
Cost Sharing and Approximation
Algorithms
— Lecture 2 —

Guido Schäfer
CWI Amsterdam / VU University Amsterdam

g.schaefer@cwi.nl

ADFOCS 2010
11th Max Planck Advanced Course on the Foundations of Computer Science

August 2–6, 2010, Saarbrücken, Germany

Recap

Moulin Mechanisms:
• realize strong notion of group-strategyproofness
• driven by cross-monotonic cost sharing schemes
• example: Steiner forest (by-products: new insights,

algorithm, LP formulation)

Trade-Off Group-Strategyproofness vs. Approximation:
• constant budget balance and polylogarithmic social cost

factors for Steiner tree, Steiner forest, facility location
• gap between best achievable approximation guarantee and

budget balance factor of Moulin mechanisms (sometimes
significant!)

Guido Schäfer Cost Sharing and Approximation Algorithms 2

Moulin Mechanisms:
Limitations and New Trade-Offs

Inefficiency of Moulin Mechanisms

Moulin mechanisms may have poor budget balance or social
cost approximation guarantees

Examples:

β α

vertex cover nc Ω(log n)
set cover n Ω(log n)
facility location 3 Ω(log n)
Steiner tree 2 Ω(log2 n)
makespan scheduling 2 Ω(log n)

Guido Schäfer Cost Sharing and Approximation Algorithms 4

Limitations of Moulin Mechanisms

Theorem

Suppose there is a set S ⊆ U such that

C(S) ≥ β ·
∑

i∈S

C({i}).

Then there is no Moulin mechanism that is (β − ε)-budget
balance for any ε > 0.

[Brenner, Schäfer, TCS ’08]

Guido Schäfer Cost Sharing and Approximation Algorithms 5

Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• completion time of job i : Ci
• Goal: compute schedule such that

∑
i Ci is minimized

Consequence: (n + 1)/2 lower bound on budget balance for
minimum completion time scheduling problem 1|pi = 1|

∑
i Ci

Guido Schäfer Cost Sharing and Approximation Algorithms 6

Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• completion time of job i : Ci
• Goal: compute schedule such that

∑
i Ci is minimized

Consequence: (n + 1)/2 lower bound on budget balance for
minimum completion time scheduling problem 1|pi = 1|

∑
i Ci

M1

Guido Schäfer Cost Sharing and Approximation Algorithms 6

Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• completion time of job i : Ci
• Goal: compute schedule such that

∑
i Ci is minimized

Consequence: (n + 1)/2 lower bound on budget balance for
minimum completion time scheduling problem 1|pi = 1|

∑
i Ci

M1 1 2 3 . . . n

C(S) = n(n + 1)/2

Guido Schäfer Cost Sharing and Approximation Algorithms 6

Example: Completion Time Scheduling

Minimum Completion Time Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• completion time of job i : Ci
• Goal: compute schedule such that

∑
i Ci is minimized

Consequence: (n + 1)/2 lower bound on budget balance for
minimum completion time scheduling problem 1|pi = 1|

∑
i Ci

M1 i

C({i}) = 1

Guido Schäfer Cost Sharing and Approximation Algorithms 6

Limitations of Moulin Mechanisms

Theorem

Suppose that

C(S) ≥
1
δ
· C(U) ∀S ⊆ U, S 6= ∅.

Then there exists no Moulin mechanism that is
(Hn

δ − ε)-approximate for any ε > 0.

[Brenner, Schäfer, TCS ’08]

Guido Schäfer Cost Sharing and Approximation Algorithms 7

Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• makespan: maximum completion time over all jobs
• Goal: compute schedule that minimizes makespan

Consequence: Hn lower bound on social cost approximation
for minimum makespan problem P|pi = 1|Cmax

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• makespan: maximum completion time over all jobs
• Goal: compute schedule that minimizes makespan

Consequence: Hn lower bound on social cost approximation
for minimum makespan problem P|pi = 1|Cmax

M1

M2

...
...

Mm

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• makespan: maximum completion time over all jobs
• Goal: compute schedule that minimizes makespan

Consequence: Hn lower bound on social cost approximation
for minimum makespan problem P|pi = 1|Cmax

M1

M2

...
...

Mm

1

2

n

C(U) = 1

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Example: Makespan Scheduling

Minimum Makespan Scheduling Problem:
• set of n jobs, job i has processing time pi
• m identical machines, no preemption
• makespan: maximum completion time over all jobs
• Goal: compute schedule that minimizes makespan

Consequence: Hn lower bound on social cost approximation
for minimum makespan problem P|pi = 1|Cmax

M1

M2

...
...

Mm

1

2

C({1, . . . , i}) = 1

Guido Schäfer Cost Sharing and Approximation Algorithms 8

Public Excludable Good

Public Excludable Good Problem:

C(S) = 1 ∀S ⊆ U, S 6= ∅ and C(∅) = 0

Examples:
• minimum spanning tree, Steiner tree, Steiner forest
• vertex cover, set cover, facility location
• makespan scheduling

Theorem

Every truthful mechanism for the public excludable good
problem that is β-budget balanced is no better than
Ω(log n/β)-approximate.

[Dobzinski, Mehta, Roughgarden, Sundararajan, SAGT ’08]

Guido Schäfer Cost Sharing and Approximation Algorithms 9

New Trade-Offs

Group-Strategyproofness:
• very strong notion of truthfulness
• often bottleneck in achieving good approximation guarantees
• strong lower bounds exist (even if we allow exponential time)

Idea: consider weaker notions of group-strategyproofness,
without sacrificing coalitional game theory viewpoint
⇒ weak group-strategyproofness

[Mehta, Roughgarden, Sundararajan, GEB ’09]

Guido Schäfer Cost Sharing and Approximation Algorithms 10

Illustration: Weak Group-Strategyproofness

Definition
A cost sharing mechanism M is weakly group-strategyproof iff for all
S ⊆ U

∃i ∈ S : ui (q̃, p̃) ≤ ui (q, p)

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

utility

players

Guido Schäfer Cost Sharing and Approximation Algorithms 11

Illustration: Weak Group-Strategyproofness

Definition
A cost sharing mechanism M is weakly group-strategyproof iff for all
S ⊆ U

∃i ∈ S : ui (q̃, p̃) ≤ ui (q, p)

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

utility

players

bi = vi ∀i ∈ S

coalition S
Guido Schäfer Cost Sharing and Approximation Algorithms 11

Illustration: Weak Group-Strategyproofness

Definition
A cost sharing mechanism M is weakly group-strategyproof iff for all
S ⊆ U

∃i ∈ S : ui (q̃, p̃) ≤ ui (q, p)

(q, p): outcome if bi = vi for every i ∈ S
(q̃, p̃): outcome if bi = · for every i ∈ S

utility

players

bi = · ∀i ∈ S

coalition S
Guido Schäfer Cost Sharing and Approximation Algorithms 11

Acyclic Mechanisms

Valid Offer Function

Offer Function: τ : U × 2U → R
+

τ(i ,S) = offer time of player i with respect to S ⊆ U

Valid Offer Function: τ is valid for a cost sharing function ξ if
for every subset S ⊆ U and every player i ∈ S:

1 ξi(S \ T) = ξi(S) ∀T ⊆ G(i ,S)

2 ξi(S \ T) ≥ ξi(S) ∀T ⊆ G(i ,S) ∪ (E(i ,S) \ {i})

> τ(i ,S)= τ(i ,S)< τ(i ,S)

S i

Guido Schäfer Cost Sharing and Approximation Algorithms 13

Valid Offer Function

Offer Function: τ : U × 2U → R
+

τ(i ,S) = offer time of player i with respect to S ⊆ U

Valid Offer Function: τ is valid for a cost sharing function ξ if
for every subset S ⊆ U and every player i ∈ S:

1 ξi(S \ T) = ξi(S) ∀T ⊆ G(i ,S)

2 ξi(S \ T) ≥ ξi(S) ∀T ⊆ G(i ,S) ∪ (E(i ,S) \ {i})

L(i ,S) E(i ,S) G(i ,S)

S i

Guido Schäfer Cost Sharing and Approximation Algorithms 13

Acyclic Mechanism

Acyclic Mechanism M(ξ, τ):
1: Initialize: Q ← U
2: If for each player i ∈ Q: ξi(Q) ≤ bi then STOP
3: Otherwise: Among all players in Q with ξi(Q) > bi , let i∗ be

one with minimum offer time τ(i ,Q). Remove i∗ from Q and
repeat.

Theorem

If τ is a valid offer function for ξ, then the acyclic mechanism
M(ξ, τ) is weakly group-strategyproof.

[Mehta, Roughgarden, Sundararajan, GEB ’09]

Guido Schäfer Cost Sharing and Approximation Algorithms 14

Universe of Acyclic Mechanisms

Acyclic Mechanisms

Guido Schäfer Cost Sharing and Approximation Algorithms 15

Universe of Acyclic Mechanisms

Acyclic Mechanisms

Moulin
mechanisms
(equal offer times)

Guido Schäfer Cost Sharing and Approximation Algorithms 15

Known Results

Several primal-dual algorithms naturally give rise to valid offer
functions.

Acyclic Mechanisms:

β α Moulin (β)

vertex cover 2 O(log n) nc

set cover O(log n) O(log n) n
facility location 1.61 O(log n) 3
Steiner tree 2 O(log2 n) 2

[Mehta, Roughgarden, Sundararajan, GEB ’09]

Guido Schäfer Cost Sharing and Approximation Algorithms 16

Generalized Incremental
Mechanisms

Design of Cost Sharing Mechanisms

Most Previous Cost Sharing Mechanisms:
• developed in case-by-case studies

• driven by cost sharing schemes that need to satisfy certain
properties (cross-monotonicity, valid offer function)
⇒ problem-specific and often non-trivial task

Question: Can we devise a framework that allows to derive
truthful cost sharing mechanisms from existing approximation
algorithms?

Guido Schäfer Cost Sharing and Approximation Algorithms 18

Framework

Let ALG be a ρ-approximation algorithm for the optimization
problem P.

Theorem

There is a weakly group-strategproof and ρ-budget balanced
cost sharing mechanism.

[Brenner, Schäfer, SAGT ’08]

Advantages:
• weakly group-strategyproofness comes for free
• mechanism inherits approximation guarantee
• approximation algorithm is used as a black-box

Disadvantage: mechanism does not necessarily satisfy the no
positive transfer property

Guido Schäfer Cost Sharing and Approximation Algorithms 19

Framework

Order Function: τ : U × 2U → R
+

τ(i ,S) = unique offer time of player i with respect to S ⊆ U

Generalized Incremental Mechanism M(ALG, τ):
1: Initialize: A← ∅, R ← U
2: while A 6= R do
3: Let i be the player with minimum τ(i ,R) among R \ A
4: Define ξi := C̄(A ∪ {i})− C̄(A) (marginal cost)
5: if ξi ≤ bi then A← A ∪ {i} else R ← R \ {i}
6: end
7: Output the characteristic vector of A and payments ξ

Note: no positive transfer property holds if approximate cost is
monotone increasing, i.e., C̄(S) ≤ C̄(T) for all S ⊆ T ⊆ U

Guido Schäfer Cost Sharing and Approximation Algorithms 20

Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, τ) is ρ-budget
balanced and weakly group-strategyproof.

Proof:
In every iteration, we have

∑
i∈A ξi = C̄(A). ρ-budget balance

follows from the approximation guarantee of ALG.

Fix a coalition S ⊆ U and consider the runs of M(ALG, τ) on
(b−S ,b′

S) and (b−S, vS). These runs are identical until first
player in S, say i , is considered. The payment ξi of i only
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b′

i instead
of vi .

Guido Schäfer Cost Sharing and Approximation Algorithms 21

Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, τ) is ρ-budget
balanced and weakly group-strategyproof.

Proof:
In every iteration, we have

∑
i∈A ξi = C̄(A). ρ-budget balance

follows from the approximation guarantee of ALG.

Fix a coalition S ⊆ U and consider the runs of M(ALG, τ) on
(b−S ,b′

S) and (b−S, vS). These runs are identical until first
player in S, say i , is considered. The payment ξi of i only
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b′

i instead
of vi .

Guido Schäfer Cost Sharing and Approximation Algorithms 21

Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, τ) is ρ-budget
balanced and weakly group-strategyproof.

Proof:
In every iteration, we have

∑
i∈A ξi = C̄(A). ρ-budget balance

follows from the approximation guarantee of ALG.

Fix a coalition S ⊆ U and consider the runs of M(ALG, τ) on
(b−S ,b′

S) and (b−S, vS). These runs are identical until first
player in S, say i , is considered. The payment ξi of i only
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b′

i instead
of vi .

Guido Schäfer Cost Sharing and Approximation Algorithms 21

Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, τ) is ρ-budget
balanced and weakly group-strategyproof.

Proof:
In every iteration, we have

∑
i∈A ξi = C̄(A). ρ-budget balance

follows from the approximation guarantee of ALG.

Fix a coalition S ⊆ U and consider the runs of M(ALG, τ) on
(b−S ,b′

S) and (b−S, vS). These runs are identical until first
player in S, say i , is considered. The payment ξi of i only
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b′

i instead
of vi .

Guido Schäfer Cost Sharing and Approximation Algorithms 21

Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, τ) is ρ-budget
balanced and weakly group-strategyproof.

Proof:
In every iteration, we have

∑
i∈A ξi = C̄(A). ρ-budget balance

follows from the approximation guarantee of ALG.

Fix a coalition S ⊆ U and consider the runs of M(ALG, τ) on
(b−S ,b′

S) and (b−S, vS). These runs are identical until first
player in S, say i , is considered. The payment ξi of i only
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b′

i instead
of vi .

Guido Schäfer Cost Sharing and Approximation Algorithms 21

Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, τ) is ρ-budget
balanced and weakly group-strategyproof.

Proof:
In every iteration, we have

∑
i∈A ξi = C̄(A). ρ-budget balance

follows from the approximation guarantee of ALG.

Fix a coalition S ⊆ U and consider the runs of M(ALG, τ) on
(b−S ,b′

S) and (b−S, vS). These runs are identical until first
player in S, say i , is considered. The payment ξi of i only
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b′

i instead
of vi .

Guido Schäfer Cost Sharing and Approximation Algorithms 21

Budget Balance and WGSP

Theorem

The generalized incremental mechanism M(ALG, τ) is ρ-budget
balanced and weakly group-strategyproof.

Proof:
In every iteration, we have

∑
i∈A ξi = C̄(A). ρ-budget balance

follows from the approximation guarantee of ALG.

Fix a coalition S ⊆ U and consider the runs of M(ALG, τ) on
(b−S ,b′

S) and (b−S, vS). These runs are identical until first
player in S, say i , is considered. The payment ξi of i only
depends on the set of previously accepted players, which is the
same in both runs. Player i cannot gain by reporting b′

i instead
of vi .

Guido Schäfer Cost Sharing and Approximation Algorithms 21

Monotone Approximate Cost

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

r

1 2

3

bold edges have cost 2
all others 1 + ε

But: marginal approximate cost is increasing if we add players
according to Prim’s order!

Guido Schäfer Cost Sharing and Approximation Algorithms 22

Monotone Approximate Cost

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

r

1 2

3

bold edges have cost 2
all others 1 + ε

C̄({1, 2, 3}) = 3 + 3ε

But: marginal approximate cost is increasing if we add players
according to Prim’s order!

Guido Schäfer Cost Sharing and Approximation Algorithms 22

Monotone Approximate Cost

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

r

1 2

3

bold edges have cost 2
all others 1 + ε

C̄({1, 2, 3}) = 3 + 3ε

C̄({1, 2}) = 4

But: marginal approximate cost is increasing if we add players
according to Prim’s order!

Guido Schäfer Cost Sharing and Approximation Algorithms 22

Monotone Approximate Cost

Problem: approximate cost is often not monotone!

Example: Minimum Spanning Tree Game

r

1 2

3

bold edges have cost 2
all others 1 + ε

C̄({1, 2, 3}) = 3 + 3ε

C̄({1, 2}) = 4

But: marginal approximate cost is increasing if we add players
according to Prim’s order!

Guido Schäfer Cost Sharing and Approximation Algorithms 22

Two Crucial Ingredients

Consistent Order Function: for every S ⊆ T :

(τ(·,T) order)

T

S

(τ(·,T) order)

5 98

1

1

2 3 4 5 6 7

32

8

6

9

τ -Increasing: ALG is τ -increasing if for every S ⊆ U and every
1 ≤ i ≤ |S|:

C̄(Si)− C̄(Si−1) ≥ 0,

where Si is the set of the first i elements of S (ordered
according to τ(·,S)).

Guido Schäfer Cost Sharing and Approximation Algorithms 23

Two Crucial Ingredients

Consistent Order Function: for every S ⊆ T :

(τ(·,T) order)

T

S

(τ(·,T) order)

5 98

1

1

2 3 4 5 6 7

32

8

6

9

τ -Increasing: ALG is τ -increasing if for every S ⊆ U and every
1 ≤ i ≤ |S|:

C̄(Si)− C̄(Si−1) ≥ 0,

where Si is the set of the first i elements of S (ordered
according to τ(·,S)).

Guido Schäfer Cost Sharing and Approximation Algorithms 23

Two Crucial Ingredients

Consistent Order Function: for every S ⊆ T :

(τ(·,S) order)S 1 2 3 9 8 5 6

(τ(·,T) order)

T

S

(τ(·,T) order)

5 98

1

1

2 3 4 5 6 7

32

8

6

9

τ -Increasing: ALG is τ -increasing if for every S ⊆ U and every
1 ≤ i ≤ |S|:

C̄(Si)− C̄(Si−1) ≥ 0,

where Si is the set of the first i elements of S (ordered
according to τ(·,S)).

Guido Schäfer Cost Sharing and Approximation Algorithms 23

Two Crucial Ingredients

Consistent Order Function: for every S ⊆ T :

(τ(·,S) order)S 1 2 3 9 8 5 6

(τ(·,T) order)

T

S

(τ(·,T) order)

5 98

1

1

2 3 4 5 6 7

32

8

6

9

τ -Increasing: ALG is τ -increasing if for every S ⊆ U and every
1 ≤ i ≤ |S|:

C̄(Si)− C̄(Si−1) ≥ 0,

where Si is the set of the first i elements of S (ordered
according to τ(·,S)).

Guido Schäfer Cost Sharing and Approximation Algorithms 23

Framework

Let τ be a consistent order function and let ALG be a
τ -increasing ρ-approximation algorithm for the optimization
problem P.

Theorem

The generalized incremental mechanism M(ALG, τ) is weakly
group-strategyproof, ρ-budget balanced and satisfies the no
positive transfer property.

[Brenner, Schäfer, SAGT ’08]

Our framework reduces the task of designing a WGSP
mechanism to finding a consistent order function τ such that the
approximation algorithm ALG is τ -increasing

Guido Schäfer Cost Sharing and Approximation Algorithms 24

Scheduling Example I

Problem: parallel machines, minimize makespan: P| |Cmax

Order Function: order jobs by non-increasing processing times
(Graham’s rule)

Theorem

The generalized incremental mechanism M(GRAHAM, τ) is
weakly group-strategyproof and 4/3-budget balanced.

Contrast: Moulin mechanisms cannot be better than 2-budget
balanced

Guido Schäfer Cost Sharing and Approximation Algorithms 25

Scheduling Example II

Problem: parallel machines, no preemption, minimize sum of
weighted completion times: P| |

∑
i wiCi

Order Function: order jobs by non-increasing weight per
processing time (Smith’s rule)

Theorem

The generalized incremental mechanism M(SMITH, τ) is weakly
group-strategyproof, 1.21-budget balanced and
2.42-approximate.

Contrast: Moulin mechanisms cannot be better than
Ω(n)-budget balanced

Guido Schäfer Cost Sharing and Approximation Algorithms 26

Scheduling Example III

Problem: single machine, release dates, preemption, minimize
sum of completion times: 1|ri ,pmtn|

∑
i Ci

Order Function: order jobs by increasing completion times in
the shortest remaining processing time schedule

Theorem

The generalized incremental mechanism M(SRPT, τ) is weakly
group-strategyproof, 1-budget balanced and 4-approximate.

Contrast: Moulin mechanisms cannot be better than
Ω(n)-budget balanced

Guido Schäfer Cost Sharing and Approximation Algorithms 27

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

C1(T) C4(T)

C3(T)

C5(T) C2(T)

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

C1(T) C4(T)

C3(T)

C5(T) C2(T)

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

C1(T) C4(T)

C3(T)

C5(T) C2(T)

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

C1(T) C4(T)

C3(T)

C5(T) C2(T)

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

C1(T) C4(T)

C3(T)

C5(T) C2(T)

S 1 2 24 5

C1(S) C4(S) C2(S)

C5(S)

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

C1(T) C4(T)

C3(T)

C5(T) C2(T)

S 1 2 24 5

C1(S) C4(S) C2(S)

C5(S)

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

C1(T) C4(T)

C3(T)

C5(T) C2(T)

S 1 2 24 5

C1(S) C4(S) C2(S)

C5(S)

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Consistency of SRPT

0 5 10 15 t
1 33 5

2
4

T 1 2 23 34 5

C1(T) C4(T)

C3(T)

C5(T) C2(T)

S 1 2 24 5

C1(S) C4(S) C2(S)

C5(S)

T = {1, . . . , 5}. Suppose
we remove Job 3 from T :
S = {1, 2, 4, 5}.

Consider the lifetime of Job
3 in schedule for T :
• Job 2 is a losing job
• Job 4 is a winning job

Observation:
• nothing changes for

winning jobs
• losing job might be

processed in place of
Job 3
• but this job will not be

completed before C3(T)

Guido Schäfer Cost Sharing and Approximation Algorithms 28

Overview of Results

our mechanism Moulin mechanism
Problem (β, α) β (lower bound)

P| |Cmax
4
3 −

1
3m

2m
m+1

P| |
∑

i Ci (1, 2) n+1
2

P| |
∑

i wiCi (1.21, 2.42) n+1
2

1|ri , pmtn|
∑

i Ci (1, 4) n+1
2

P|ri , pmtn|
∑

i Ci (1.25, 5) n+1
2

1|ri , pmtn|
∑

i Fi 1 n+1
2

MST 1 1
Steiner tree 2 2

TSP 2 –

Guido Schäfer Cost Sharing and Approximation Algorithms 29

Universe of Acyclic Mechanisms

Acyclic Mechanisms

Primal-Dual
Mechanisms

Moulin
Mechanisms
(equal offer times)

Incremental
Mechanisms

(unique offer times)

Guido Schäfer Cost Sharing and Approximation Algorithms 30

Universe of Acyclic Mechanisms

Acyclic Mechanisms

Primal-Dual
Mechanisms

Moulin
Mechanisms
(equal offer times)

Incremental
Mechanisms

(unique offer times) ?
Guido Schäfer Cost Sharing and Approximation Algorithms 30

Conclusions and Open Problems

Conclusions

Moulin Mechanisms:
• achieve strong notion of group-strategyproofness
• only known framework to derive GSP mechanisms
• may suffer from bad budget balance or social cost

approximation factors
• cross-monotonic cost shares derived in case-by-case studies

Our Framework:
• weaker notion of weakly group-strategyproofness, but

coalitional viewpoint retained
• framework to derive WGSP mechanisms from existing

algorithms, thereby preserving approximation factor
• yields constant budget balance and social cost

approximation guarantees, e.g., for scheduling problems

Guido Schäfer Cost Sharing and Approximation Algorithms 32

Open Problems

Open Problem: Which other algorithms exploit the full strength
of our framework? Which types of algorithms satisfy
consistency?

Open Problem: Are there other approaches to derive acyclic
mechanisms from approximation algorithms?

Open Problem: What are the trade-offs between weakly
group-strategyproofness and budget balance and social cost
approximation guarantees?

Open Problem: Consider more general settings such as online,
general demand, etc. (see also [Brenner, Schäfer, CIAC ’10])

Guido Schäfer Cost Sharing and Approximation Algorithms 33

Approximation Algorithms for
Rent-or-Buy Problems

Multicommodity Rent-or-Buy

Given:
• graph G = (V ,E) with edge costs c : E → R

+

• set of k terminal pairs R = {(s1, t1), . . . , (sk , tk)}
• demand di for commodity (si , ti)
• parameter M ≥ 1

Rent-or-Buy: on each edge e:

• either rent capacity λ(e) at cost λ(e) · ce
• or buy infinite capacity at cost M · ce

Goal: determine minimum-cost capacity installation such that
all demands can be routed simultaneously

Guido Schäfer Cost Sharing and Approximation Algorithms 35

Example: Multicommodity Rent-or-Buy

s1

s2 t2

t1
d1 = 3

d2 = 2

M = 4

4

4

1

2

2

1

1

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Example: Multicommodity Rent-or-Buy

s1

s2 t2

t1
d1 = 3

d2 = 2

M = 4 capacity installation cost: 20

4

4

1

2

2

1

1

2 · 4 = 8

3 · 4 = 12

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Example: Multicommodity Rent-or-Buy

s1

s2 t2

t1
d1 = 3

d2 = 2

M = 4 capacity installation cost: 19

4

4

1

2

2

1

1
3 · 1 = 3

2 · 2 = 4

3 · 2 = 6

2 · 1 = 2
M · 1 = 4

Guido Schäfer Cost Sharing and Approximation Algorithms 36

Special Cases

Steiner Forest (unit demands, M = 1):
Given a graph G = (V ,E) with edge costs c : E → R

+ and k
terminal pairs (s1, t1), . . . , (sk , tk), find a minimum-cost forest F
in G that contains an si , ti -path for all i .

Single-Sink Rent-or-Buy:
Same input as for MROB, but all terminal pairs share a common
sink node s.

Guido Schäfer Cost Sharing and Approximation Algorithms 37

Example: Single-Sink Rent-or-Buy

M = 3

s

Guido Schäfer Cost Sharing and Approximation Algorithms 38

Example: Single-Sink Rent-or-Buy

M = 3

s

Guido Schäfer Cost Sharing and Approximation Algorithms 38

Example: Single-Sink Rent-or-Buy

OPT

M = 3

s

Guido Schäfer Cost Sharing and Approximation Algorithms 38

Connected Facility Location ∗

Given:
• graph G = (V ,E) with edge costs c : E → R

+

• set D ⊆ V of demands
• parameter M ≥ 1

Goal:
• find a subset F ⊆ V of facilities that are opened
• connect each j ∈ D to some open facility σ(j) ∈ F
• build a Steiner tree T on F so as to minimize

M · c(T) +
∑

j∈D

ℓ(j , σ(j))

ℓ(u, v) = shortest path distance between nodes u and v in G

∗Note: every node is a facility and there are no opening costs

Guido Schäfer Cost Sharing and Approximation Algorithms 39

Example: Connected Facility Location ∗

= demand

M = 3

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example: Connected Facility Location ∗

= demand

M = 3

= open facility

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example: Connected Facility Location ∗

j
σ(j)

= demand

M = 3

= open facility

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Example: Connected Facility Location ∗

j
σ(j)

= demand

M = 3

= open facility

Guido Schäfer Cost Sharing and Approximation Algorithms 40

Randomized Framework

Assumption: can assume without loss of generality that every
terminal pair has unit demand

Sample-and-Augment Algorithm for MROB:
1: Mark each terminal pair with probability 1/M. Let D be set

of marked terminal pairs.
2: Compute an α-approximate Steiner forest F for D and buy

all edges in F .
3: For all terminal pairs (s, t) /∈ D: rent unit capacity on a

shortest s, t-path in contracted graph G|F .

G|F = graph obtained from G by contracting all edges in F ⊆ E

Guido Schäfer Cost Sharing and Approximation Algorithms 41

Strictness Concept

Definition

A Steiner forest algorithm ALG is β-strict if there exist cost
shares ξst ≥ 0 for every (s, t) ∈ R such that:

1
∑

(s,t)∈R ξst ≤ c(F ∗) (competitiveness)

2 For every (s, t) ∈ R, cG|F
−st

(s, t) ≤ β · ξst (β-strictness)

Notation:
• F ∗ = optimal Steiner forest for R
• F−st = Steiner forest computed by ALG for R−st = R \{(s, t)}
• G|F−st = graph obtained if all components of F−st are

contracted

Guido Schäfer Cost Sharing and Approximation Algorithms 42

Example: Strictness

s1

s2

t1

t2

2 2 2

4− ǫ

4− ǫ

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Example: Strictness

s1

s2

t1

t2

2 2 2

4− ǫ

4− ǫ

c(F ∗) = 6

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Example: Strictness

s1

s2

t1

t2

2 2 2

4− ǫ

4− ǫ

c(F ∗) = 6

Suppose: ξs1t1 = ξs2t2 = 3

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Example: Strictness

s1

s2

t1

t2

2 2 2

4− ǫ

4− ǫ

F−s1t1

Suppose: ξs1t1 = ξs2t2 = 3

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Example: Strictness

s1

s2

t1

t2

2 2 2

4− ǫ

4− ǫ

F−s1t1

Suppose: ξs1t1 = ξs2t2 = 3

cG|F
−s1t1

(s1, t1) = 4− ǫ

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Example: Strictness

s1

s2

t1

t2

2 2 2

4− ǫ

4− ǫ

F−s1t1

Suppose: ξs1t1 = ξs2t2 = 3

cG|F
−s1t1

(s1, t1) = 4− ǫ

4
3 · ξs1t1 sufficient to connect s1 and t1 in G|F−s1t1

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Example: Strictness

s1

s2

t1

t2

2 2 2

4− ǫ

4− ǫ

F−s1t1

Suppose: ξs1t1 = ξs2t2 = 3

cG|F
−s1t1

(s1, t1) = 4− ǫ

4
3 · ξs1t1 sufficient to connect s1 and t1 in G|F−s1t1

similar for (s2, t2)⇒ 4
3-strict

Guido Schäfer Cost Sharing and Approximation Algorithms 43

Randomized Framework

Theorem

Given an α-approximate and β-strict Steiner forest algorithm,
Sample-and-Augment is an (expected) (α+ β)-approximation
algorithm for MROB.

[Gupta, Kumar, Pál, Roughgarden, JACM ’07]

Remark: framework applies to other network design problems

• single-sink rent-or-buy
• multicast rent-or-buy
• virtual private network design
• single-sink buy-at-bulk

Guido Schäfer Cost Sharing and Approximation Algorithms 44

	Limitations and New Trade Offs
	Lower Bounds
	New Trade-Offs

	Acyclic Mechanisms
	Generalized Incremental Mechanisms
	Framework

	Concluding Remarks
	Rent-or-Buy Problems
	Multicommodity Rent-or-Buy
	Randomized Framework

