

Cost Sharing and Approximation Algorithms

- Lecture 2 -

Guido Schäfer CWI Amsterdam / VU University Amsterdam g.schaefer@cwi.nl

ADFOCS 2010 11th Max Planck Advanced Course on the Foundations of Computer Science August 2–6, 2010, Saarbrücken, Germany

Moulin Mechanisms:

- realize strong notion of group-strategyproofness
- driven by cross-monotonic cost sharing schemes
- example: Steiner forest (by-products: new insights, algorithm, LP formulation)

Trade-Off Group-Strategyproofness vs. Approximation:

- constant budget balance and polylogarithmic social cost factors for Steiner tree, Steiner forest, facility location
- gap between best achievable approximation guarantee and budget balance factor of Moulin mechanisms (sometimes significant!)

Moulin Mechanisms: Limitations and New Trade-Offs

Moulin mechanisms may have poor budget balance or social cost approximation guarantees

Examples:

	β	α
vertex cover	nc	Ω(log <i>n</i>)
set cover	n	Ω(log <i>n</i>)
facility location	3	Ω(log <i>n</i>)
Steiner tree	2	$\Omega(\log^2 n)$
makespan scheduling	2	Ω(log <i>n</i>)

Suppose there is a set $S \subseteq U$ such that

 $C(S) \geq \beta \cdot \sum_{i \in S} C(\{i\}).$

Then there is no Moulin mechanism that is $(\beta - \varepsilon)$ -budget balance for any $\varepsilon > 0$.

[Brenner, Schäfer, TCS '08]

Minimum Completion Time Scheduling Problem:

- set of *n* jobs, job *i* has processing time *p_i*
- *m* identical machines, no preemption
- completion time of job *i*: C_i
- **Goal:** compute schedule such that $\sum_i C_i$ is minimized

Consequence: (n + 1)/2 lower bound on budget balance for minimum completion time scheduling problem $1|p_i = 1|\sum_i C_i$

▲■ ▶ ▲ 臣 ▶ ▲ 臣

Minimum Completion Time Scheduling Problem:

- set of n jobs, job i has processing time p_i
- *m* identical machines, no preemption
- completion time of job *i*: C_i
- **Goal:** compute schedule such that $\sum_i C_i$ is minimized

Consequence: (n + 1)/2 lower bound on budget balance for minimum completion time scheduling problem $1|p_i = 1|\sum_i C_i$

*M*₁

Minimum Completion Time Scheduling Problem:

- set of n jobs, job i has processing time p_i
- *m* identical machines, no preemption
- completion time of job *i*: C_i
- **Goal:** compute schedule such that $\sum_i C_i$ is minimized

Consequence: (n + 1)/2 lower bound on budget balance for minimum completion time scheduling problem $1|p_i = 1|\sum_i C_i$

$$C(S) = n(n+1)/2$$

Minimum Completion Time Scheduling Problem:

- set of n jobs, job i has processing time p_i
- *m* identical machines, no preemption
- completion time of job *i*: C_i
- **Goal:** compute schedule such that $\sum_i C_i$ is minimized

Consequence: (n + 1)/2 lower bound on budget balance for minimum completion time scheduling problem $1|p_i = 1|\sum_i C_i$

$$C(\{i\}) = 1$$

$$M_1$$

< 同 ト < 三 ト < 三 ト

Suppose that

$$C(S) \geq \frac{1}{\delta} \cdot C(U) \quad \forall S \subseteq U, \ S \neq \emptyset.$$

Then there exists no Moulin mechanism that is $\left(\frac{H_n}{\delta} - \varepsilon\right)$ -approximate for any $\varepsilon > 0$.

[Brenner, Schäfer, TCS '08]

A (10) × (10) ×

Minimum Makespan Scheduling Problem:

- set of n jobs, job i has processing time p_i
- *m* identical machines, no preemption
- makespan: maximum completion time over all jobs
- Goal: compute schedule that minimizes makespan

Consequence: H_n lower bound on social cost approximation for minimum makespan problem $P|p_i = 1|C_{max}$

Minimum Makespan Scheduling Problem:

- set of n jobs, job i has processing time p_i
- *m* identical machines, no preemption
- makespan: maximum completion time over all jobs
- Goal: compute schedule that minimizes makespan

Consequence: H_n lower bound on social cost approximation for minimum makespan problem $P|p_i = 1|C_{max}$

Minimum Makespan Scheduling Problem:

- set of n jobs, job i has processing time p_i
- *m* identical machines, no preemption
- makespan: maximum completion time over all jobs
- Goal: compute schedule that minimizes makespan

Consequence: H_n lower bound on social cost approximation for minimum makespan problem $P|p_i = 1|C_{max}$

Minimum Makespan Scheduling Problem:

- set of n jobs, job i has processing time p_i
- *m* identical machines, no preemption
- makespan: maximum completion time over all jobs
- Goal: compute schedule that minimizes makespan

Consequence: H_n lower bound on social cost approximation for minimum makespan problem $P|p_i = 1|C_{max}$

Public Excludable Good Problem:

 $C(S) = 1 \quad \forall S \subseteq U, \ S \neq \emptyset \quad \text{and} \quad C(\emptyset) = 0$

Examples:

- minimum spanning tree, Steiner tree, Steiner forest
- vertex cover, set cover, facility location
- makespan scheduling

Theorem

Every truthful mechanism for the public excludable good problem that is β -budget balanced is no better than $\Omega(\log n/\beta)$ -approximate.

[Dobzinski, Mehta, Roughgarden, Sundararajan, SAGT '08]

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Strategyproofness:

- very strong notion of truthfulness
- often bottleneck in achieving good approximation guarantees
- strong lower bounds exist (even if we allow exponential time)

Idea: consider weaker notions of group-strategyproofness, without sacrificing coalitional game theory viewpoint

⇒ weak group-strategyproofness

[Mehta, Roughgarden, Sundararajan, GEB '09]

Illustration: Weak Group-Strategyproofness

Definition

A cost sharing mechanism *M* is weakly group-strategyproof iff for all $S \subseteq U$

```
\exists i \in S: u_i(\tilde{q}, \tilde{p}) \leq u_i(q, p)
```

```
(q, p): outcome if b_i = v_i for every i \in S
(\tilde{q}, \tilde{p}): outcome if b_i = \cdot for every i \in S
```


Illustration: Weak Group-Strategyproofness

Definition

A cost sharing mechanism *M* is weakly group-strategyproof iff for all $S \subseteq U$

```
\exists i \in S: u_i(\tilde{q}, \tilde{p}) \leq u_i(q, p)
```

(q, p): outcome if $b_i = v_i$ for every $i \in S$ (\tilde{q}, \tilde{p}) : outcome if $b_i = \cdot$ for every $i \in S$

Illustration: Weak Group-Strategyproofness

Definition

A cost sharing mechanism *M* is weakly group-strategyproof iff for all $S \subseteq U$

$$\exists i \in \mathsf{S}: \; u_i(ilde{q}, ilde{p}) \leq u_i(q,p)$$

(q, p): outcome if $b_i = v_i$ for every $i \in S$ (\tilde{q}, \tilde{p}) : outcome if $b_i = \cdot$ for every $i \in S$

Acyclic Mechanisms

Offer Function: $\tau : U \times 2^U \to \mathbb{R}^+$ $\tau(i, S) =$ **offer time** of player *i* with respect to $S \subseteq U$

Valid Offer Function: τ is valid for a cost sharing function ξ if for every subset $S \subseteq U$ and every player $i \in S$:

2 $\xi_i(\mathbf{S} \setminus T) \ge \xi_i(\mathbf{S}) \quad \forall T \subseteq \mathbf{G}(i, \mathbf{S}) \cup (\mathbf{E}(i, \mathbf{S}) \setminus \{i\})$

Offer Function: $\tau : U \times 2^U \to \mathbb{R}^+$ $\tau(i, S) =$ **offer time** of player *i* with respect to $S \subseteq U$

Valid Offer Function: τ is valid for a cost sharing function ξ if for every subset $S \subseteq U$ and every player $i \in S$:

2 $\xi_i(\mathbf{S} \setminus T) \ge \xi_i(\mathbf{S}) \quad \forall T \subseteq \mathbf{G}(i, \mathbf{S}) \cup (\mathbf{E}(i, \mathbf{S}) \setminus \{i\})$

Acyclic Mechanism $M(\xi, \tau)$:

- 1: Initialize: $Q \leftarrow U$
- 2: If for each player $i \in Q$: $\xi_i(Q) \leq b_i$ then STOP
- Otherwise: Among all players in Q with ξ_i(Q) > b_i, let i* be one with minimum offer time τ(i, Q). Remove i* from Q and repeat.

Theorem

If τ is a valid offer function for ξ , then the acyclic mechanism $M(\xi, \tau)$ is weakly group-strategyproof.

[Mehta, Roughgarden, Sundararajan, GEB '09]

・ 同 ト ・ ヨ ト ・ ヨ

Universe of Acyclic Mechanisms

Universe of Acyclic Mechanisms

A I > A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Several primal-dual algorithms naturally give rise to valid offer functions.

Acyclic Mechanisms:

	β	α	Moulin (β)
vertex cover	2	O(log n)	n ^c
set cover	O(log <i>n</i>)	O(log <i>n</i>)	n
facility location	1.61	O(log <i>n</i>)	3
Steiner tree	2	O(log ² <i>n</i>)	2

[Mehta, Roughgarden, Sundararajan, GEB '09]

• I > • = • •

Generalized Incremental Mechanisms

Most Previous Cost Sharing Mechanisms:

- developed in case-by-case studies
- driven by cost sharing schemes that need to satisfy certain properties (cross-monotonicity, valid offer function)
 ⇒ problem-specific and often non-trivial task

Question: Can we devise a framework that allows to derive truthful cost sharing mechanisms from existing approximation algorithms?

Framework

Let *ALG* be a ρ -approximation algorithm for the optimization problem \mathcal{P} .

Theorem

There is a weakly group-strategyroof and ρ -budget balanced cost sharing mechanism.

[Brenner, Schäfer, SAGT '08]

• • • • • • • • • • • •

Advantages:

- weakly group-strategyproofness comes for free
- mechanism inherits approximation guarantee
- approximation algorithm is used as a black-box

Disadvantage: mechanism does not necessarily satisfy the no positive transfer property

Order Function: $\tau : \boldsymbol{U} \times \boldsymbol{2}^{\boldsymbol{U}} \to \mathbb{R}^+$

 $\tau(i, S) =$ unique offer time of player *i* with respect to $S \subseteq U$

Generalized Incremental Mechanism $M(ALG, \tau)$:

- 1: Initialize: $A \leftarrow \emptyset$, $R \leftarrow U$
- 2: while $A \neq R$ do
- 3: Let *i* be the player with minimum $\tau(i, R)$ among $R \setminus A$
- 4: Define $\xi_i := \overline{C}(A \cup \{i\}) \overline{C}(A)$ (marginal cost)
- 5: **if** $\xi_i \leq b_i$ then $A \leftarrow A \cup \{i\}$ **else** $R \leftarrow R \setminus \{i\}$

6: end

7: Output the characteristic vector of A and payments ξ

Note: no positive transfer property holds if approximate cost is monotone increasing, i.e., $\bar{C}(S) \leq \bar{C}(T)$ for all $S \subseteq T \subseteq U$

(日)

The generalized incremental mechanism $M(ALG, \tau)$ is ρ -budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_i = \overline{C}(A)$. ρ -budget balance follows from the approximation guarantee of *ALG*.

Fix a coalition $S \subseteq U$ and consider the runs of $M(ALG, \tau)$ on (b_{-S}, b'_S) and (b_{-S}, v_S) . These runs are identical until first player in S, say i, is considered. The payment ξ_i of i only depends on the set of previously accepted players, which is the same in both runs. Player i cannot gain by reporting b'_i instead of v_i .

• • • • • • • • • • • •

The generalized incremental mechanism $M(ALG, \tau)$ is ρ -budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_i = \overline{C}(A)$. ρ -budget balance follows from the approximation guarantee of *ALG*.

Fix a coalition $S \subseteq U$ and consider the runs of $M(ALG, \tau)$ on (b_{-S}, b'_S) and (b_{-S}, v_S) . These runs are identical until first player in S, say i, is considered. The payment ξ_i of i only depends on the set of previously accepted players, which is the same in both runs. Player i cannot gain by reporting b'_i instead of v_i .

• • • • • • • • • • • •

The generalized incremental mechanism $M(ALG, \tau)$ is ρ -budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_i = \overline{C}(A)$. ρ -budget balance follows from the approximation guarantee of *ALG*.

Fix a coalition $S \subseteq U$ and consider the runs of $M(ALG, \tau)$ on (b_{-S}, b'_{S}) and (b_{-S}, v_{S}) . These runs are identical until first player in S, say i, is considered. The payment ξ_i of i only depends on the set of previously accepted players, which is the same in both runs. Player i cannot gain by reporting b'_i instead of v_i .

A (10) F (10) F (10)

The generalized incremental mechanism $M(ALG, \tau)$ is ρ -budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_i = \overline{C}(A)$. ρ -budget balance follows from the approximation guarantee of *ALG*.

Fix a coalition $S \subseteq U$ and consider the runs of $M(ALG, \tau)$ on (b_{-S}, b'_{S}) and (b_{-S}, v_{S}) . These runs are identical until first player in S, say *i*, is considered. The payment ξ_i of *i* only depends on the set of previously accepted players, which is the same in both runs. Player *i* cannot gain by reporting b'_i instead of v_i .

A (10) F (10) F (10)

The generalized incremental mechanism $M(ALG, \tau)$ is ρ -budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_i = \overline{C}(A)$. ρ -budget balance follows from the approximation guarantee of *ALG*.

Fix a coalition $S \subseteq U$ and consider the runs of $M(ALG, \tau)$ on (b_{-S}, b'_S) and (b_{-S}, v_S) . These runs are identical until first player in *S*, say *i*, is considered. The payment ξ_i of *i* only depends on the set of previously accepted players, which is the same in both runs. Player *i* cannot gain by reporting b'_i instead of v_i .

The generalized incremental mechanism $M(ALG, \tau)$ is ρ -budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_i = \overline{C}(A)$. ρ -budget balance follows from the approximation guarantee of *ALG*.

Fix a coalition $S \subseteq U$ and consider the runs of $M(ALG, \tau)$ on (b_{-S}, b'_S) and (b_{-S}, v_S) . These runs are identical until first player in *S*, say *i*, is considered. The payment ξ_i of *i* only depends on the set of previously accepted players, which is the same in both runs. Player *i* cannot gain by reporting b'_i instead of v_i .

A (10) × A (10) × A (10)
Theorem

The generalized incremental mechanism $M(ALG, \tau)$ is ρ -budget balanced and weakly group-strategyproof.

Proof:

In every iteration, we have $\sum_{i \in A} \xi_i = \overline{C}(A)$. ρ -budget balance follows from the approximation guarantee of *ALG*.

Fix a coalition $S \subseteq U$ and consider the runs of $M(ALG, \tau)$ on (b_{-S}, b'_S) and (b_{-S}, v_S) . These runs are identical until first player in *S*, say *i*, is considered. The payment ξ_i of *i* only depends on the set of previously accepted players, which is the same in both runs. Player *i* cannot gain by reporting b'_i instead of v_i .

A (10) F (10) F (10)

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

But: marginal approximate cost is increasing if we add players according to Prim's order!

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

But: marginal approximate cost is increasing if we add players according to Prim's order!

▲ 同 ▶ - ▲ 三 ▶

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

But: marginal approximate cost is increasing if we add players according to Prim's order!

▲ 同 ▶ - ▲ 三 ▶

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

But: marginal approximate cost is increasing if we add players according to Prim's order!

T123456789
$$(\tau(\cdot, T) \text{ order})$$
S1235689 $(\tau(\cdot, T) \text{ order})$

 τ -Increasing: ALG is τ -increasing if for every $S \subseteq U$ and every $1 \le i \le |S|$: $\overline{C}(S_i) - \overline{C}(S_{i-1}) \ge 0.$

where S_i is the set of the first *i* elements of *S* (ordered according to $\tau(\cdot, S)$).

T123456789
$$(\tau(\cdot, T) \text{ order})$$
S123 \bullet 5689 $(\tau(\cdot, T) \text{ order})$

 τ -Increasing: ALG is τ -increasing if for every $S \subseteq U$ and every $1 \le i \le |S|$: $\overline{C}(S_i) - \overline{C}(S_{i-1}) \ge 0$

where S_i is the set of the first *i* elements of *S* (ordered according to $\tau(\cdot, S)$).

T
 1
 2
 3
 4
 5
 6
 7
 8
 9

$$(\tau(\cdot, T) \text{ order})$$

 S
 1
 2
 3
 •
 5
 6
 8
 9
 $(\tau(\cdot, T) \text{ order})$

 S
 1
 2
 3
 •
 5
 6
 8
 9
 $(\tau(\cdot, T) \text{ order})$

 τ -Increasing: ALG is τ -increasing if for every $S \subseteq U$ and every $1 \le i \le |S|$: $\overline{C}(S_i) = \overline{C}(S_{i-1}) \ge 0$

where S_i is the set of the first *i* elements of *S* (ordered according to $\tau(\cdot, S)$).

▲ 同 ▶ → 三 ▶

T
 1
 2
 3
 4
 5
 6
 7
 8
 9

$$(\tau(\cdot, T) \text{ order})$$

 S
 1
 2
 3
 •
 5
 6
 8
 9
 $(\tau(\cdot, T) \text{ order})$

 S
 1
 2
 3
 9
 8
 5
 6
 $(\tau(\cdot, T) \text{ order})$

 τ -Increasing: ALG is τ -increasing if for every $S \subseteq U$ and every $1 \le i \le |S|$: $\overline{C}(S_i) - \overline{C}(S_{i-1}) \ge 0$,

where S_i is the set of the first *i* elements of *S* (ordered according to $\tau(\cdot, S)$).

Let τ be a consistent order function and let *ALG* be a τ -increasing ρ -approximation algorithm for the optimization problem \mathcal{P} .

Theorem

The generalized incremental mechanism $M(ALG, \tau)$ is weakly group-strategyproof, ρ -budget balanced and satisfies the no positive transfer property.

[Brenner, Schäfer, SAGT '08]

イロト イポト イヨト イヨト

Our framework reduces the task of designing a WGSP mechanism to finding a consistent order function τ such that the approximation algorithm *ALG* is τ -increasing

Problem: parallel machines, minimize makespan: $P||C_{max}|$

Order Function: order jobs by non-increasing processing times (Graham's rule)

Theorem

The generalized incremental mechanism $M(GRAHAM, \tau)$ is weakly group-strategyproof and 4/3-budget balanced.

Contrast: Moulin mechanisms cannot be better than 2-budget balanced

Problem: parallel machines, no preemption, minimize sum of weighted completion times: $P||\sum_{i} w_i C_i$

Order Function: order jobs by non-increasing weight per processing time (Smith's rule)

Theorem

The generalized incremental mechanism $M(SMITH, \tau)$ is weakly group-strategyproof, 1.21-budget balanced and 2.42-approximate.

Contrast: Moulin mechanisms cannot be better than $\Omega(n)$ -budget balanced

Problem: single machine, release dates, preemption, minimize sum of completion times: $1|r_i, pmtn| \sum_i C_i$

Order Function: order jobs by increasing completion times in the shortest remaining processing time schedule

Theorem

The generalized incremental mechanism $M(SRPT, \tau)$ is weakly group-strategyproof, 1-budget balanced and 4-approximate.

Contrast: Moulin mechanisms cannot be better than $\Omega(n)$ -budget balanced

A (10) × A (10) × A (10)

 $T = \{1, \dots, 5\}$. Suppose we remove Job 3 from T: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for *T*:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

• • • • • • • • • • • •

 $T = \{1, \dots, 5\}$. Suppose we remove Job 3 from T: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for *T*:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

A (1) > A (2) > A

 $T = \{1, \dots, 5\}$. Suppose we remove Job 3 from T: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for *T*:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

 $T = \{1, ..., 5\}$. Suppose we remove Job 3 from *T*: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for *T*:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

 $T = \{1, ..., 5\}$. Suppose we remove Job 3 from T: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for *T*:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

 $T = \{1, ..., 5\}$. Suppose we remove Job 3 from *T*: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for T:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

A (1) > A (2) > A

 $T = \{1, ..., 5\}$. Suppose we remove Job 3 from *T*: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for T:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

 $T = \{1, ..., 5\}$. Suppose we remove Job 3 from *T*: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for T:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

 $T = \{1, ..., 5\}$. Suppose we remove Job 3 from *T*: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for T:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

 $T = \{1, ..., 5\}$. Suppose we remove Job 3 from *T*: $S = \{1, 2, 4, 5\}$.

Consider the lifetime of Job 3 in schedule for T:

- Job 2 is a losing job
- Job 4 is a winning job

Observation:

- nothing changes for winning jobs
- losing job might be processed in place of Job 3
- but this job will not be completed before C₃(T)

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Problem	our mechanism $(eta, lpha)$	
$P C_{\max}$ $P \sum_{i} C_{i}$ $P \sum_{i} w_{i}C_{i}$ $1 r_{i}, pmtn \sum_{i} C_{i}$	$\frac{\frac{4}{3} - \frac{1}{3m}}{(1, 2)}$ (1.21, 2.42) (1.4)	$\frac{2m}{m+1}$ $\frac{n+1}{2}$ $\frac{n+1}{2}$ $\frac{n+1}{2}$
$P r_i, pmtn \sum_i C_i$ $1 r_i, pmtn \sum_i F_i$	(1.25, 5)	$\frac{\frac{n+1}{2}}{\frac{n+1}{2}}$
MST Steiner tree TSP	1 2 2	1 2 -

æ

Universe of Acyclic Mechanisms

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Universe of Acyclic Mechanisms

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusions and Open Problems

Moulin Mechanisms:

- achieve strong notion of group-strategyproofness
- only known framework to derive GSP mechanisms
- may suffer from bad budget balance or social cost approximation factors
- cross-monotonic cost shares derived in case-by-case studies

Our Framework:

- weaker notion of weakly group-strategyproofness, but coalitional viewpoint retained
- framework to derive WGSP mechanisms from existing algorithms, thereby preserving approximation factor
- yields constant budget balance and social cost approximation guarantees, e.g., for scheduling problems

・ 同 ト ・ ヨ ト ・ ヨ

Open Problem: Which other algorithms exploit the full strength of our framework? Which types of algorithms satisfy consistency?

Open Problem: Are there other approaches to derive acyclic mechanisms from approximation algorithms?

Open Problem: What are the trade-offs between weakly group-strategyproofness and budget balance and social cost approximation guarantees?

Open Problem: Consider more general settings such as online, general demand, etc. (see also [Brenner, Schäfer, CIAC '10])

< ロ > < 同 > < 回 > < 回 > < 回 >

Approximation Algorithms for Rent-or-Buy Problems

Given:

- graph G = (V, E) with edge costs $c : E \to \mathbb{R}^+$
- set of k terminal pairs $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$
- demand d_i for commodity (s_i, t_i)
- parameter $M \ge 1$

Rent-or-Buy: on each edge e:

- either rent capacity $\lambda(e)$ at cost $\lambda(e) \cdot c_e$
- or buy infinite capacity at cost $M \cdot c_e$

Goal: determine minimum-cost capacity installation such that all demands can be routed simultaneously

Example: Multicommodity Rent-or-Buy

э

A (10) × A (10) × A (10)

Example: Multicommodity Rent-or-Buy

Example: Multicommodity Rent-or-Buy

▲ 同 ▶ ▲ 国 ▶

Steiner Forest (unit demands, M = 1):

Given a graph G = (V, E) with edge costs $c : E \to \mathbb{R}^+$ and k terminal pairs $(s_1, t_1), \ldots, (s_k, t_k)$, find a minimum-cost forest F in G that contains an s_i, t_i -path for all i.

Single-Sink Rent-or-Buy:

Same input as for MROB, but all terminal pairs share a common sink node *s*.

Example: Single-Sink Rent-or-Buy

æ

< ロ > < 同 > < 回 > < 回 > < 回 >
Example: Single-Sink Rent-or-Buy

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Example: Single-Sink Rent-or-Buy

æ

Given:

- graph G = (V, E) with edge costs $c : E
 ightarrow \mathbb{R}^+$
- set $D \subseteq V$ of demands
- parameter $M \ge 1$

Goal:

- find a subset $F \subseteq V$ of facilities that are opened
- connect each $j \in D$ to some open facility $\sigma(j) \in F$
- build a Steiner tree T on F so as to minimize

$$M \cdot c(T) + \sum_{j \in D} \ell(j, \sigma(j))$$

 $\ell(u, v)$ = shortest path distance between nodes u and v in G

*Note: every node is a facility and there are no opening costs

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ 同 ト ・ ヨ ト ・ ヨ

A (10) × A (10) × A (10)

Assumption: can assume without loss of generality that every terminal pair has unit demand

Sample-and-Augment Algorithm for MROB:

- 1: Mark each terminal pair with probability 1/M. Let *D* be set of marked terminal pairs.
- 2: Compute an *α*-approximate Steiner forest *F* for *D* and buy all edges in *F*.
- 3: For all terminal pairs $(s, t) \notin D$: rent unit capacity on a shortest *s*, *t*-path in contracted graph G|F.

G|F = graph obtained from G by contracting all edges in $F \subseteq E$

A (10) F (10) F (10)

Definition

A Steiner forest algorithm *ALG* is β -strict if there exist **cost shares** $\xi_{st} \ge 0$ for every $(s, t) \in R$ such that: 1 $\sum_{(s,t)\in R} \xi_{st} \le c(F^*)$ (competitiveness)

2 For every $(s, t) \in R$, $c_{G|F_{-st}}(s, t) \le \beta \cdot \xi_{st}$ (β -strictness)

Notation:

- F^* = optimal Steiner forest for R
- F_{-st} = Steiner forest computed by ALG for $R_{-st} = R \setminus \{(s, t)\}$
- *G*|*F*_{-st} = graph obtained if all components of *F*_{-st} are contracted

æ

 $c(F^*) = 6$

イロト イロト イヨト イヨト

æ

イロト イポト イヨト イヨト

Suppose: $\xi_{s_1t_1} = \xi_{s_2t_2} = 3$

э

Suppose: $\xi_{s_1t_1} = \xi_{s_2t_2} = 3$

æ

ヘロト 人間 ト 人間 ト 人間 ト

Suppose: $\xi_{s_1t_1} = \xi_{s_2t_2} = 3$ $c_{G|F_{-s_1t_1}}(s_1, t_1) = 4 - \epsilon$

э

▲撮 ▶ ▲ 臣 ▶ ▲ 臣

Suppose: $\xi_{s_1t_1} = \xi_{s_2t_2} = 3$ $c_{G|F_{-s_1t_1}}(s_1, t_1) = 4 - \epsilon$ $\frac{4}{3} \cdot \xi_{s_1t_1}$ sufficient to connect s_1 and t_1 in $G|F_{-s_1t_1}$

A (10) A (10)

Suppose: $\xi_{s_1t_1} = \xi_{s_2t_2} = 3$ $c_{G|F_{-s_1t_1}}(s_1, t_1) = 4 - \epsilon$ $\frac{4}{3} \cdot \xi_{s_1t_1}$ sufficient to connect s_1 and t_1 in $G|F_{-s_1t_1}$ similar for $(s_2, t_2) \Rightarrow \frac{4}{3}$ -strict

▲ 同 ▶ → 三 ▶

Theorem

Given an α -approximate and β -strict Steiner forest algorithm, Sample-and-Augment is an (expected) ($\alpha + \beta$)-approximation algorithm for MROB.

[Gupta, Kumar, Pál, Roughgarden, JACM '07]

< 🗇 🕨

Remark: framework applies to other network design problems

- single-sink rent-or-buy
- multicast rent-or-buy
- virtual private network design
- single-sink buy-at-bulk