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Recap: Randomized Framework

Sample-and-Augment Algorithm for MROB:
1: Mark each terminal pair with probability 1/M. Let D be set

of marked terminal pairs.
2: Compute an α-approximate Steiner forest F for D and buy

all edges in F .
3: For all terminal pairs (s, t) /∈ D: rent unit capacity on a

shortest s, t-path in contracted graph G|F .

G|F = graph obtained from G by contracting all edges in F ⊆ E
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Recap: Strictness

Definition

A Steiner forest algorithm ALG is β-strict if there exist cost
shares ξst ≥ 0 for every (s, t) ∈ R such that:

1
∑

(s,t)∈R ξst ≤ c(F ∗) (competitiveness)

2 For every (s, t) ∈ R, cG|F−st
(s, t) ≤ β · ξst (β-strictness)

Notation:
• F ∗ = optimal Steiner forest for R
• F−st = Steiner forest computed by ALG for R−st = R \{(s, t)}
• G|F−st = graph obtained if all components of F−st are

contracted
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Randomized Framework

Theorem

Given an α-approximate and β-strict Steiner forest algorithm,
Sample-and-Augment is an (expected) (α+ β)-approximation
algorithm for MROB.

[Gupta, Kumar, Pál, Roughgarden, JACM ’07]

Remark: framework applies to other network design problems

• single-sink rent-or-buy
• multicast rent-or-buy
• virtual private network design
• single-sink buy-at-bulk
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State of Affairs

Multicommodity Rent-or-Buy

[Kumar, Gupta, Roughgarden, FOCS ’02] O(1)
[Gupta, Kumar, Pál, Roughgarden, FOCS ’03] 12, later 8
[Becchetti, Könemann, Leonardi, Pál, SODA ’05] 6.82
[Fleischer, Könemann, Leonardi, Schäfer, STOC ’06] 5

Theorem

The primal-dual 2-approximate Steiner forest algorithm AKR
of [Agrawal, Klein, Ravi, SICOMP ’95] is 3-strict.

[Fleischer, Könemann, Leonardi, Schäfer, STOC ’06]

Remark: 8
3 is a lower bound on the strictness factor of every

2-approximate Steiner forest algorithm
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Strict Steiner Forest Algorithm



Recall: Steiner Forest Algorithm AKR

τ = 0.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Recall: Steiner Forest Algorithm AKR

τ = 0.3

s1 s3 t3 s2 t2

t1

3 2 4 3
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2.5
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Recall: Steiner Forest Algorithm AKR

τ = 1.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5
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Recall: Steiner Forest Algorithm AKR

τ = 1.5

s1 s3 t3 s2 t2

t1
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Recall: Steiner Forest Algorithm AKR

τ = 2.0

s1 s3 t3 s2 t2

t1

3 2 4 3

5.5

2.5
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Recall: Steiner Forest Algorithm AKR

τ = 2.5

s1 s3 t3 s2 t2

t1
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Recall: Steiner Forest Algorithm AKR

τ = 3.5

s1 s3 t3 s2 t2

t1

3 2 4 3
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Recall: Steiner Forest Algorithm AKR

τ = 4.0
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t1
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Recall: Steiner Forest Algorithm AKR

τ = 5.0
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Adding Competitiveness

Competitiveness: compute cost shares ξst for all (s, t) ∈ R
such that ∑

(s,t)∈R

ξst ≤ OPT

Idea:
• forest F computed by AKR has cost at most 2OPT
• whenever a path Pi becomes tight, can distribute half of the

cost of the added edges as cost share

ξ(e) =
1
2

c(e)

• total distributed cost share is
∑

e∈F

ξ(e) =
1
2

c(F ) ≤ OPT
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Adding Strictness

β-Strictness: connecting s and t in the contracted graph
G|F−st has cost at most

cG|F−st
(s, t) ≤ β · ξst .

Idea:
• consider the unique s, t-path Pst in forest F computed by

AKR for R
• some edges of Pst might be missing in F−st
• use β · ξst to pay for adding the missing edges

Guido Schäfer Cost Sharing and Approximation Algorithms 9



Crucial Notion: Witnesses

x

u v

y

M1 M2 Mq

M M̄

P1 P2 Pq+1

Event: moats M and M̄ make path P tight:

• P passes through inactive moats M1, . . . ,Mq
• every edge e ∈ P1 ∪ · · · ∪ Pq+1 is added to existing forest
• x = active terminal in M whose moat intersects P earliest

y = active terminal in M̄ whose moat intersects P earliest

Call We = {x , y} the witnesses of edge e ∈ P1 ∪ · · · ∪ Pq+1
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Witness Lemma

τst = time when s and t become inactive in AKR

Lemma (Witness Lemma)

Let e be an edge that has been added to forest F at time
τe ≤ τst . If neither s nor t is witness for e then e is part of F−st .

Proof (sketch): Can show by induction over τ ≤ τst that for
every terminal v 6= s, t :

Mτ
−st(v) = Mτ (v) if Mτ (v) ∩ {s, t} = ∅

Mτ
−st(v) ⊆ Mτ (v) otherwise

⇒ every terminal v 6= s, t that is active at time τ ≤ τst in
AKR(R) must be active at that time in AKR(R−st).
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Symmetric Cost Sharing

x

u v

y

M1 M2 Mq

M M̄

P1 P2 Pq+1

x , y = witnesses for the edges e ∈ P1 ∪ . . . ∪ Pq+1

Cost Share Distribution: if edge e is witnessed by v ∈ {x , y}

ξv (e) =
1
2
ξ(e) =

1
4

c(e)

Cost share of terminal pair (s, t):

ξst =
∑

e∈F

ξs(e) + ξt(e)
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Path Reconstruction

x

u v

y

M1 M2 Mq

M M̄

s t

P1 P2 Pq+1

Goal: augment forest F−st at cost cG|F−st
(s, t) ≤ β · ξst

• consider the unique s, t-path Pst in F
• some edges of Pst might be missing in F−st
• Witness Lemma: If e ∈ Pst \ F−st then {s, t} ∩We 6= ∅.
• each witness of e received 1

2ξ(e) as cost share
• cost of edge e is 2ξ(e)
⇒ 4ξst sufficient to pay for all missing edges on Pst

Thus: AKR is 2-approximate and 4-strict
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Tight Example and Insights

s1 s2 t1 t22 2

(i)

2

4 − ǫ 4 − ǫ

s1 s2 t1 t22 2

(ii)

2

4 − ǫ 4 − ǫ

Analysis is tight:

• cost share of (s1, t1) for path 〈s1, s2, t1〉 is 1
• reconstructing this path in G|F−s1t1 costs 4

But: we are not using ξt1(t1, t2)!

• total cost share of (s1, t1) in our algorithm is 3
2

• we could have shown 4
3/2 = 8

3 -strictness!

Open Problem : Does the symmetric cost sharing rule lead to
8
3 -strictness?
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Asymmetric Cost Sharing

s t

u

e

Figure shows path Pst in forest F and an edge e with
We = {s,u} for some u 6= t .

Let ū be the mate of u. τst (τuū) is the time when s and t (u and
ū) meet in AKR.

Cost share ξs(e) will now depend on:

• whether e ∈ Puū or not, and
• meeting times τst and τuū.
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Let ū be the mate of u. τst (τuū) is the time when s and t (u and
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Edges not needed by (u, ū)

s

u ū

t
e

Cost Share Distribution: if edge e is on Pst \ Puū

ξs(e) =
2
3
ξ(e) and ξu(e) =

1
3
ξ(e)

Note: cost of such an edge e is 2ξ(e)

⇒ 3ξs(e) is sufficient to pay for e
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Edges needed by (u, ū): τuū ≤ τst

s

ū u

t
e

Observe: all blue and red edges are built before time τst

B,R = blue, red edges missing in F−st

Witness Lemma: For all e ∈ B ∪ R: {s, t} ∩We 6= ∅.

Idea: use cost share obtained for edges in B and R and fact
that u and ū are connected to connect s and t in F−st
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that u and ū are connected to connect s and t in F−st

Guido Schäfer Cost Sharing and Approximation Algorithms 17



Edges needed by (u, ū): τuū ≤ τst
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Edges needed by (u, ū): τuū ≤ τst

s

ū u

t
e

Cost Share Distribution: If e ∈ Puū and τuū ≤ τst

ξs(e) =
1
3
ξ(e) and ξu(e) =

2
3
ξ(e)

s, t obtain at least 1
3ξ(e) for each e ∈ B ∪ R

Assume:
∑

e∈B ξ(e) ≥
∑

e∈R ξ(e)

Total cost share obtained for B ∪ R is at least 2
3

∑

e∈R ξ(e)
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Edges needed by (u, ū): τuū ≤ τst

s v

ū

w

u

t
e

Total cost share obtained for B ∪ R is at least 2
3

∑

e∈R ξ(e)

Reconstructing path 〈v , ū,u,w〉 costs at most 2
∑

e∈R ξ(e)

⇒ 3
∑

e∈R ξst(e) is sufficient to reconstruct this path

Similar argument applies when
∑

e∈R ξ(e) >
∑

e∈B ξ(e)
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ū

w

u

t
e

Total cost share obtained for B ∪ R is at least 2
3

∑

e∈R ξ(e)

Reconstructing path 〈v , ū,u,w〉 costs at most 2
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Edges needed by (u, ū): τuū > τst

s

ū u

t
e

There may be red edges e ∈ R that are not part of F−st and
We ∩ {s, t} = ∅!

Cost Share Distribution: If e ∈ Puū and τuū > τst

ξs(e) =
2
3
ξ(e) and ξu(e) =

1
3
ξ(e)

Note: cost of such an edge e is 2ξ(e)

⇒ 3ξs(e) is sufficient to pay for e
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Putting All Pieces Together

There may also be edges e ∈ Pst that are witnessed by s and t .
⇒ ξst(e) = ξ(e) and thus 2ξst(e) is sufficient to pay for e

Recall: for every edge e ∈ F with We = {u, v}

ξu(e) + ξv (e) = ξ(e)

Altogether
∑

(s,t)∈R

ξst ≤
1
2

c(F ) ≤ OPT

Thus: AKR is 2-approximate and 3-strict
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Strictness Lower Bound

s1 s2 t1 t22 2

(i)

2

4 − ǫ 4 − ǫ

s1 s2 t1 t22 2

(ii)

2

4 − ǫ 4 − ǫ

The forest that AKR computes in (i) has cost 6 and the
maximum total cost share that can be distributed is 3.

Assume: ξs1t1 ≤ 3
2

Running AKR on terminal pairs R−s1t1 yields the forest in (ii) of
cost 4 − ǫ.

Thus: lower bound of 8/3 for strictness of AKR
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Extensions

Generalized Steiner Forest: find a minimum cost forest that
connects a given set R = {g1, . . . ,gk} of terminal groups
gi ⊆ V .

AKR also yields 2-approximate and 4-strict algorithm for
generalized Steiner forest
⇒ 6-approximation for the multicast rent-or-buy problem

Open Problem: Can the asymmetric 3-strict cost sharing
scheme be adapted to work for generalized Steiner forest?
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Further Results

Derandomization: some Sample-and-Augment algorithms for
network design problems can be derandomized

• single-sink rent-or-buy
• virtual private network design
• single-sink buy-at-bulk

[Van Zuylen, Algorithmica ’09]

Open Problem: derandomize the Sample-and-Augment
algorithm for MROB
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Connections to Stochastic
Optimization



Stochastic Optimization with Recourse

Stochastic Steiner Tree:
• network N = (V ,E , c), root vertex r ∈ V , terminal set R ⊆ V
• probability distribution π : 2R → [0,1] (sampling oracle)
π(S) = probability that terminal set S ⊆ R realizes

• inflation factor σ > 1

Stage 1: choose a subset E1 of edges at cost c(E1)

Stage 2: actual set S of terminal realizes: augment E1 to a
feasible Steiner tree solution for S ∪ {r} by adding a set of
edges ES at cost σc(ES)

Objective: minimize c(E1) + σE[c(ES)]
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Boosted Sampling Framework

Boost-and-Sample:
1: Sample σ times from π to obtain terminal sets D1, . . . ,Dσ

2: Build α-approximate Steiner tree T for D = ∪iDi ∪ {r}
3: When actual set S realizes, augment T to feasible solution

for S ∪ {r}

Theorem

Given an α-approximate and β-group-strict Steiner tree
algorithm, Boost-and-Sample is an (α+ β)-approximation
algorithm for stochastic Steiner tree.

[Gupta, Pál, Ravi, Sinha, STOC ’04]

Remark: framework applies to stochastic version of
optimization problems that are sub-additive, e.g., facility
location, vertex cover, Steiner forest, etc.
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Group-Strictness

Definition

A Steiner tree algorithm is β-group-strict if there exists a cost
share ξt ≥ 0 for every t ∈ R such that

1
∑

t∈R ξt ≤ c(F ∗)

2 for every S ⊆ R, cG|F−S
(S) ≤ β ·

∑

t∈S ξt

Group-Strict Algorithms:

Problem α β α+ β

Steiner tree 1.55 2 3.55
facility location 3 5.45 8.45
vertex cover 2 6 8

Question: How about group-strict Steiner forest algorithm?
(see also [Gupta, Kumar, STOC ’09])
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Open Problem

Develop an α-approximate and β-group-strict
Steiner forest algorithm with α, β ∈ O(1).

Reward: bottle of champagne
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Strict Steiner Forest Algorithm

Independent Decision Model: every terminal t ∈ R is realized
independently with probability πt

Theorem

Given an α-approximate and β-strict Steiner tree algorithm,
Boost-and-Sample is an (α+ β)-approximation algorithm for
stochastic Steiner tree in the independent decision model.

[Gupta, Pál, Ravi, Sinha, STOC ’04]

Further Consequences:
• 5-approximation algorithm for stochastic Steiner forest in the

independent decision model
• 6-approximation algorithm for stochastic Steiner tree without a

fixed root in the general model [Gupta, Pál, ICALP ’05]
[Fleischer, Könemann, Leonardi, Schäfer, STOC ’06]
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Approximation Algorithms for
Connected Facility Location



Connected Facility Location

Given:
• graph G = (V ,E) with edge cost c : E → R

+

• set of facilities F ⊆ V with opening cost fi for every i ∈ F
• set of clients D ⊆ V with demand dj for every j ∈ D

(can assume without loss of generality dj = 1 for every j)
• parameter M ≥ 1

Goal:
• determine a subset F ⊆ F of facilities to be opened
• assign each client j ∈ D to some open facility σ(j) ∈ F
• build a Steiner tree T on F so as to minimize

∑

i∈F

fi + M
∑

e∈T

ce +
∑

j∈D

dj · ℓ(j , σ(j))

ℓ(u, v) = shortest path distance between nodes u and v in G
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Example: Connected Facility Location
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Example: Connected Facility Location
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Variants

Single-Sink Rent-or-Buy: special case of CFL where every
node is a facility with zero opening cost

Connected k-Facility Location: can open at most k facilities

Connected Soft-Capacitated Facility Location:
• every facility i can serve at most bi clients
• can open several copies of each facility i (incurring opening

cost fi each time)

Tour-Connected Facility Location: connect open facilities by
a minimum-cost traveling salesman tour

Guido Schäfer Cost Sharing and Approximation Algorithms 34



Contributions

We give simple and currently best approximation algorithms for
all mentioned variants of the connected facility location problem

Obstacles : need to incorporate that facilities can only be
opened at certain nodes and incur some opening cost

Naïve Two-Level Approach:

1 solve the (unconnected) facility location problem
2 build a Steiner tree on top of the opened facilities

⇒ fails because of prohibitively large Steiner tree cost due to
outlier facilities

High-Level Idea: use random sampling approach to choose a
good subset of the facilities opened in the unconnected facility
location solution
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Our Algorithm

Algorithm randCFL
1: Compute a ρfl-approximate solution (FU, σU) for the

unconnected facility location instance.

2: Mark a client j∗ ∈ D uniformly at random and mark every
other client independently with probability α/M. Let D be
the set of marked clients.

3: Open facility i ∈ FU if there is at least one marked client j
with σU(j) = i . Let F be the set of open facilities.

4: Compute a ρst-approximate Steiner tree on D. Augment this
tree by adding the shortest path between every j ∈ D and
the corresponding open facility σU(j) ∈ F . Extract a tree T
spanning F from the resulting multi-graph.

5: Assign each client j ∈ D to a closest open facility σ(j) ∈ F .
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Illustration: randCFL
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Illustration: randCFL
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Main Results

Theorem

Algorithm randCFL is an (expected)

• 4.55-approximation algorithm for connected facility location
• 3.05-approximation algorithm for single-sink rent-or-buy.

[Eisenbrand, Grandoni, Rothvoß, Schäfer, JCSS ’10]

Remarks:
• stated approximation guarantees are with respect to

(previously) best approximation guarantees
• ρfl = 1.52 for facility location [Mahdian, Ye, Zhang, APPROX ’03]

• ρst = 1.55 for Steiner tree [Robins, Zelikovsky, SODA ’00]

• obtain slightly superior results by using recent improvements
• ρfl = 1.5 for facility location [Byrka, Aardal, SICOMP ’10+]

• ρst ≈ 1.39 for Steiner tree [Byrka, Grandoni, Rothvoß, Sanita, STOC ’10]
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Analysis

Let (F ∗,T ∗, σ∗) be an optimal solution for the CFL instance of
cost ∑

i∈F∗

fi

︸ ︷︷ ︸

opening cost O∗

+ M
∑

e∈T∗

ce

︸ ︷︷ ︸

Steiner cost S∗

+
∑

j∈D

ℓ(j , σ∗(j))

︸ ︷︷ ︸

connection cost C∗

Theorem

If |D|/M = O(1) then there is a polynomial-time approximation
scheme for CFL.

Assumption: M/|D| ≤ ǫ for sufficiently small ǫ > 0
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Steiner Cost

Lemma

The Steiner cost is at most ρst(S∗ + (α+ ǫ)C∗) + (α+ ǫ)CU.

Proof:
Augment the Steiner tree T ∗ to a feasible Steiner tree on D by
adding the shortest path from each client in D to T ∗:

∑

e∈T∗

c(e) +
∑

j∈D

(
α

M
+

1
|D|

)

ℓ(j ,F ∗) =
1
M

S∗ +

(
α

M
+

1
|D|

)

C∗

Thus the expected cost of the ρst-approximate Steiner tree over
D computed in Step 4 is at most

ρst

M
S∗ + ρst

(
α

M
+

1
|D|

)

C∗

Guido Schäfer Cost Sharing and Approximation Algorithms 40



Steiner Cost

Lemma

The Steiner cost is at most ρst(S∗ + (α+ ǫ)C∗) + (α+ ǫ)CU.

Proof:
Augment the Steiner tree T ∗ to a feasible Steiner tree on D by
adding the shortest path from each client in D to T ∗:

∑

e∈T∗

c(e) +
∑

j∈D

(
α

M
+

1
|D|

)

ℓ(j ,F ∗) =
1
M

S∗ +

(
α

M
+

1
|D|

)

C∗

Thus the expected cost of the ρst-approximate Steiner tree over
D computed in Step 4 is at most

ρst

M
S∗ + ρst

(
α

M
+

1
|D|

)

C∗

Guido Schäfer Cost Sharing and Approximation Algorithms 40



Steiner Cost

Lemma

The Steiner cost is at most ρst(S∗ + (α+ ǫ)C∗) + (α+ ǫ)CU.

Proof:
Augment the Steiner tree T ∗ to a feasible Steiner tree on D by
adding the shortest path from each client in D to T ∗:

∑

e∈T∗

c(e) +
∑

j∈D

(
α

M
+

1
|D|

)

ℓ(j ,F ∗) =
1
M

S∗ +

(
α

M
+

1
|D|

)

C∗

Thus the expected cost of the ρst-approximate Steiner tree over
D computed in Step 4 is at most

ρst

M
S∗ + ρst

(
α

M
+

1
|D|

)

C∗
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M
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1
|D|
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(
α

M
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1
|D|
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CU
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E[S] ≤ M
(
ρst

M
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(
α

M
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1
|D|
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α

M
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1
|D|
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CU
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Connection Cost

Lemma

The opening cost is at most OU.

Proof:
Set of opened facilities F is a subset of FU , whose total cost is
OU.

Lemma

The connection cost is at most 2C∗ + CU + S∗/α.

Key Ingredient: novel core detouring scheme to bound the
expected connection cost
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Connection Cost

Lemma

The connection cost is at most 2C∗ + CU + S∗/α.

Proof (sketch):
Note: Each client is connected to its closest open facility in F .

It suffices to bound the expected cost of an alternative routing
scheme that connects every client to some open facility in F .

Idea: Use the optimal tree T ∗ as a core through which all clients
are routed to some facility in F .
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Core Detouring Scheme

σ∗(j)

∈ FU

M = 2 j

T ∗

OPT
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Cycle-Core Connection Game

C

j i = µ(j)

Instance:
• core nodes connected by

undirected cycle C

• each client node j assigned to
exactly one core node µ(j)

• Hin and Hout are the edges
directed into and out of the core
nodes, respectively

• every edge e has a weight
we ≥ 0
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Cycle-Core Connection Game

C

j i = µ(j)

Random Experiment:
• mark one client node uniformly

at random and every other node
independently with probability p

• every client node sends one
unit of flow to the closest
marked client node

Question: What is the total cost of
the resulting flow?
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Cycle-Core Connection Game

Theorem

The expected cost X of the flow in the cycle-core connection
game is at most w(Hin ∪Hout) + w(C)/(2p).

Proof:
Consider alternative routing scheme: Each client sends one unit
of flow to closest marked client with respect to unit edge
weights. Let fe be the flow on edge e. Bound total cost Y with
respect to w of f . Clearly, E[X ] ≤ E[Y ].

E[Y ] =
∑

e∈Hin∪Hout

E[fe]we +
∑

e∈C

E[fe]we

Consider an edge e ∈ Hin. Then fe ≤ 1 (deterministically).
Consider an edge e ∈ Hout . Then E[fe] ≤ 1 (by symmetry).
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Cycle-Core Connection Game

Theorem

The expected cost X of the flow in the cycle-core connection
game is at most w(Hin ∪Hout) + w(C)/(2p).

Proof:
Let Xj be the number of edges in C used by flow of client j .

∑

e∈C

fe =
∑

j∈D

Xj and thus by symmetry E[fe] = E[Xj ].

Now Xj > k iff j and the first k neighbors to the left and right of j
are not marked:

Pr(Xj > k) < (1 − p)2k+1

⇒ E[fe] = E[Xj ] =
∑

k≥0

Pr(Xj > k) ≤
1 − p

1 − (1 − p)2 ≤
1

2p
.
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Tree-Core Connection Game

Suppose core is given by a Steiner tree T on the core nodes.
Every client node is assigned to exactly one core node but a
core node can have multiple client nodes assigned to it.

Theorem

The expected cost X of the flow in the tree-core connection
game is at most w(Hin ∪Hout) + w(T )/p.

Proof (sketch):
Obtain cycle-core connection game by using the standard
argument to transform the Steiner tree T into a cycle of cost at
most 2w(T ) (edge doubling and shortcutting Eulerian tour).
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Putting All Pieces Together

Expected total cost of the constructed solution is at most

ρst(S∗ + (α+ ǫ)C∗) + (α+ ǫ)CU + OU + 2C∗ + CU +
S∗

α
(∗)

≤ ρst(S∗ + (α+ ǫ)C∗) + (1 + α+ ǫ)ρfl(C
∗ + O∗) + 2C∗ +

S∗

α

≤ (ρst(α + ǫ) + 2 + (1 + α+ ǫ)ρfl)(C
∗ + O∗) +

(

ρst +
1
α

)

S∗

Note: CU + OU

(∗)

≤ ρfl(C∗ + O∗)

Choosing ǫ sufficiently small and balancing the coefficients of
C∗ + O∗ and S∗, the claimed approximation ratio follows with
α = 0.334.
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Refinements and Derandomization

Refinements:
• can improve approximation guarantees by using

• bifactor approximation algorithm for facility location
• flow cancelling in the tree-core detouring scheme

• techniques extend to other connected facility location
variants

Derandomization: can derandomize most of our algorithms
(see also [Van Zuylen, Algorithmica ’09])
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Overview of Results

Problem Our results Previous best

CFL 4.00⋆ 8.55 [Swamy, Kumar, Algorithmica ’04]
4.23

SROB 2.92⋆ 3.55⋆ [Gupta, Kumar, Roughgarden, STOC ’03]
3.28 4 [Van Zuylen, Williamson, manuscript]

k -CFL 6.85⋆ 15.55⋆ [Swamy and Kumar, Algorithmica ’04]
6.98

tour-CFL 4.12⋆ 5.83⋆ [Ravi, Salman, ESA ’99] (special case only)

soft-CFL 6.27⋆

⋆ = randomized
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Conclusions and Open Problems



Conclusions

Random sampling is a powerful tool to obtain simple and good
approximation algorithms for network design problems.

Cost share viewpoint turned out to be helpful in the analysis of
Sample-and-Augment algorithms.

Strict cost shares also play a crucial role in the
Boost-and-Sample framework for two-stage stochastic
optimization with recourse.

Random sampling approach is versatile enough to attack more
complex network design problems such as connected facility
location.
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Open Problems

Open Problem: Is there a Steiner forest algorithm that admits
O(1)-group-strict cost shares? (see also [Gupta, Kumar, STOC ’09])

Open Problem: Can one derandomize the
Sample-and-Augment algorithm for MROB?

(see also [Van Zuylen, Algorithmica ’09])

Open Problem: Is there an analog to the core detouring
scheme for problems that have multiple cores (e.g., MROB,
single-sink buy-at-bulk, virtual private network design)?

(see also [Grandoni, Rothvoß, ICALP ’10])

Open Problem: Does the core detouring scheme lead to
improved approximation results in the context of two-stage
stochastic optimization with recourse?
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