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Recap

Moulin Mechanisms:
• realize strong notion of group-strategyproofness
• driven by cross-monotonic cost sharing schemes
• example: Steiner forest (by-products: new insights,

algorithm, LP formulation)

Trade-Off Group-Strategyproofness vs. Approximation:
• constant budget balance and polylogarithmic social cost

factors for Steiner tree, Steiner forest, facility location
• gap between best achievable approximation guarantee and

budget balance factor of Moulin mechanisms (sometimes
significant!)
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Moulin Mechanisms:
Limitations and New Trade-Offs



Inefficiency of Moulin Mechanisms

Moulin mechanisms may have poor budget balance or social
cost approximation guarantees

Examples:

β α

vertex cover nc Ω(log n)
set cover n Ω(log n)
facility location 3 Ω(log n)
Steiner tree 2 Ω(log2 n)
makespan scheduling 2 Ω(log n)
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Limitations of Moulin Mechanisms

Theorem

Suppose there is a set S ⊆ U such that

C(S) ≥ β ·
∑

i∈S

C({i}).

Then there is no Moulin mechanism that is (β − ε)-budget
balance for any ε > 0.

[Brenner, Schäfer, TCS ’08]
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Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• completion time of job i : Ci
• Goal: compute schedule such that

∑
i Ci is minimized

Consequence: (n + 1)/2 lower bound on budget balance for
minimum completion time scheduling problem 1|pi = 1|

∑
i Ci
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Limitations of Moulin Mechanisms

Theorem

Suppose that

C(S) ≥
1
δ
· C(U) ∀S ⊆ U, S 6= ∅.

Then there exists no Moulin mechanism that is
(Hn

δ − ε)-approximate for any ε > 0.

[Brenner, Schäfer, TCS ’08]
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Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• makespan: maximum completion time over all jobs
• Goal: compute schedule that minimizes makespan

Consequence: Hn lower bound on social cost approximation
for minimum makespan problem P|pi = 1|Cmax
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Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• makespan: maximum completion time over all jobs
• Goal: compute schedule that minimizes makespan

Consequence: Hn lower bound on social cost approximation
for minimum makespan problem P|pi = 1|Cmax

M1

M2

...
...

Mm

1

2

C({1, . . . , i}) = 1
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Public Excludable Good

Public Excludable Good Problem:

C(S) = 1 ∀S ⊆ U, S 6= ∅ and C(∅) = 0

Examples:
• minimum spanning tree, Steiner tree, Steiner forest
• vertex cover, set cover, facility location
• makespan scheduling

Theorem

Every truthful mechanism for the public excludable good
problem that is β-budget balanced is no better than
Ω(log n/β)-approximate.

[Dobzinski, Mehta, Roughgarden, Sundararajan, SAGT ’08]
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New Trade-Offs

Group-Strategyproofness:
• very strong notion of truthfulness
• often bottleneck in achieving good approximation guarantees
• strong lower bounds exist (even if we allow exponential time)

Idea: consider weaker notions of group-strategyproofness,
without sacrificing coalitional game theory viewpoint
⇒ weak group-strategyproofness

[Mehta, Roughgarden, Sundararajan, GEB ’09]
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Illustration: Weak Group-Strategyproofness

Definition
A cost sharing mechanism M is weakly group-strategyproof iff for all
S ⊆ U

∃i ∈ S : ui (q̃, p̃) ≤ ui (q, p)

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

utility

players
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Acyclic Mechanisms



Valid Offer Function

Offer Function: τ : U × 2U → R
+

τ(i ,S) = offer time of player i with respect to S ⊆ U

Valid Offer Function: τ is valid for a cost sharing function ξ if
for every subset S ⊆ U and every player i ∈ S:

1 ξi(S \ T ) = ξi(S) ∀T ⊆ G(i ,S)

2 ξi(S \ T ) ≥ ξi(S) ∀T ⊆ G(i ,S) ∪ (E(i ,S) \ {i})

> τ(i ,S)= τ(i ,S)< τ(i ,S)

S i
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Acyclic Mechanism

Acyclic Mechanism M(ξ, τ):
1: Initialize: Q ← U
2: If for each player i ∈ Q: ξi(Q) ≤ bi then STOP
3: Otherwise: Among all players in Q with ξi(Q) > bi , let i∗ be

one with minimum offer time τ(i ,Q). Remove i∗ from Q and
repeat.

Theorem

If τ is a valid offer function for ξ, then the acyclic mechanism
M(ξ, τ) is weakly group-strategyproof.

[Mehta, Roughgarden, Sundararajan, GEB ’09]
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Universe of Acyclic Mechanisms

Acyclic Mechanisms

Guido Schäfer Cost Sharing and Approximation Algorithms 15



Universe of Acyclic Mechanisms

Acyclic Mechanisms

Moulin
mechanisms
(equal offer times)
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Known Results

Several primal-dual algorithms naturally give rise to valid offer
functions.

Acyclic Mechanisms:

β α Moulin (β)

vertex cover 2 O(log n) nc

set cover O(log n) O(log n) n
facility location 1.61 O(log n) 3
Steiner tree 2 O(log2 n) 2

[Mehta, Roughgarden, Sundararajan, GEB ’09]
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Generalized Incremental
Mechanisms



Design of Cost Sharing Mechanisms

Most Previous Cost Sharing Mechanisms:
• developed in case-by-case studies

• driven by cost sharing schemes that need to satisfy certain
properties (cross-monotonicity, valid offer function)
⇒ problem-specific and often non-trivial task

Question: Can we devise a framework that allows to derive
truthful cost sharing mechanisms from existing approximation
algorithms?
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Framework

Let ALG be a ρ-approximation algorithm for the optimization
problem P.

Theorem

There is a weakly group-strategproof and ρ-budget balanced
cost sharing mechanism.

[Brenner, Schäfer, SAGT ’08]

Advantages:
• weakly group-strategyproofness comes for free
• mechanism inherits approximation guarantee
• approximation algorithm is used as a black-box

Disadvantage: mechanism does not necessarily satisfy the no
positive transfer property
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Framework

Order Function: τ : U × 2U → R
+

τ(i ,S) = unique offer time of player i with respect to S ⊆ U

Generalized Incremental Mechanism M(ALG, τ):
1: Initialize: A← ∅, R ← U
2: while A 6= R do
3: Let i be the player with minimum τ(i ,R) among R \ A
4: Define ξi := C̄(A ∪ {i})− C̄(A) (marginal cost)
5: if ξi ≤ bi then A← A ∪ {i} else R ← R \ {i}
6: end
7: Output the characteristic vector of A and payments ξ

Note: no positive transfer property holds if approximate cost is
monotone increasing, i.e., C̄(S) ≤ C̄(T ) for all S ⊆ T ⊆ U
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Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, τ) is ρ-budget
balanced and weakly group-strategyproof.

Proof:
In every iteration, we have

∑
i∈A ξi = C̄(A). ρ-budget balance

follows from the approximation guarantee of ALG.

Fix a coalition S ⊆ U and consider the runs of M(ALG, τ) on
(b−S ,b′

S) and (b−S, vS). These runs are identical until first
player in S, say i , is considered. The payment ξi of i only
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b′

i instead
of vi .
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Monotone Approximate Cost

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

r

1 2

3

bold edges have cost 2
all others 1 + ε

But: marginal approximate cost is increasing if we add players
according to Prim’s order!
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Two Crucial Ingredients

Consistent Order Function: for every S ⊆ T :

(τ(·,T ) order)

T

S

(τ(·,T ) order)

5 98

1

1

2 3 4 5 6 7

32

8

6

9

τ -Increasing: ALG is τ -increasing if for every S ⊆ U and every
1 ≤ i ≤ |S|:

C̄(Si)− C̄(Si−1) ≥ 0,

where Si is the set of the first i elements of S (ordered
according to τ(·,S)).
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Framework

Let τ be a consistent order function and let ALG be a
τ -increasing ρ-approximation algorithm for the optimization
problem P.

Theorem

The generalized incremental mechanism M(ALG, τ) is weakly
group-strategyproof, ρ-budget balanced and satisfies the no
positive transfer property.

[Brenner, Schäfer, SAGT ’08]

Our framework reduces the task of designing a WGSP
mechanism to finding a consistent order function τ such that the
approximation algorithm ALG is τ -increasing
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Scheduling Example I

Problem: parallel machines, minimize makespan: P| |Cmax

Order Function: order jobs by non-increasing processing times
(Graham’s rule)

Theorem

The generalized incremental mechanism M(GRAHAM, τ) is
weakly group-strategyproof and 4/3-budget balanced.

Contrast: Moulin mechanisms cannot be better than 2-budget
balanced
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Scheduling Example II

Problem: parallel machines, no preemption, minimize sum of
weighted completion times: P| |

∑
i wiCi

Order Function: order jobs by non-increasing weight per
processing time (Smith’s rule)

Theorem

The generalized incremental mechanism M(SMITH, τ) is weakly
group-strategyproof, 1.21-budget balanced and
2.42-approximate.

Contrast: Moulin mechanisms cannot be better than
Ω(n)-budget balanced
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Scheduling Example III

Problem: single machine, release dates, preemption, minimize
sum of completion times: 1|ri ,pmtn|

∑
i Ci

Order Function: order jobs by increasing completion times in
the shortest remaining processing time schedule

Theorem

The generalized incremental mechanism M(SRPT, τ) is weakly
group-strategyproof, 1-budget balanced and 4-approximate.

Contrast: Moulin mechanisms cannot be better than
Ω(n)-budget balanced
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Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T )
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Overview of Results

our mechanism Moulin mechanism
Problem (β, α) β (lower bound)

P| |Cmax
4
3 −

1
3m

2m
m+1

P| |
∑

i Ci (1, 2) n+1
2

P| |
∑

i wiCi (1.21, 2.42) n+1
2

1|ri , pmtn|
∑

i Ci (1, 4) n+1
2

P|ri , pmtn|
∑

i Ci (1.25, 5) n+1
2

1|ri , pmtn|
∑

i Fi 1 n+1
2

MST 1 1
Steiner tree 2 2

TSP 2 –
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Universe of Acyclic Mechanisms

Acyclic Mechanisms

Primal-Dual
Mechanisms

Moulin
Mechanisms
(equal offer times)

Incremental
Mechanisms

(unique offer times)
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Universe of Acyclic Mechanisms

Acyclic Mechanisms

Primal-Dual
Mechanisms

Moulin
Mechanisms
(equal offer times)

Incremental
Mechanisms

(unique offer times) ?
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Conclusions and Open Problems



Conclusions

Moulin Mechanisms:
• achieve strong notion of group-strategyproofness
• only known framework to derive GSP mechanisms
• may suffer from bad budget balance or social cost

approximation factors
• cross-monotonic cost shares derived in case-by-case studies

Our Framework:
• weaker notion of weakly group-strategyproofness, but

coalitional viewpoint retained
• framework to derive WGSP mechanisms from existing

algorithms, thereby preserving approximation factor
• yields constant budget balance and social cost

approximation guarantees, e.g., for scheduling problems
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Open Problems

Open Problem: Which other algorithms exploit the full strength
of our framework? Which types of algorithms satisfy
consistency?

Open Problem: Are there other approaches to derive acyclic
mechanisms from approximation algorithms?

Open Problem: What are the trade-offs between weakly
group-strategyproofness and budget balance and social cost
approximation guarantees?

Open Problem: Consider more general settings such as online,
general demand, etc. (see also [Brenner, Schäfer, CIAC ’10])
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Approximation Algorithms for
Rent-or-Buy Problems



Multicommodity Rent-or-Buy

Given:
• graph G = (V ,E) with edge costs c : E → R

+

• set of k terminal pairs R = {(s1, t1), . . . , (sk , tk )}
• demand di for commodity (si , ti )
• parameter M ≥ 1

Rent-or-Buy: on each edge e:

• either rent capacity λ(e) at cost λ(e) · ce
• or buy infinite capacity at cost M · ce

Goal: determine minimum-cost capacity installation such that
all demands can be routed simultaneously
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Example: Multicommodity Rent-or-Buy

s1

s2 t2

t1
d1 = 3

d2 = 2

M = 4

4
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2

2

1

1
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Example: Multicommodity Rent-or-Buy

s1

s2 t2

t1
d1 = 3

d2 = 2

M = 4 capacity installation cost: 20

4

4
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2

2

1

1

2 · 4 = 8

3 · 4 = 12
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Example: Multicommodity Rent-or-Buy

s1

s2 t2

t1
d1 = 3

d2 = 2

M = 4 capacity installation cost: 19

4

4

1

2

2

1

1
3 · 1 = 3

2 · 2 = 4

3 · 2 = 6

2 · 1 = 2
M · 1 = 4
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Special Cases

Steiner Forest (unit demands, M = 1):
Given a graph G = (V ,E) with edge costs c : E → R

+ and k
terminal pairs (s1, t1), . . . , (sk , tk ), find a minimum-cost forest F
in G that contains an si , ti -path for all i .

Single-Sink Rent-or-Buy:
Same input as for MROB, but all terminal pairs share a common
sink node s.
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Example: Single-Sink Rent-or-Buy

M = 3

s
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Example: Single-Sink Rent-or-Buy

OPT

M = 3

s
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Connected Facility Location ∗

Given:
• graph G = (V ,E) with edge costs c : E → R

+

• set D ⊆ V of demands
• parameter M ≥ 1

Goal:
• find a subset F ⊆ V of facilities that are opened
• connect each j ∈ D to some open facility σ(j) ∈ F
• build a Steiner tree T on F so as to minimize

M · c(T ) +
∑

j∈D

ℓ(j , σ(j))

ℓ(u, v) = shortest path distance between nodes u and v in G

∗Note: every node is a facility and there are no opening costs
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Example: Connected Facility Location ∗

= demand

M = 3
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= open facility
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Randomized Framework

Assumption: can assume without loss of generality that every
terminal pair has unit demand

Sample-and-Augment Algorithm for MROB:
1: Mark each terminal pair with probability 1/M. Let D be set

of marked terminal pairs.
2: Compute an α-approximate Steiner forest F for D and buy

all edges in F .
3: For all terminal pairs (s, t) /∈ D: rent unit capacity on a

shortest s, t-path in contracted graph G|F .

G|F = graph obtained from G by contracting all edges in F ⊆ E
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Strictness Concept

Definition

A Steiner forest algorithm ALG is β-strict if there exist cost
shares ξst ≥ 0 for every (s, t) ∈ R such that:

1
∑

(s,t)∈R ξst ≤ c(F ∗) (competitiveness)

2 For every (s, t) ∈ R, cG|F
−st

(s, t) ≤ β · ξst (β-strictness)

Notation:
• F ∗ = optimal Steiner forest for R
• F−st = Steiner forest computed by ALG for R−st = R \{(s, t)}
• G|F−st = graph obtained if all components of F−st are

contracted
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Example: Strictness
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Example: Strictness
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Example: Strictness
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F−s1t1

Suppose: ξs1t1 = ξs2t2 = 3

cG|F
−s1t1

(s1, t1) = 4− ǫ

4
3 · ξs1t1 sufficient to connect s1 and t1 in G|F−s1t1

similar for (s2, t2)⇒ 4
3-strict
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Randomized Framework

Theorem

Given an α-approximate and β-strict Steiner forest algorithm,
Sample-and-Augment is an (expected) (α+ β)-approximation
algorithm for MROB.

[Gupta, Kumar, Pál, Roughgarden, JACM ’07]

Remark: framework applies to other network design problems

• single-sink rent-or-buy
• multicast rent-or-buy
• virtual private network design
• single-sink buy-at-bulk
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