ADFOCS 2010

11th Max Planck Advanced Course on the Foundations of Computer Science August 2–6, 2010, Saarbrücken, Germany

Cost Sharing and Approximation Algorithms Exercise 2

Guido Schäfer

Problems 1 and 2 deal with the Steiner tree problem: We are given an undirected graph G = (V, E) with non-negative edge costs $c : E \to \mathbb{R}^+$, a set of terminals $R = \{t_1, \dots, t_k\} \subseteq V$ and a designated root node $r \in V$. For a given subset $S \subseteq R$ of terminals, a Steiner tree on S is a minimum cost tree in G that spans all nodes in $S \cup \{r\}$. We use opt(S) to refer to its cost.

Problem 1. In the cost sharing variant of the Steiner tree problem, the set of players corresponds to the set of terminal nodes, i.e., U = R. Every player wants to connect her terminal t_i to the root node r. The cost C(S) to connect all players in $S \subseteq U$ with r is defined as the $cost \ opt(S) \ of \ a \ Steiner \ tree \ on \ S.$

Develop a 2-budget balanced and weakly group-strategyproof cost sharing mechanism for the Steiner tree cost sharing game.

Problem 2. Give a 2-approximate and 2-strict algorithm for the Steiner tree problem.

Hints for Problems 1 and 2: Convince yourself about the following:

- We can assume without loss of generality that G is a complete graph and that the edge costs satisfy the triangle inequality.
- We obtain a 2-approximate Steiner tree for $S \subseteq R$ by computing a minimum spanning tree on $S \cup \{r\}$.

Problem 3. Suppose we are given a set of players U and a cost function $C: 2^U \to \mathbb{R}^+$. A cost allocation $(x_i)_{i \in N}$ assigns a non-negative cost share x_i to every player $i \in U$. The cost allocation $(x_i)_{i \in \mathbb{N}}$ is said to be in the α -core ($\alpha \geq 1$) if:

- 1. $\frac{1}{\alpha}C(U) \leq \sum_{i \in U} x_i \leq C(U)$ 2. $\sum_{i \in S} x_i \leq C(S)$ for every $S \subseteq U$.
- (a) Show that every cross-monotonic and β -budget balanced cost sharing function ξ gives rise to a cost allocation in the α -core with $\alpha = \beta$.
- (b) Show that if the cost function C is such that $C(U) \ge \beta \sum_{i \in U} C(\{i\})$ for some $\beta > 1$ then there is no cost allocation in the α -core for $\alpha < \beta$.