobzinski, Mehta, Roughgarden, Sundararajan, SAGT '08]

New Trade-Offs

Group-Strategyproofness:

- very strong notion of truthfulness
- often bottleneck in achieving good approximation guarantees
- strong lower bounds exist (even if we allow exponential time)

Idea: consider weaker notions of group-strategyproofness, without sacrificing coalitional game theory viewpoint \Rightarrow weak group-strategyproofness
[Mehta, Roughgarden, Sundararajan, GEB '09]

Illustration: Weak Group-Strategyproofness

Definition

A cost sharing mechanism M is weakly group-strategyproof iff for all $S \subseteq U$

$$
\exists i \in S: u_{i}(\tilde{q}, \tilde{p}) \leq u_{i}(q, p)
$$

(q, p) : outcome if $b_{i}=v_{i}$ for every $i \in S$
(\tilde{q}, \tilde{p}) : outcome if $b_{i}=\cdot$ for every $i \in S$

Illustration: Weak Group-Strategyproofness

Definition

A cost sharing mechanism M is weakly group-strategyproof iff for all $S \subseteq U$

$$
\exists i \in S: u_{i}(\tilde{q}, \tilde{p}) \leq u_{i}(q, p)
$$

(q, p) : outcome if $b_{i}=v_{i}$ for every $i \in S$
(\tilde{q}, \tilde{p}) : outcome if $b_{i}=$. for every $i \in S$

Illustration: Weak Group-Strategyproofness

Definition

A cost sharing mechanism M is weakly group-strategyproof iff for all $S \subseteq U$

$$
\exists i \in S: u_{i}(\tilde{q}, \tilde{p}) \leq u_{i}(q, p)
$$

(q, p) : outcome if $b_{i}=v_{i}$ for every $i \in S$
(\tilde{q}, \tilde{p}) : outcome if $b_{i}=$. for every $i \in S$

Acyclic Mechanisms

Valid Offer Function

Offer Function: $\tau: U \times 2^{U} \rightarrow \mathbb{R}^{+}$ $\tau(i, S)=$ offer time of player i with respect to $S \subseteq U$

Valid Offer Function: τ is valid for a cost sharing function ξ if for every subset $S \subseteq U$ and every player $i \in S$:
$1 \xi_{i}(S \backslash T)=\xi_{i}(S) \quad \forall T \subseteq G(i, S)$
$2 \xi_{i}(S \backslash T) \geq \xi_{i}(S) \quad \forall T \subseteq G(i, S) \cup(E(i, S) \backslash\{i\})$

Valid Offer Function

Offer Function: $\tau: U \times 2^{U} \rightarrow \mathbb{R}^{+}$ $\tau(i, S)=$ offer time of player i with respect to $S \subseteq U$

Valid Offer Function: τ is valid for a cost sharing function ξ if for every subset $S \subseteq U$ and every player $i \in S$:
$1 \xi_{i}(S \backslash T)=\xi_{i}(S) \quad \forall T \subseteq G(i, S)$
$2 \xi_{i}(S \backslash T) \geq \xi_{i}(S) \quad \forall T \subseteq G(i, S) \cup(E(i, S) \backslash\{i\})$

Acyclic Mechanism

Acyclic Mechanism $M(\xi, \tau)$:

1: Initialize: $Q \leftarrow U$
2: If for each player $i \in Q: \xi_{i}(Q) \leq b_{i}$ then STOP
3: Otherwise: Among all players in Q with $\xi_{i}(Q)>b_{i}$, let i^{*} be one with minimum offer time $\tau(i, Q)$. Remove i^{*} from Q and repeat.

Theorem

If τ is a valid offer function for ξ, then the acyclic mechanism $M(\xi, \tau)$ is weakly group-strategyproof.
[Mehta, Roughgarden, Sundararajan, GEB '09]

Universe of Acyclic Mechanisms

Acyclic Mechanisms

Universe of Acyclic Mechanisms

Acyclic Mechanisms

Moulin
 mechanisms
 (equal offer times)

Known Results

Several primal-dual algorithms naturally give rise to valid offer functions.

Acyclic Mechanisms:

	β	α	Moulin (β)
vertex cover	2	$O(\log n)$	n^{c}
set cover	$O(\log n)$	$O(\log n)$	n
facility location	1.61	$O\left(\log ^{2} n\right)$	3
Steiner tree	2	$O\left(\log ^{2} n\right)$	2

[Mehta, Roughgarden, Sundararajan, GEB '09]

Generalized Incremental Mechanisms

Design of Cost Sharing Mechanisms

Most Previous Cost Sharing Mechanisms:

- developed in case-by-case studies
- driven by cost sharing schemes that need to satisfy certain properties (cross-monotonicity, valid offer function) \Rightarrow problem-specific and often non-trivial task

Question: Can we devise a framework that allows to derive truthful cost sharing mechanisms from existing approximation algorithms?

Framework

Let $A L G$ be a ρ-approximation algorithm for the optimization problem \mathcal{P}.

Theorem

There is a weakly group-strategproof and ρ-budget balanced cost sharing mechanism.
[Brenner, Schäfer, SAGT '08]

Advantages:

- weakly group-strategyproofness comes for free
- mechanism inherits approximation guarantee
- approximation algorithm is used as a black-box

Disadvantage: mechanism does not necessarily satisfy the no positive transfer property

Framework

Order Function: $\tau: U \times 2^{U} \rightarrow \mathbb{R}^{+}$
$\tau(i, S)=$ unique offer time of player i with respect to $S \subseteq U$
Generalized Incremental Mechanism $M(A L G, \tau)$:
1: Initialize: $A \leftarrow \emptyset, R \leftarrow U$
2: while $A \neq R$ do
3: \quad Let i be the player with minimum $\tau(i, R)$ among $R \backslash A$
4: Define $\xi_{i}:=\bar{C}(A \cup\{i\})-\bar{C}(A) \quad$ (marginal cost)
5: if $\xi_{i} \leq b_{i}$ then $A \leftarrow A \cup\{i\}$ else $R \leftarrow R \backslash\{i\}$
6: end
7: Output the characteristic vector of A and payments ξ

Note: no positive transfer property holds if approximate cost is monotone increasing, i.e., $\bar{C}(S) \leq \bar{C}(T)$ for all $S \subseteq T \subseteq U$

Budget Balance and WGSP

Theorem

The generalized incremental mechanism $M(A L G, \tau)$ is ρ-budget balanced and weakly group-strategyproof.

Proof:
In every iteration, we have $\sum_{i \in A} \xi_{i}=\bar{C}(A)$. p-budget balance follows from the approximation guarantee of ALG.

Fix a coalition $S \subseteq U$ and consider the runs of $M(A L G, \tau)$ on $\left(b_{-s}, b_{S}^{\prime}\right)$ and $\left(b_{-s}, v_{S}\right)$. These runs are identical until first player in S, say i, is considered. The payment ξ_{i} of i only depends on the set of previously accepted players, which is the same in both runs. Player i cannot gain by reporting b_{i}^{\prime} instead of v_{i}.

Budget Balance and WGSP

Theorem

The generalized incremental mechanism $M(A L G, \tau)$ is ρ-budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_{i}=\bar{C}(A)$. ρ-budget balance follows from the approximation guarantee of $A L G$.

Budget Balance and WGSP

Theorem

The generalized incremental mechanism $M(A L G, \tau)$ is ρ-budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_{i}=\bar{C}(A)$. ρ-budget balance follows from the approximation guarantee of $A L G$.

Fix a coalition $S \subseteq U$ and consider the runs of $M(A L G, \tau)$ on (b_{-s}, b_{s}^{\prime}) and (b_{-s}, v_{s}). player in S, say i, is considered. The payment ξ_{i} of i only depends on the set of previously accepted players, which is the same in both runs. Plaver i cannot gain by reporting $b_{\text {; }}^{\prime}$ instead of Vi

Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, $\tau)$ is ρ-budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_{i}=\bar{C}(A)$. ρ-budget balance follows from the approximation guarantee of $A L G$.

Fix a coalition $S \subseteq U$ and consider the runs of $M(A L G, \tau)$ on (b_{-s}, b_{S}^{\prime}) and (b_{-S}, v_{S}). These runs are identical until first player in S, say i, is considered.
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b_{i}^{\prime} instead

Budget Balance and WGSP

Theorem

The generalized incremental mechanism $M(A L G, \tau)$ is ρ-budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_{i}=\bar{C}(A)$. ρ-budget balance follows from the approximation guarantee of $A L G$.

Fix a coalition $S \subseteq U$ and consider the runs of $M(A L G, \tau)$ on (b_{-s}, b_{s}^{\prime}) and (b_{-S}, v_{s}). These runs are identical until first player in S, say i, is considered. The payment ξ_{i} of i only depends on the set of previously accepted players, which is the same in both runs.

Budget Balance and WGSP

Theorem

The generalized incremental mechanism $M(A L G, \tau)$ is ρ-budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_{i}=\bar{C}(A)$. ρ-budget balance follows from the approximation guarantee of $A L G$.

Fix a coalition $S \subseteq U$ and consider the runs of $M(A L G, \tau)$ on (b_{-s}, b_{S}^{\prime}) and (b_{-S}, v_{S}). These runs are identical until first player in S, say i, is considered. The payment ξ_{i} of i only depends on the set of previously accepted players, which is the same in both runs. Player i cannot gain by reporting b_{i}^{\prime} instead of v_{i}.

Budget Balance and WGSP

Theorem

The generalized incremental mechanism $M(A L G, \tau)$ is ρ-budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_{i}=\bar{C}(A)$. ρ-budget balance follows from the approximation guarantee of $A L G$.

Fix a coalition $S \subseteq U$ and consider the runs of $M(A L G, \tau)$ on (b_{-s}, b_{s}^{\prime}) and (b_{-S}, v_{s}). These runs are identical until first player in S, say i, is considered. The payment ξ_{i} of i only depends on the set of previously accepted players, which is the same in both runs. Player i cannot gain by reporting b_{i}^{\prime} instead of v_{i}.

Monotone Approximate Cost

Problem: approximate cost is often not monotone!
Example: Minimum Spanning Tree Game bold edges have cost 2 all others $1+\varepsilon$

But: marginal approximate cost is increasing if we add players according to Prim's order!

Monotone Approximate Cost

Problem: approximate cost is often not monotone!
Example: Minimum Spanning Tree Game bold edges have cost 2 all others $1+\varepsilon$

$$
\bar{C}(\{1,2,3\})=3+3 \varepsilon
$$

But: marginal approximate cost is increasing if we add players according to Prim's order!

Monotone Approximate Cost

Problem: approximate cost is often not monotone!
Example: Minimum Spanning Tree Game
bold edges have cost 2
all others $1+\varepsilon$

But: marginal approximate cost is increasing if we add players according to Prim's order!

Monotone Approximate Cost

Problem: approximate cost is often not monotone!
Example: Minimum Spanning Tree Game
bold edges have cost 2 all others $1+\varepsilon$

$$
\begin{aligned}
\bar{C}(\{1,2,3\}) & =3+3 \varepsilon \\
\bar{C}(\{1,2\}) & =4
\end{aligned}
$$

But: marginal approximate cost is increasing if we add players according to Prim's order!

Two Crucial Ingredients

Consistent Order Function: for every $S \subseteq T$:

$$
\begin{array}{lllllllllll}
T & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & (\tau(\cdot, T) \text { order }) \\
S & 1 & 2 & 3 & 5 & 6 & 8 & 9 & (\tau(\cdot, T) \text { order })
\end{array}
$$

τ-Increasing: $A L G$ is τ-increasing if for every $S \subseteq U$ and every
 $$
\bar{C}\left(S_{i}\right)-\bar{C}\left(S_{i-1}\right) \geq 0
$$

where S_{i} is the set of the first i elements of S (ordered according to $\tau(\cdot, S)$).

Two Crucial Ingredients

Consistent Order Function: for every $S \subseteq T$:

$$
\begin{array}{lllllllllll}
T & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & (\tau(\cdot, T) \text { order }) \\
S & 1 & 2 & 3 & 0 & 5 & 6 & 8 & 9 & (\tau(\cdot, T) \text { order })
\end{array}
$$

τ-Increasing: $A L G$ is τ-increasing if for every $S \subseteq U$ and every
 $$
\bar{C}\left(S_{i}\right)-\bar{C}\left(S_{i-1}\right) \geq 0
$$

where S_{i} is the set of the first i elements of S (ordered according to $\tau(\cdot, S))$.

Two Crucial Ingredients

Consistent Order Function: for every $S \subseteq T$:

$$
\begin{array}{lllllllllll}
T & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & (\tau(\cdot, T) \text { order }) \\
S & 1 & 2 & 3 & 0 & 5 & 6 & 8 & 9 & (\tau(\cdot, T) \text { order }) \\
S & 1 & 2 & 3 & 9 & 8 & 5 & 6 & & (\tau(\cdot, S) \text { order })
\end{array}
$$

where S_{i} is the set of the first i elements of S (ordered according to $\tau(\cdot, S))$.

Two Crucial Ingredients

Consistent Order Function: for every $S \subseteq T$:

$$
\begin{array}{llllllllllll}
T & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & (\tau(\cdot, T) \text { order }) \\
S & 1 & 2 & 3 & 0 & 5 & 6 & 8 & 9 & (\tau(\cdot, T) \text { order }) \\
S & 1 & 2 & 3 & 9 & 8 & 5 & 6 & & (\tau(\cdot, S) \text { order })
\end{array}
$$

τ-Increasing: $A L G$ is τ-increasing if for every $S \subseteq U$ and every $1 \leq i \leq|S|:$

$$
\bar{C}\left(S_{i}\right)-\bar{C}\left(S_{i-1}\right) \geq 0
$$

where S_{i} is the set of the first i elements of S (ordered according to $\tau(\cdot, S)$).

Framework

Let τ be a consistent order function and let $A L G$ be a τ-increasing ρ-approximation algorithm for the optimization problem \mathcal{P}.

Theorem

The generalized incremental mechanism $M(A L G, \tau)$ is weakly group-strategyproof, ρ-budget balanced and satisfies the no positive transfer property.

Our framework reduces the task of designing a WGSP mechanism to finding a consistent order function τ such that the approximation algorithm ALG is τ-increasing

Scheduling Example I

Problem: parallel machines, minimize makespan: $P \| C_{\text {max }}$
Order Function: order jobs by non-increasing processing times (Graham's rule)

Theorem

The generalized incremental mechanism M(GRAHAM, τ) is weakly group-strategyproof and 4/3-budget balanced.

Contrast: Moulin mechanisms cannot be better than 2-budget balanced

Scheduling Example II

Problem: parallel machines, no preemption, minimize sum of weighted completion times: $P\left|\mid \sum_{i} w_{i} C_{i}\right.$

Order Function: order jobs by non-increasing weight per processing time (Smith's rule)

Theorem

The generalized incremental mechanism M(SMITH, τ) is weakly group-strategyproof, 1.21-budget balanced and 2.42-approximate.

Contrast: Moulin mechanisms cannot be better than $\Omega(n)$-budget balanced

Scheduling Example III

Problem: single machine, release dates, preemption, minimize sum of completion times: $1\left|r_{i}, p m t n\right| \sum_{i} C_{i}$

Order Function: order jobs by increasing completion times in the shortest remaining processing time schedule

Theorem

The generalized incremental mechanism M (SRPT, τ) is weakly group-strategyproof, 1-budget balanced and 4-approximate.

Contrast: Moulin mechanisms cannot be better than $\Omega(n)$-budget balanced

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose
we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose
we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose
we remove Job 3 from T :
$S=\{1,2,4,5\}$
Consider the lifetime of Job
3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T : - Job 2 is a losing job

- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be
completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be
completed before $C_{3}(T)$

Consistency of SRPT

$T=\{1, \ldots, 5\}$. Suppose we remove Job 3 from T :
$S=\{1,2,4,5\}$.
Consider the lifetime of Job 3 in schedule for T :

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before $C_{3}(T)$

Overview of Results

Problem	our mechanism (β, α)	Moulin mechanism β (lower bound)
$P\left\|\mid C_{\max }\right.$	$\frac{4}{3}-\frac{1}{3 m}$	$\frac{2 m}{m+1}$
$P\left\|\mid \sum_{i} C_{i}\right.$	$(1,2)$	$\frac{n+1}{2}$
$P\left\|\mid \sum_{i} w_{i} C_{i}\right.$	$(1.21,2.42)$	$\frac{n+1}{2}$
$1\left\|r_{i}, p m t n\right\| \sum_{i} C_{i}$	$(1,4)$	$\frac{n+1}{2}$
$P \mid r_{i}$, pmtn $\mid \sum_{i} C_{i}$	$(1.25,5)$	$\frac{n+1}{2}$
$1 \mid r_{i}$, pmtn $\mid \sum_{i} F_{i}$	1	$\frac{n+1}{2}$
MST	1	1
Steiner tree	2	2
TSP	2	-

Universe of Acyclic Mechanisms

Universe of Acyclic Mechanisms

Conclusions and Open Problems

Conclusions

Moulin Mechanisms:

- achieve strong notion of group-strategyproofness
- only known framework to derive GSP mechanisms
- may suffer from bad budget balance or social cost approximation factors
- cross-monotonic cost shares derived in case-by-case studies

Our Framework:

- weaker notion of weakly group-strategyproofness, but coalitional viewpoint retained
- framework to derive WGSP mechanisms from existing algorithms, thereby preserving approximation factor
- yields constant budget balance and social cost approximation guarantees, e.g., for scheduling problems

Open Problems

Open Problem: Which other algorithms exploit the full strength of our framework? Which types of algorithms satisfy consistency?

Open Problem: Are there other approaches to derive acyclic mechanisms from approximation algorithms?

Open Problem: What are the trade-offs between weakly group-strategyproofness and budget balance and social cost approximation guarantees?

Open Problem: Consider more general settings such as online, general demand, etc.
(see also [Brenner, Schäfer, CIAC '10])

Approximation Algorithms for
Rent-or-Buy Problems

Multicommodity Rent-or-Buy

Given:

- graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{R}^{+}$
- set of k terminal pairs $R=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$
- demand d_{i} for commodity $\left(s_{i}, t_{i}\right)$
- parameter $M \geq 1$

Rent-or-Buy: on each edge e:

- either rent capacity $\lambda(e)$ at cost $\lambda(e) \cdot c_{e}$
- or buy infinite capacity at cost $M \cdot c_{e}$

Goal: determine minimum-cost capacity installation such that all demands can be routed simultaneously

Example: Multicommodity Rent-or-Buy

Example: Multicommodity Rent-or-Buy

$$
M=4
$$

capacity installation cost: 20

Example: Multicommodity Rent-or-Buy

$$
M=4
$$

capacity installation cost: 19

Special Cases

Steiner Forest (unit demands, $M=1$):
Given a graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{R}^{+}$and k terminal pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, find a minimum-cost forest F in G that contains an s_{i}, t_{i}-path for all i.

Single-Sink Rent-or-Buy:

Same input as for MROB, but all terminal pairs share a common sink node s.

Example: Single-Sink Rent-or-Buy

Example: Single-Sink Rent-or-Buy

Example: Single-Sink Rent-or-Buy

Connected Facility Location*

Given:

- graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{R}^{+}$
- set $D \subseteq V$ of demands
- parameter $M \geq 1$

Goal:

- find a subset $F \subseteq V$ of facilities that are opened
- connect each $j \in D$ to some open facility $\sigma(j) \in F$
- build a Steiner tree T on F so as to minimize

$$
M \cdot c(T)+\sum_{j \in D} \ell(j, \sigma(j))
$$

$\ell(u, v)=$ shortest path distance between nodes u and v in G
*Note: every node is a facility and there are no opening costs

Example: Connected Facility Location*

$$
M=3
$$

= demand

Example: Connected Facility Location*

$$
M=3
$$

$=$ demand
$\square=$ open facility

Example: Connected Facility Location*

$M=3$

$=$ demand
$\square=$ open facility

Example: Connected Facility Location*

$M=3$

$=$ demand
$\square=$ open facility

Randomized Framework

Assumption: can assume without loss of generality that every terminal pair has unit demand

Sample-and-Augment Algorithm for MROB:

1: Mark each terminal pair with probability $1 / M$. Let D be set of marked terminal pairs.
2: Compute an α-approximate Steiner forest F for D and buy all edges in F.
3: For all terminal pairs $(s, t) \notin D$: rent unit capacity on a shortest s, t-path in contracted graph $G \mid F$.
$G \mid F=$ graph obtained from G by contracting all edges in $F \subseteq E$

Strictness Concept

Definition

A Steiner forest algorithm $A L G$ is β-strict if there exist cost shares $\xi_{s t} \geq 0$ for every $(s, t) \in R$ such that:
$1 \sum_{(s, t) \in R} \xi_{s t} \leq c\left(F^{*}\right)$ (competitiveness)
2 For every $(s, t) \in R, c_{G \mid F_{-s t}}(s, t) \leq \beta \cdot \xi_{s t}$ (β-strictness)

Notation:

- $F^{*}=$ optimal Steiner forest for R
- $F_{-s t}=$ Steiner forest computed by $A L G$ for $R_{-s t}=R \backslash\{(s, t)\}$
- $G \mid F_{-s t}=$ graph obtained if all components of $F_{-s t}$ are contracted

Example: Strictness

Example: Strictness

$$
c\left(F^{*}\right)=6
$$

Example: Strictness

$$
c\left(F^{*}\right)=6
$$

Suppose: $\xi_{s_{1} t_{1}}=\xi_{s_{2} t_{2}}=3$

Example: Strictness

$$
F_{-s_{1} t_{1}}
$$

Suppose: $\xi_{s_{1} t_{1}}=\xi_{s_{2} t_{2}}=3$

Example: Strictness

$$
F_{-s_{1} t_{1}}
$$

Suppose: $\xi_{s_{1} t_{1}}=\xi_{s_{2} t_{2}}=3$
$c_{G \mid F_{-s_{1} t_{1}}}\left(s_{1}, t_{1}\right)=4-\epsilon$

Example: Strictness

$$
F_{-s_{1} t_{1}}
$$

Suppose: $\xi_{s_{1} t_{1}}=\xi_{s_{2} t_{2}}=3$
$c_{G \mid F_{-s_{1} t_{1}}}\left(s_{1}, t_{1}\right)=4-\epsilon$
$\frac{4}{3} \cdot \xi_{s_{1} t_{1}}$ sufficient to connect s_{1} and t_{1} in $G \mid F_{-s_{1} t_{1}}$

Example: Strictness

$$
F_{-s_{1} t_{1}}
$$

Suppose: $\xi_{s_{1} t_{1}}=\xi_{s_{2} t_{2}}=3$
$c_{G \mid F_{-s_{1} t_{1}}}\left(s_{1}, t_{1}\right)=4-\epsilon$
$\frac{4}{3} \cdot \xi_{s_{1} t_{1}}$ sufficient to connect s_{1} and t_{1} in $G \mid F_{-s_{1} t_{1}}$ similar for $\left(s_{2}, t_{2}\right) \Rightarrow \frac{4}{3}$-strict

Randomized Framework

Theorem

Given an α-approximate and β-strict Steiner forest algorithm, Sample-and-Augment is an (expected) $(\alpha+\beta)$-approximation algorithm for MROB.
[Gupta, Kumar, Pál, Roughgarden, JACM ’07]
Remark: framework applies to other network design problems

- single-sink rent-or-buy
- multicast rent-or-buy
- virtual private network design
- single-sink buy-at-bulk

