Randomized Mechanism Design: Approximation and Online Algorithms

Part 2: Combinatorial Auctions

Berthold Vöcking RWTH Aachen University

August 2012

The combinatorial auction problem

A set $M = \{1, \dots, m\}$ shall be allocated to n bidders with private valuations for bundles of items

Definitions:

- feasible allocations: $A = \{(S_1, \dots, S_n) \subseteq M^n | S_i \cap S_j = \emptyset, i \neq j\}$
- valuation functions: $v_i: 2^M \to \mathbb{R}_{\geq 0}, i \in [n]$
- objective: maximize social welfare $\sum_{i=1}^{n} v_i(S_i)$

Assumptions:

- free disposal: $S \subseteq T \Rightarrow v_i(S) \le v_i(T)$
- normalization: $v_i(\emptyset) = 0$

Overview

- 0: Introduction
- 1: Approximation algorithms
 - single-minded bidders -
 - multi-dimensional bidders –
- 2: Online algorithms
 - overselling algorithm -
 - oblivious randomized rounding -

Overview

- 0: Introduction
- 1: Approximation algorithms
 - single-minded bidders -
 - multi-dimensional bidders –
- 2: Online algorithms
 - overselling algorithm -
 - oblivious randomized rounding -

Single-minded bidders

• Bidders are called *single-minded* if, for every bidder i, there exists a bundle $S_i^* \subseteq M$ and a value $v_i^* \in \mathbb{R}_{>0}$ such that

$$v_i(T) = \begin{cases} v_i^* & \text{if } T \supseteq S_i^* \\ 0 & \text{otherwise} \end{cases}$$

- Bids correspond to tuples (S_i^*, v_i^i) .
- Given the output of a mechanism, bidder i is called winning if it is assigned a bundle $T \supseteq S_i^*$.
- An output is called exact, if every bidder i is assigned S_i*
 (rather than some superset).
- A mechanism producing only exact outputs is called exact.

Computational hardness

Proposition

The allocation problem among single-minded bidders is NP-hard.

Proof: Reduction from independent set.

- Consider a graph G = (V, E). Each node is represented by a bidder. Each edge is represented by a good.
- For bidder i, set $S_i^* = \{e \in E | i \in e\}$ and $v_i^* = 1$.
- This way, winning bidders correspond to nodes in an independent set.

Indeed, the reduction implies

Proposition

Approximating the optimal allocation among single-minded bidders to within a factor of $m^{1/2-\epsilon}$, for any $\epsilon>0$, is NP-hard.

Incentive compatibility for single-minded bidders

Characterization of truthfulness

An exact mechanism for single minded bidders in which losers pay 0 is truthful if and only if it satisfies the following two properties:

- Monotonicity: A bidder who wins with bid (S_i^*, v_i^*) keeps winning for any $v_i' > v_i^*$ and for any $S_i' \subset S_i^*$ (for any fixed setting of the other bids).
- Critical Payment: A winning bidder pays the minimum value needed for winning: The infimum of all values v'_i such that (S_i^*, v'_i) wins.

Incentive compatible mechanism for single-minded bidders

Greedy allocation

- $\bullet \text{ Reorder the bids such that } \frac{v_1^*}{\sqrt{|S_1^*|}} \geq \frac{v_2^*}{\sqrt{|S_2^*|}} \geq \cdots \geq \frac{v_n^*}{\sqrt{|S_n^*|}}.$
- Initialize the set of winning bidders to $W = \emptyset$.
- ullet For $i=1\dots n$ do: If $S_i^*\cap igcup_{i\in W} S_j^*=\emptyset$ then add i to W.

The Greedy allocation is monotone. Combining it with critical payment gives a truthful mechanism.

Approximation factor of the Greedy algorithm

Theorem [Lehmann et. al, 2002]

The Greedy mechanism guarantees a \sqrt{m} -approximation of the optimal social welfare.

Proof:

- For $i \in W$, let $OPT_i = \{j \in OPT, j \ge i | S_i^* \cap S_i^* \ne \emptyset\}$.
- As $v_j^* \leq \sqrt{|S_j^*|} \cdot v_i^*/\sqrt{|S_i^*|}$, for $j \in \mathit{OPT}_i$, we obtain

$$\sum_{j \in \mathit{OPT}_i} v_j^* \leq \frac{v_i^*}{\sqrt{|S_i^*|}} \sum_{j \in \mathit{OPT}_i} \sqrt{|S_j^*|}$$

• We will show that $\sum_{j \in OPT_i} \sqrt{|S_j^*|} \le \sqrt{|S_i^*|} \sqrt{m}$, which gives

$$v(\mathit{OPT}) \leq \sum_{i \in W} \sum_{j \in \mathit{OPT}_i} v_j^* \leq \sum_{i \in W} v_i^* \sqrt{m} = \sqrt{m} \cdot v(\mathit{GREEDY})$$
 .

Approximation factor of the Greedy algorithm

Claim

$$\sum_{j \in OPT_i} \sqrt{|S_j^*|} \leq \sqrt{|S_i^*|} \sqrt{m}$$

• By the Cauchy-Schwarz inequality

$$\sum_{j \in OPT_i} \sqrt{|S_j^*|} \le \sqrt{|OPT_i|} \sqrt{\sum_{j \in OPT_i} |S_j^*|}.$$

- Now $|OPT_i| \le |S_i^*|$ since every S_j^* , for $j \in OPT_i$, intersects S_i^* and these intersections are disjoint. (Why?)
- Furthermore, $\sum_{i \in OPT_i} |S_i^*| \le m$ since OPT_i is an allocation.

Overview

- 0: Introduction
- 1: Approximation algorithms
 - single-minded bidders -
 - multi-dimensional bidders –
- 2: Online algorithms
 - overselling algorithm -
 - oblivious randomized rounding -

Problem description

ILP description of the problem

Maximize
$$\sum_{(i,S)} x_{i,S} v_i(S)$$
 subject to $\sum_{S} x_{i,S} \leq 1$ for each bidder i $\sum_{(i,S)|j\in S} x_{i,S} \leq 1$ for each item j $x_{i,S} \geq 0$

The LP-ralaxation of this problem can be solved efficiently using

Demand oracles:

Given a price p_j , for each item j, the demand oracle for bidder i answers queries of the following kind:

What is the utility-maximizing bundle?

Incentive compatibility for multi-dimensional bidders

Characterization of truthfulness

A mechanism is truthful if and only if it satisfies the following two properties for every i:

- i) For every bundle $T \subseteq M$, there exists a price $q_T^{(i)}(v_{-i})$. That is, for all v_i with $f_i(v_i, v_{-i}) = T$, $p(v_i, v_{-i}) = q_T^{(i)}(v_{-i})$.
- ii) The social choice function maximizes the utility for player i.That is, for every bidder i,

$$f(v) = \underset{(S_1,...,S_n) \in A^{(i)}(v_{-i})}{\operatorname{argmax}} (v_i(S_i) - q_{S_i}^{(i)}(v_{-i}))$$

with $A^{(i)}(v_{-i}) \subseteq A$ being a non-empty subset of allocations.

Examples: VCG, Fixed Price Auctions, Iterative Auctions

A universally truthful auction mechanism

[Dobzinski, Nisan, Schapira 2006]

- **1** Partition bidders into three sets SEC-PRICE, FIXED, STAT with probability 1ϵ , $\epsilon/2$, and $\epsilon/2$, respectively.
- Calculate optimal fractional solution opt*_{STAT} of the bidders in STAT.
- **3** Perfom a second price auction for selling a full bundle to a bidder in SEC-PRICE with a reserve price $r = v(opt_{STAT}^*)/\sqrt{m}$.
- **1** If the second price auction was not successful then: Perform a fixed price auction selling items at a fixed price $p = \epsilon v (\epsilon opt_{STAT}^*)/8m$, considering bidders in some fixed order.

Analyzing the approximation ratio

Bidder *i* is called *t*-dominant if $v_i(M) \ge v(opt)/t$.

Lemma

Suppose that there is a \sqrt{m} -dominant bidder and $r \leq v(opt)/\sqrt{m}$. Then the mechanism provides a \sqrt{m} -approximation with probability at least $1 - \epsilon$.

Lemma

Suppose there is no \sqrt{m} -dominant bidder. Then, with probability at least $1-\frac{16}{\epsilon\sqrt{m}}$, both $v(\text{opt}_{STAT})$ and $v(\text{opt}_{FIXED})$ are lower-bounded by $v(\text{opt})\cdot \epsilon/4$.

An analogous statement holds wrt opt^* , opt^*_{STAT} , and opt^*_{FIXED} .

Analyzing the approximation ratio

Analysis of fixed price auction

Suppose that the following conditions hold:

- There is no \sqrt{m} -dominant bidder.
- The item price p satisfies: $\frac{\epsilon^2 v(opt^*)}{32m} \le p \le \frac{\epsilon v(opt^*)}{8m}$.
- $v(opt^*_{FIXED}) \ge v(opt^*) \cdot \epsilon/4$.

We will show that the revenue of the fixed-price auction is $\Omega(\epsilon^3 v(opt_{FIXFD}^*)/\sqrt{m})$.

This gives

Theorem [Dobzinski et. al, 2010]

The mechanism provides an approximation ratio of $O(\sqrt{m}/\epsilon^3)$ with probability at least $1 - \epsilon$.

Analysis of fixed price auction

Let $\{y_{i,S}\}$ be the values of the variables in opt^*_{FIXED} . Let \mathcal{T} be the set of pairs (i,S) with $y_{i,S}>0$ and $v_i(S)\geq p\cdot |S|$. Let $opt^*_{FIXED|\mathcal{T}}=\{y_{i,S}\}_{(i,S)\in\mathcal{T}}$.

Claim

$$v(opt^*_{FIXED|\mathcal{T}}) = \sum_{(i,S)\in\mathcal{T}} y_{i,S}v_i(S) \geq \frac{1}{2} \cdot v(opt^*_{FIXED}).$$

Proof:

Define $\bar{\mathcal{T}}$ to be the complement of \mathcal{T} . It holds

$$\begin{split} \sum_{(i,S)\in\bar{\mathcal{T}}} y_{i,S} \cdot v_i(S) &\leq \sum_{(i,S)\in\bar{\mathcal{T}}} y_{i,S} \cdot |S| \cdot p \leq m \cdot p \\ &\leq m \cdot \frac{\epsilon v(opt^*)}{8m} \leq \frac{\epsilon v(opt^*_{FIXED})}{2} \end{split}.$$

Analysis of fixed price auction

It remains to show $v(FP) = \Omega(v(opt_{FIXED|\mathcal{T}}^*))$, where FP denotes the allocation of the fixed price auction.

We consider bidders in the order of the fixed price auction and study the following

dynamic process:

Whenever the fixed price auction chooses a bundle S_i for a bidder i, we remove the following bundles from T:

- \circ (i, S) for any bundle S
- ② (j, S) for any bidder j and any bundle S with $S \cap S_i \neq \emptyset$

At the end of the process the set \mathcal{T} is empty!

Analysis of fixed price auction

When adding S_i to FP, the set \mathcal{T} loses the following values

That is, for each item that we add to FP, the set \mathcal{T} loses a value of at most $2 \cdot \frac{v(opt^*)}{\sqrt{m}}$.

On the other hand, FP achieves revenue $p \ge \epsilon^2 \cdot \frac{v(opt^*)}{32m}$, for each of the picked items.

Overview

- 0: Introduction
- 1: Approximation algorithms
 - single-minded bidders -
 - multi-dimensional bidders –

2: Online algorithms

- overselling algorithm –
- oblivious randomized rounding -

Online mechanisms – model and approach

We assume that there are n bidders with arbitrary valuations.

The *n* bidders arrive one by one in random order.

The bidder arriving at time i, $1 \le i \le n$, is called the *ith bidder*.

The iterative pricing approach

When the *i*-th bidder arrives the mechanism calls the demand oracle with prices p_e^i that only depend on vauations of bidders $1, \ldots, i-1$ but not on the valuations of bidders i, \ldots, n .

By the direct characterization, this approach yields incentive compatible mechanisms.

Online mechanisms – competitive ratio

What do we achieve?

- Suppose each items is available with multiplicity $b \ge 1$. Competitive ratio: $O(m^{1/(b+1)} \log(bm))$.
- For $b = \log m$ this gives competitive ratio $O(\log m)$.
- Suppose bundles have size at most d. Competitive ratio: $O(d^{1/b} \log(bm))$.
- Suppose valuations are submodular or XOS.
 Competitive ratio: O(log m).

Overview

- 0: Introduction
- 1: Approximation algorithms
 - single-minded bidders -
 - multi-dimensional bidders –
- 2: Online algorithms
 - overselling algorithm -
 - oblivious randomized rounding -

Analytic trick: Violate constraints

Overselling MPU algorithm [inspired by Bartal, Gonen, Nisan 2003]

For each good $e \in U$ do $p_e^1 := p_0$.

For each bidder i = 1, 2, ..., n do

Set $S_i := \operatorname{Oracle}_i(U_i, p^i)$.

Update for each good $e \in S_i$: $p_e^{i+1} := p_e^i \cdot 2^{1/b}$.

Suppose *L* is a lower bound of v(opt) such that at most one bidder exceeds *L*. We set $p_0 = L/4bm$.

For the time being, assume that $U_i = M$.

 $\operatorname{Oracle}_i(U_i, p^i)$ returns the utility-maximal bundle for bidder i for prices p^i restricted to items in $U_i \subseteq M$.

How many copies per item are sold?

Lemma 1

At most sb copies of each item are sold, where $s = \log(4bm) + \frac{2}{b}$.

Proof:

- Suppose $\lceil sb 2 \rceil \ge b \log(4bm)$ copies of item e have been sold after some step.
- Then the price of e is larger than $p_0 \cdot 2^{\log(4bm)} \ge L$.
- After this step, only one further copiy of e might be given to that bidder whose maximum valuation exceeds L.
- Hence, at most $\lceil sb-1 \rceil \leq sb$ copies of e are assigned, which proves the lemma.

Let p_e^* denote the final prices (after the algorithm stopped).

Lemma 2

$$v(S) \geq b \sum_{e \in U} p_e^* - bmp_0.$$

Proof:

As bidders are individually rational, $v_i(S_i) \geq \sum_{e \in S_i} p_e^i$. Thus

$$v(S) \ge \sum_{i=1}^{n} \sum_{e \in S_i} p_e^i = \sum_{i=1}^{n} \sum_{e \in S_i} p_0 r^{\ell_e^i} = p_0 \sum_{e \in U} \sum_{k=0}^{\ell_e^* - 1} r^k = p_0 \sum_{e \in U} \frac{r^{\ell_e^*} - 1}{r - 1}$$

where $r=2^{1/b}$, ℓ_e^i is the number of copies of e sold before bidder i, and ℓ_e^* is the number of copies sold at the end of the execution.

Applying $p_e^* = p_0 r^{\ell_e^*}$ and $1/(r-1) = 1/(2^{1/b}-1) \ge b$ gives the lemma.

Lemma 3

$$v(S) \ge v(opt) - b \sum_{e \in M} p_e^*$$
, provided $U_1 = \cdots U_n = M$.

Proof:

Consider any feasible allocation $T = (T_1, \dots, T_n)$.

As the algorithm uses a utility-maximizing demand oracle, we have

$$v_i(S_i) - \sum_{e \in S_i} p_e^i \ge v_i(T_i) - \sum_{e \in T_i} p_e^i,$$

which implies

$$v_i(S_i) \geq v_i(T_i) - \sum_{e \in T_i} p_e^i.$$

As $p_e^* \ge p_e^i$, for every i and e, we obtain

$$v_i(S_i) \ge v_i(T_i) - \sum_{e \in T_i} p_e^*. \tag{*}$$

Summing over all bidders gives

$$v(S) = \sum_{i=1}^{n} v_i(S_i) \ge \sum_{i=1}^{n} v_i(T_i) - \sum_{i=1}^{n} \sum_{e \in T_i} p_e^* \ge v(T) - b \sum_{e \in M} p_e^*$$

because T is feasible so that each item is given to at most b sets.

Taking for T_i to be the bundle assigned to bidder i in an optimal solution gives

$$v(S) \ge v(opt) - b \sum_{e \in U} p_e^*.$$

Lemma 2

$$v(S) \geq b \sum_{e \in U} p_e^* - bmp_0.$$

Lemma 3

$$v(S) \ge v(opt) - b \sum_{e \in U} p_e^*$$
, provided $U_1 = \cdots U_n = M$.

Substituting Lemma 2 into Lemma 3 gives

$$v(S) \ge v(opt) - v(S) - bmp_0 \ge v(opt) - v(S) - \frac{1}{4}v(opt)$$

as $p_0 = L/4bm \le v(opt)/4bm$.

This gives $2v(S) \ge \frac{3}{4}v(opt)$ and, hence, $v(S) \ge \frac{3}{8}v(opt)$.

Properties of the overselling MPU algorithm

The algorithm is $\frac{3}{8}$ -competitive with respect to the optimal offline social welfare.

However, its output is not feasible as it oversells items by a factor of $O(\log bm)$.

Is the algorithm incentive compatible?

Overview

- 0: Introduction
- 1: Approximation algorithms
 - single-minded bidders -
 - multi-dimensional bidders –
- 2: Online algorithms
 - overselling algorithm -
 - oblivious randomized rounding -

Algorithmic trick: Use randomization to ensure feasibility

MPU algorithm with oblivious randomized rounding

For each good $e \in U$ do $p_e^1 := p_0$, $b_e^1 := b$.

For each bidder i = 1, 2, ..., n do

Set $S_i := \text{Oracle}_i(U_i, p^i)$, for $U_i = \{e \in U \, | \, b_e^i > 0\}$.

Update for each good $e \in S_i$: $p_e^{i+1} := p_e^i \cdot 2^{1/b}$.

With probability q set $R_i := S_i$ else $R_i := \emptyset$.

Update for each good $e \in R_i$: $b_e^{i+1} := b_e^i - 1$.

Lemma 4

Suppose the probability q>0 is chosen sufficiently small such that, for any $1\leq i\leq n$, and any bundle $T\subseteq U$,

$$\underbrace{\mathbf{E}\left[v_i(T\cap U_i)\right] \geq \frac{1}{2}\,v_i(T)}_{\text{expected value assumption}}.$$

Then $\mathbf{E}[v(S)] \ge \frac{1}{8}v(opt)$ and $\mathbf{E}[v(R)] \ge \frac{q}{8}v(opt)$.

Proof:

Consider any feasible allocation T_1, \ldots, T_n .

The set S_i is chosen by $Oracle_i(U_i, p^i)$ so that

$$v_i(S_i) \ge v_i(T_i \cap U_i) - \sum_{e \in T_i \cap U_i} p_e^i,$$

for any outcome of the algorithm's random coin flips.

This implies

$$\mathbf{E}\left[v_i(S_i)\right] \geq \mathbf{E}\left[v_i(T_i \cap U_i)\right] - \sum_{e \in T_i \cap U_i} \mathbf{E}\left[p_e^i\right].$$

Applying the expected value assumption, we obtain

$$\mathsf{E}\left[v_i(S_i)\right] \geq \frac{1}{2} \, v_i(T_i) - \sum_{e \in T_i} \mathsf{E}\left[p_e^i\right].$$

Observe that this equation is similar to equation (*) in the proof of Lemma 3 so that the rest of the analysis proceeds analogous to the analysis for the overselling MPU algorithm.

Lemma 5

The expected value assumption holds for

$$q = \frac{1}{2ed^{1/b}\left(\log(4bm) + \frac{2}{b}\right)} ,$$

where b denotes the multiplicity and d the maximum bundle size.

This implies

Theorem [Krysta, V., 2012]

The algorithm is $O(d^{1/b}\log(bm))$ -competitive.

Proof of Lemma 5:

By Lemma 1, item $e \in U$ is contained in at most $\ell := b \cdot \log(4bm) + 2$ of the provisional bundles S_1, \ldots, S_{i-1} .

Each of these ℓ bundles is turned into a final bundle with probability $q = b/(2ed^{1/b}\ell)$.

Observe that $e \notin U_i$ if at least b of the ℓ bundles became final.

The probability that $e \notin U_i$ is thus

$$\binom{\ell}{b} \cdot q^b \le \left(\frac{\mathrm{e}\ell}{b}\right)^b \cdot \left(\frac{b}{2\mathrm{e}d^{1/b}\ell}\right)^b = \frac{1}{2d} \ .$$

By the union bound, we have $\Pr[\exists e \in T : e \notin U_i] \leq |T| \cdot \frac{1}{2d} \leq \frac{1}{2}$.

Thus,
$$\mathbf{E}[v_i(T \cap U_i)] \ge v_i(T) \cdot \mathbf{Pr}[\neg \exists e \in T : e \notin U_i] \ge \frac{1}{2}v_i(T)$$
. \square

Submodular and XOS valuations

Submodular:

$$v_i(S \cup T) \le v_i(S) + v_i(T) - v_i(S \cap T)$$
, for every S, T

Subadditive (a.k.a. complement free):

$$v_i(S \cup T) \leq v_i(S) + v_i(T)$$
, for every S, T

Fractional-subadditive (a.k.a. XOS):

$$v_i(S) \leq \sum_{K \subseteq S} \alpha_K v_i(K)$$
 for every fractional cover α_K , i.e.,

- $0 \le \alpha_K \le 1$, for all $K \subseteq S$, and
- $\sum_{i|j\in K} \alpha_K \geq 1$, for every item $j\in S$

Submodular \subseteq Fractional-Subadditive \subseteq Subadditive

Fractional-subadditive valuations

Lemma 6

If valuation functions are fractional-subadditive then the expected value assumption holds for

$$q = \frac{1}{2(\log(4\mu m) + 2)} .$$

This implies

Theorem [Krysta, V., 2012]

The algorithm is $O(\log(m)$ -competitive for XOS valuations.

Fractional-subadditive valuations

Proof of Lemma 6:

Any item $e \in U$ is contained in at most $\ell := b \cdot \log(4bm) + 2$ of the provisional bundles S_1, \ldots, S_{i-1} . Each of these ℓ bundles is turned into a final bundle with probability $q = 1/(2\ell)$.

$$\Pr\left[e
ot\in U_i\right] = \Pr\left[\text{one of the } \ell \text{ bundles becomes final}\right] \leq \frac{1}{2}$$
.

Now fix T arbitrarily. For any given subset $K \subseteq T$, let $\alpha(K)$ denote the probability that $T \cap U_i = K$. For any $e \in T$,

$$\sum_{T\supset K
ightarrow e} lpha(K) = \mathsf{Pr}\left[e\in U_i
ight] \geq rac{1}{2} \; .$$

That is, α is a fractional half-cover of T. By fractional subadditivity,

$$\mathbf{E}\left[v_i(T\cap U_i)\right] = \sum_{K\subseteq T} \alpha(K)v_i(K) \geq \frac{1}{2}v_i(T) .$$

Recommended Reading

- Chapter 9, 11, and 12 in "Algorithmic Game Theory," Nisan N., Roughgarden T., Tardos E., Vazirani V. (Eds.), 2007.
- D. Lehmann, L. O'Callaghan, and Y. Shoham. Truth revelation in approximately efficient combinatorial auctions.
 J. ACM, 49(5), 2002.
- S. Dobzinski, N. Nisan, and M. Schapira. Truthful randomized mechanisms for combinatorial auctions.
 J. Comput. Syst. Sci. 78(1): 15-25, 2012.
- S. Dobzinski. Two randomized mechanisms for combinatorial auctions. APPROX 2007.
- R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming. J. ACM 58(6), 2011.

Recommended Reading

- U. Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput., 39(1), 2009. (see also the STOC 2006 version which contains some additional content)
- P. Krysta and B. Vöcking, Online Mechanism Design (Randomized Rounding on the Fly). ICALP 2012.
- Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible multi unit combinatorial auctions. TARK 2003.
- B. Awerbuch, Y. Azar, A. Meyerson. Reducing truth-telling online mechanisms to online optimization. STOC 2003.