ADFOCS 2010 11th Max Planck Advanced Course on the Foundations of Computer Science August 2–6, 2010, Saarbrücken, Germany

Cost Sharing and Approximation Algorithms Exercise 1

Guido Schäfer

Problem 1. Consider the cost sharing variant of the minimum makespan scheduling problem: We are given a set of n jobs U and a set of m identical machines M. Each job $j \in U$ has a processing time $p_j > 0$. A feasible schedule $\sigma : U \to M$ assigns each job $j \in U$ to a machine $\sigma(j) \in M$. Let $L_i(\sigma)$ denote the total load assigned to machine $i \in M$, i.e.,

$$L_i(\sigma) = \sum_{j \in U: \sigma(j)=i} p_j.$$

The makespan $C_{\max}(\sigma)$ of a feasible schedule σ is defined as the maximum load over all machines: $C_{\max}(\sigma) = \max_{i \in M} L_i(\sigma)$. The goal is to compute a feasible schedule σ that minimizes $C_{\max}(\sigma)$.

Suppose each job corresponds to a player. The cost for player set $S \subseteq U$ is defined as $C(S) = C_{\max}(\sigma_S^*)$, where σ_S^* is an optimal schedule for the jobs in S.

- (a) Develop a group-strategy proof cost sharing mechanism that is $(2-\frac{1}{m})$ -budget balanced.
- (b) Show that there is no Moulin mechanism that is β -budget balanced for $\beta < 2 \frac{2}{m+1}$.
- (c) Adapt the mechanism from (a) such that it is $(H_n + 1)$ -approximate.
- (d) Show that there is no Moulin mechanism that is α -approximate for $\alpha < H_n$.