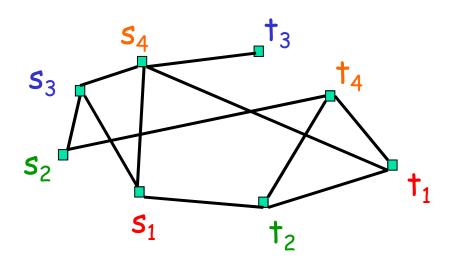
Edge-Disjoint Paths in Networks (Part 1)

Sanjeev Khanna University of Pennsylvania

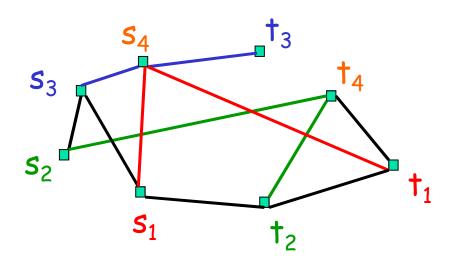
Edge Disjoint Paths Problem (EDP)

Input: Graph G(V,E), source-sink pairs s_1t_1 , s_2t_2 ,..., s_kt_k Goal: Route a maximum # of s_i - t_i pairs using edge-disjoint paths

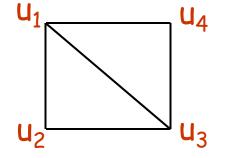


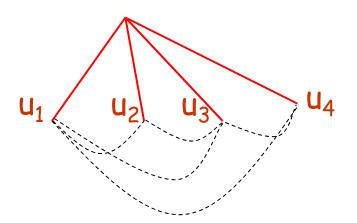
Edge Disjoint Paths Problem (EDP)

Input: Graph G(V,E), source-sink pairs s_1t_1 , s_2t_2 ,..., s_kt_k Goal: Route a maximum # of s_i - t_i pairs using edge-disjoint paths



EDP on Stars





Matching in G

EDP in a Star Graph

(Edges in G become source-sink pairs in the Star Graph)

Complexity of EDP

- EDP on star graphs is equivalent to the maximum matching problem in general graphs.
- Even for two pairs, EDP is NP-hard if G is a directed graph [Fortune, Hopcroft, Wylie'80].
- Polynomial-time solvable for constant number of pairs if G is undirected [Roberston, Seymour'88].
- NP-hard even on undirected trees when the edges have capacities.

Coping with Hardness

Settle for sub-optimal solutions: route only a fraction of the pairs that can be routed in an optimal solution.

Approximation algorithm A

- Runs in polynomial time
- Approximation ratio: how good is A
- Approx ratio α if $A(I) \ge OPT(I) / \alpha$ for all I
- Smaller the α , the closer we are to the optimal.

Overview of the Talk

- Review of classical results for EDP.
- Survey of the current state-of-the-art.
- Key algorithmic ideas underlying recent developments.
- Integrality gap and hardness results.
- Some open problems.

A Greedy Algorithm

- Among the unrouted pairs, pick the pair that has the shortest path in the current graph.
- Route this pair and remove all edges on the path from the graph.
- Repeat until no more pairs can be routed.

Clearly gives an edge-disjoint routing.

How good is this algorithm?

Analysis of the Greedy Algorithm

n: # of vertices m: # of edges

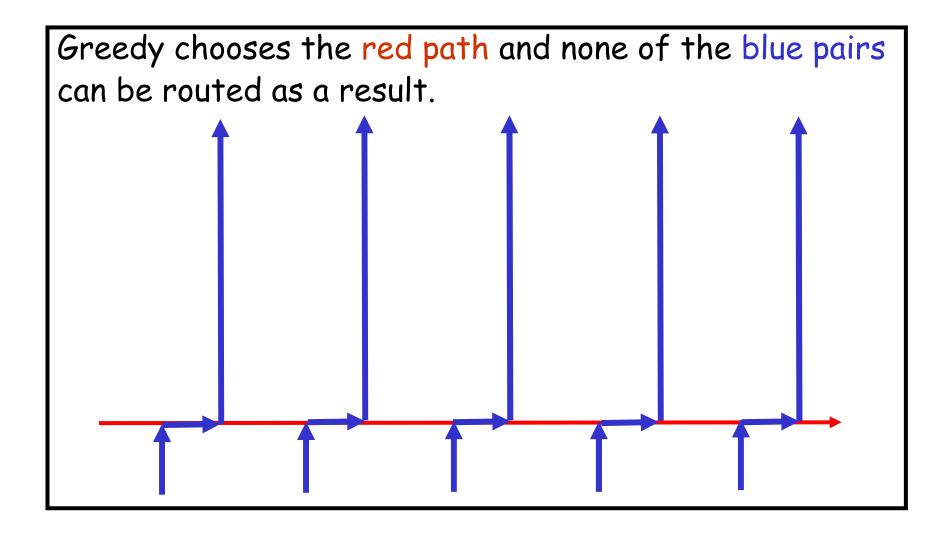
Fix an optimal solution, say, OPT.

As long as the greedy path has at most $m^{1/2}$ edges, it can destroy at most $m^{1/2}$ paths in OPT.

Suppose at some point, a path chosen by greedy is longer than $m^{1/2}$. Since there are only m edges, OPT can chose at most $m^{1/2}$ paths from here on.

So greedy gives an $O(m^{1/2})$ -approximation.

Can we improve it?



Multicommodity Flow Relaxation (LP)

- Routing is relaxed to be a flow from s_i to t_i.
- A pair can be routed for a fractional amount.
- x_i : amount of s_i - t_i flow that is routed.
- f(p) : amount of flow routed on a path p.

$$Max \sum_i x_i$$

s.**†**.

$$\begin{array}{ll} \forall \ \mathbf{i} & \mathbf{x}_{i} = \sum_{s_{i} - t_{i} \text{ paths } p} \mathbf{f}(p) \\ \forall \ \mathbf{e} & \sum_{p: \ e \in p} \mathbf{f}(p) \leq 1. \end{array}$$

 $0 \leq x_i \leq 1.$

A Simple Rounding Algorithm

- Among the unrouted pairs
 - Pick a pair with a shortest flow path p s.t. f(p) > 0.
 - Route this pair along the flow path p.
 - Discard all flow paths that share an edge with p (i.e. set f(p') = 0 if p' shares an edge with p).
- Repeat until no fractional flow left.

Clearly gives an edge-disjoint routing. But how good is this algorithm?

Analysis of the Rounding Algorithm

n: # of vertices m: # of edges Let OPT be an optimal fractional solution.

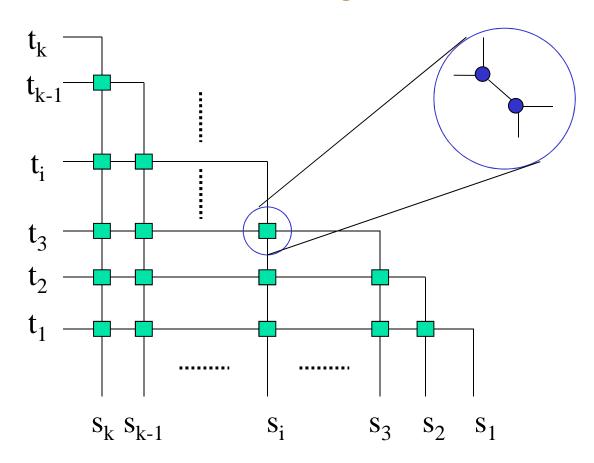
If chosen flow path p has length $\leq m^{1/2}$, routing a pair on p eliminates $\leq m^{1/2}$ units of flow from OPT. (for every edge on p, we discard at most one unit of flow.)

Once shortest available flow path has length $\geq m^{1/2}$, total remaining fractional flow must be $\leq m^{1/2}$. (total capacity = m, and each unit of flow consumes $\geq m^{1/2}$ capacity.)

We get an $O(m^{1/2})$ -approximation.

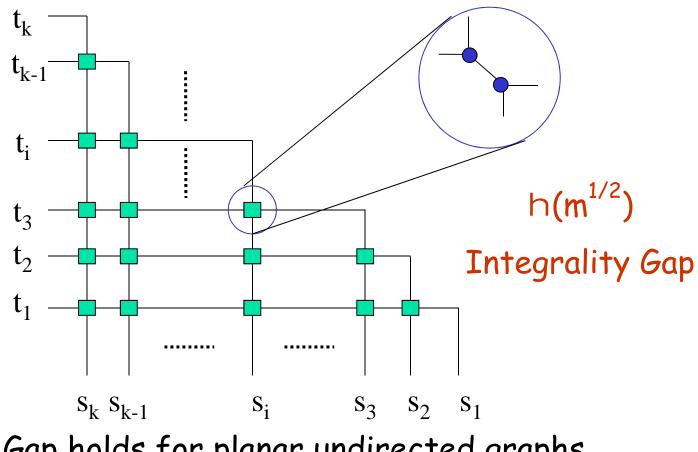
Could we do better?

[Garg, Vazirani, Yannakakis '93]



Could we do better?

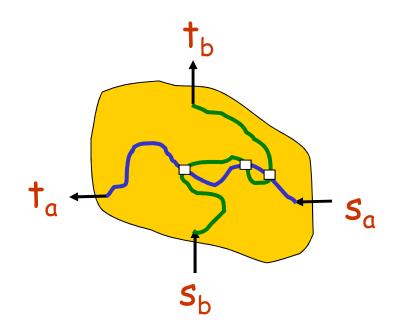
[Garg, Vazirani, Yannakakis '93]



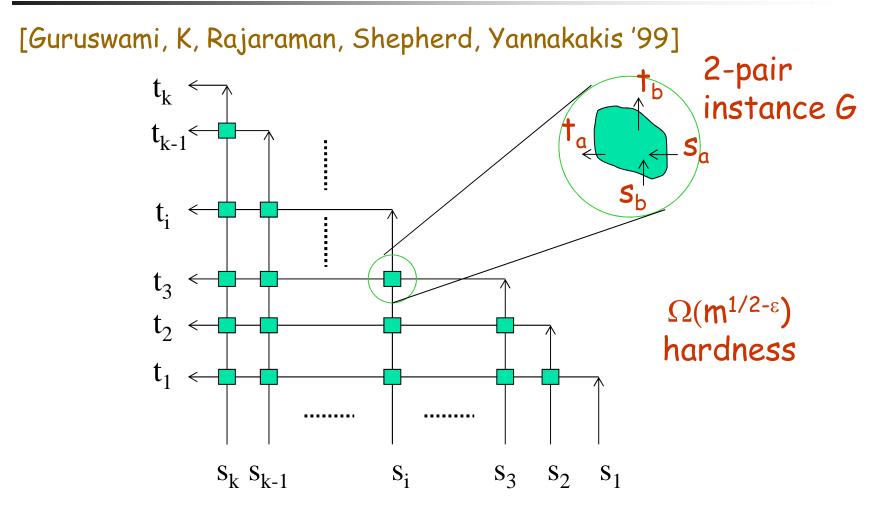
Gap holds for planar undirected graphs

And if the Graph is Directed ...

[Fortune, Hopcroft, Wylie '80] Given a directed graph G(V,E) and two pairs s_a - t_a and s_b - t_b , it is NP-hard to decide if we can route s_a to t_a and s_b to t_b on edge-disjoint paths.



Hardness of Approximation



EDP in Directed Acyclic Graphs

[Chekuri, K, Shepherd '06] O(n^{1/2})-approximation for EDP in DAGs via rounding of the multicommodity flow relaxation.

[Chalermsook, Laekhanukit, Nanongkai '14] $\Omega(n^{1/2-\epsilon})$ -hardness for EDP in DAGs for any $\epsilon > 0$.

What if we allow congestion ...

EDP with congestion c: up to c paths can share an edge.

What happens to the integrality gap for $c \ge 2$?

Key question: does EDP become well-approximable with constant congestion?

What if we allow congestion ...

Randomized Rounding [Raghavan-Thompson '87]

- Route pair (s_i, t_i) with probability x_i .
- If (s_i,t_i) is chosen, pick an s_i-t_i flow path p for routing: choose with probability proportional to f(p).

O(1)-approximation with congestion ⊖(lg n/lglg n). [Raghavan and Thompson '87]

 $O(n^{1/c})$ -approximation with constant congestion c.

[Srinivasan' 97], [Baveja-Srinivasan' 00],[Azar-Regev'01].

Could we do better?

EDP with Congestion in Directed Graphs

[Andrews, Zhang '06] [Chuzhoy, Guruswami, K, Talwar '07]

- Integrality gap of the flow relaxation is roughly n^{1/(3c)} for c up to O(log n/loglog n).
- Also, $n^{\Omega(1/c)}$ -hardness for c up to $\Theta(\log n/\log\log n)$.
- Randomized rounding is essentially optimal for the directed edge-disjoint paths problems.

EDP with Congestion in Undirected Graphs

[Andrews, Zhang '05] [Andrews, Chuzhoy, Guruswami, K, Talwar, Zhang '05]

- Integrality gap of the flow relaxation is at least (log n)^{1/(c+1)} with congestion c.
- $\Omega(\log^{1/(c+1)} n)$ -hardness with congestion c.

Undirected Graphs: State of the Art

 $\Omega(\log^{1/(c+1)} n)$ -hardness with constant congestion c. $O(n^{1/c})$ -approximation with constant congestion c.

- O(log n)-approximation with congestion 2 for planar graphs [Chekuri, K, Shepherd '05]
- Polylog(n) approximation with no congestion for graphs with large minimum cut [Rao-Zhou '06]
- Polylog(n) approximation with poly(lg lg n) congestion in arbitrary graphs [Andrews '10]
- Polylog(n) approximation with constant congestion in arbitrary graphs [Chuzhoy '12] [Chuzhoy-Li '12]

Well-linked Decomposition Framework for EDP

[Chekuri, K, Shepherd '04, '05]

- Start with a multicommodity flow solution but use it only to partition the graph into well-linked instances. We ignore the flow paths !
- Show that any well-linked instance contains a routing structure called a crossbar on which EDP is easy to solve.
- Route the given source-sink pairs using the crossbar.

Instance of EDP

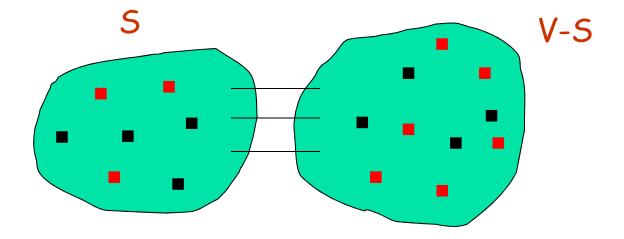
G: the underlying graph. X: $\{s_1, t_1, s_2, t_2, ..., s_k, t_k\}$ is the terminal set. Assume w.l.o.g. that s_i, t_i are distinct and have degree 1 in the graph.

The goal is to route a given matching on X.

Also assume w.l.o.g. that degree of any vertex in G is bounded by 4.

Well-linked Set

Subset X is well-linked in G if for any partition (S,V-S): # of edges cut \geq # of X vertices in the smaller side.



 $\forall \ \mathsf{S} \subset \mathsf{V} \ \mathsf{s}.\mathsf{t}. \ |\mathsf{S} \cap \mathsf{X}| \leq |\mathsf{X}|/2, \ |\mathsf{E}(\mathsf{S}, \mathsf{V}-\mathsf{S})| \geq |\mathsf{S} \cap \mathsf{X}|.$

Instance of EDP

 $\begin{array}{l} G: \text{ the underlying graph.} \\ X: \{s_1, t_1, s_2, t_2, ..., s_k, t_k\} \text{ is the terminal set.} \\ Assume w.l.o.g. that s_i, t_i are distinct. \\ \text{The goal is to route a given matching on X.} \end{array}$

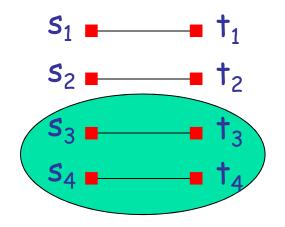
Well-linked Instance of EDP

G: the underlying graph. X: $\{s_1, t_1, s_2, t_2, ..., s_k, t_k\}$ is the terminal set. Assume w.l.o.g. that s_i, t_i are distinct. The goal is to route a given matching on X.

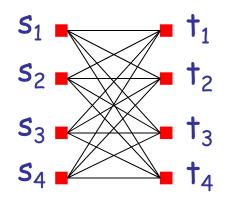
X is well-linked in G.

Theorem [Chekuri, K, Shepherd '05] Any instance of EDP can be reduced to a collection of well-linked instances with only a polylog(n) factor loss in the solution value.

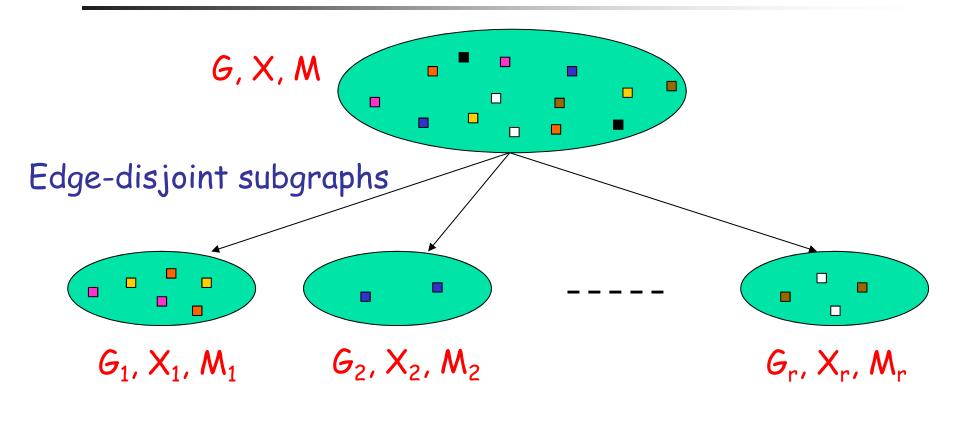
Examples



<u>Not</u> a well-linked instance



A well-linked instance

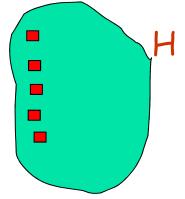


 $M_i \subset M$ X_i is well-linked in G_i

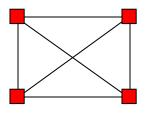
 $\sum_{i} |X_{i}| \geq OPT/polylog(k)$

Crossbars

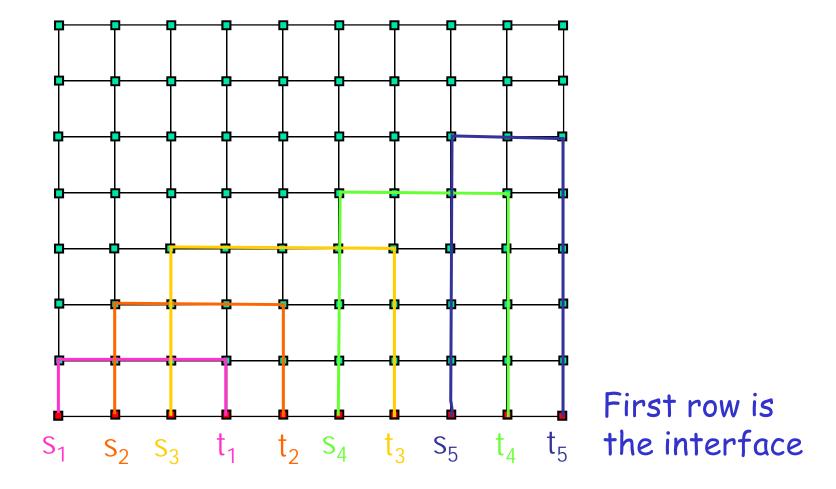
H(V,E) is a cross-bar with respect to an interface $I \subseteq V$ if any matching on I can be routed using edge-disjoint paths.



Ex: a complete graph is a cross-bar with I=V



Grids as Crossbars



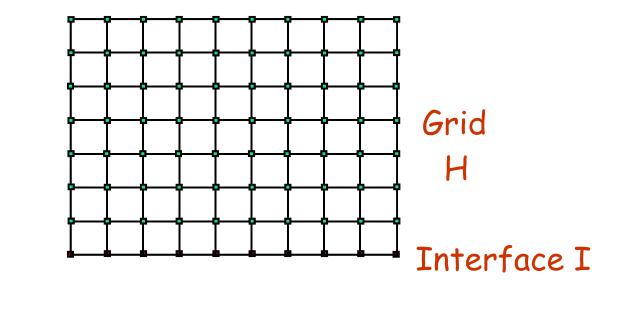
Application: EDP in Planar Graphs

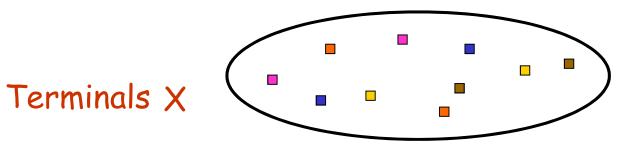
- Solve the multicommodity flow relaxation.
- Use the solution to partition the given instance into planar well-linked instances.
- Find a crossbar in each well-linked instance, and route using the crossbar.

Planar Well-linked Instances

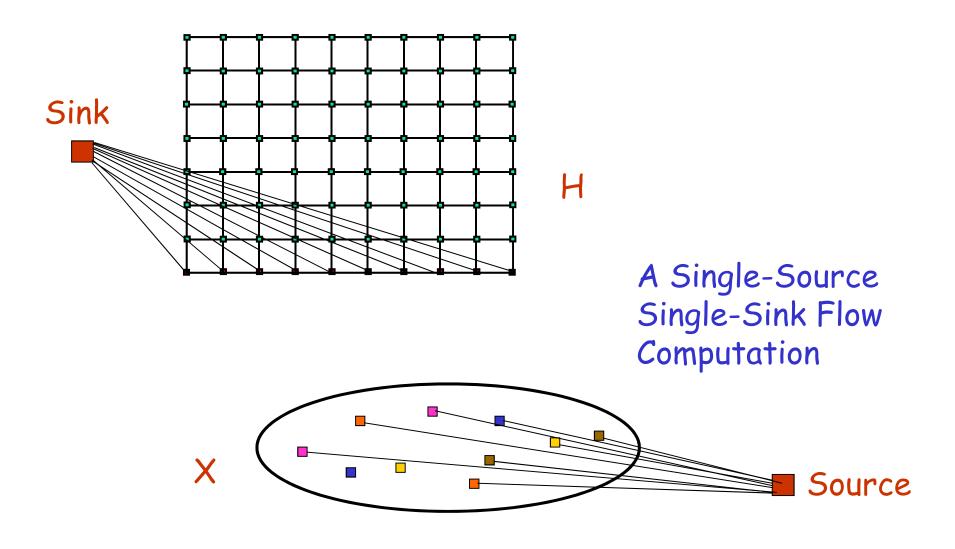
Theorem [Robertson, Seymour, Thomas '94] If G is a planar graph with k well-linked terminals, then with congestion 2, an $\Omega(k) \times \Omega(k)$ grid H can be embedded in G.

Routing pairs in X using H

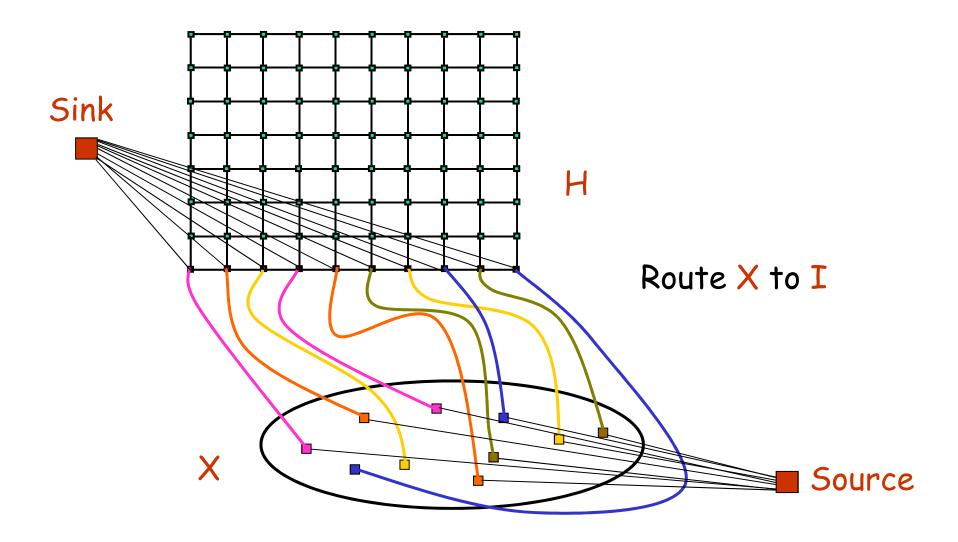




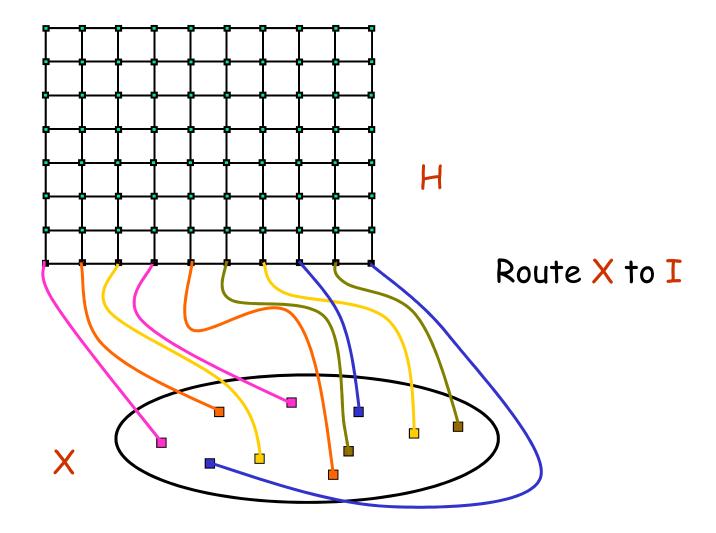
Routing pairs in X using H



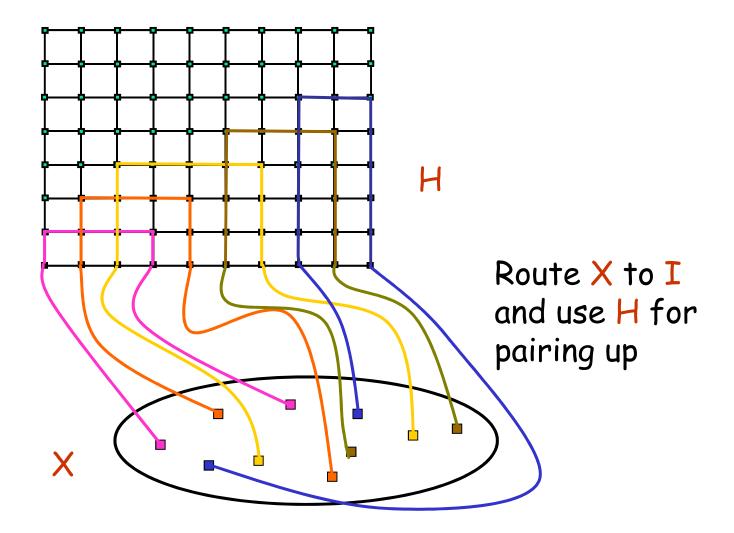
Routing pairs in X using H



Routing pairs in X using H



Routing pairs in X using H



EDP in Planar Graphs

Theorem [Chekuri, K, Shepherd '05]

EDP in planar graphs can be approximated to within a factor of $O(\log n)$ with congestion 2.

- Prior to this, only $n^{\Omega(1)}$ -approximation was known for any constant congestion.
- Recall that the integrality gap is $\Omega(n^{1/2})$ when no congestion is allowed.
- Later, O(1)-approximation with congestion 4, and then O(1)-approximation with congestion 2 [Chekuri, K, Shepherd '06; Seguin-Charbonneau, Shepherd '11].

Well-linked Decomposition

Flow Well-Linked Sets

A subset X is flow-well-linked in G if the following multicommodity flow is feasible in G: for u,v in X, d(uv) = 1/|X|

An instance of product multicommodity flow on X.

Cut vs Flow Well-Linked Sets

X flow-linked \Rightarrow X is cut-linked X cut-linked \Rightarrow X is flow-linked with congestion $\beta(G)$

 $\beta(G)$ - flow-cut gap for product multicommodity instances in G

Fractional Version

 π : a non-negative weight function on X $\pi(v)$: weight of v in X

X is π -cut-linked: for all $S \subseteq V$ with $\pi(S \cap X) \leq \pi(X)/2$, $|E(S,V-S)| \geq \pi(S \cap X)$

X is π -flow-linked: multicommodity flow instance with d(uv) = $\pi(u) \pi(v) / \pi(X)$ is feasible in G

Well-linked Instance

G: the underlying graph. X: $\{s_1, t_1, s_2, t_2, ..., s_k, t_k\}$ is the terminal set. Assume w.l.o.g. that s_i, t_i are distinct. The goal is to route a given matching on X.

X is well-linked in G.

Fractional Well-linked Instance

G: the underlying graph. X: $\{s_1, t_1, s_2, t_2, ..., s_k, t_k\}$ is the terminal set. Assume w.l.o.g. that s_i, t_i are distinct. The goal is to route a given matching on X.

X is π -well-linked in G, and for each pair s_{j,t_j} we have $\pi(s_j) = \pi(t_j)$.

Assume that for $0 \le \pi(v) \le 1$ all $v \in X$.

Decomposition using Sparse Cuts

We now describe the process for creating fractional flow well-linked instances.

Start with the LP solution for the given instance.

 f_j : flow for pair $s_j t_j$. $f = \sum_i f_j$ is the total flow in LP.

Define π to be $\pi(s_j) = \pi(t_j) = f_j$.

Decomposition Algorithm

 β (G) - flow-cut gap in G

If X is $\pi/(10 \beta(G) \log k)$ -flow-linked then stop;

Else

Find an approximate sparse cut (S,V-S) w.r.t. π in GRemove flow on edges of the cut (S,V-S) $G_1 = G[S], G_2 = G[V-S]$ Recurse on G_1, G_2 with the remaining flow

Analysis

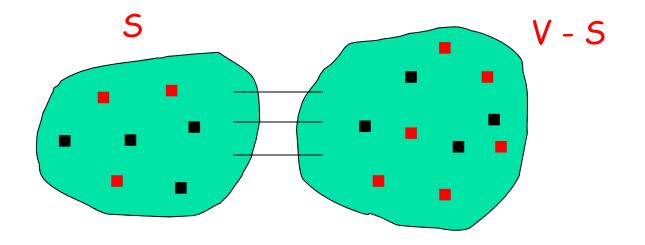
Suppose the remaining graphs at end of recursion are: $(G_1, X_1, \pi_1), (G_2, X_2, \pi_2), \dots, (G_r, X_r, \pi_r)$

 π_i is the remaining flow for X_i X_i is $\pi_i/(10 \beta(G) \log k)$ flow-linked in G_i

 $\ddot{y}_i \pi_i(X_i) \ge (\text{Original flow}) - (\# \text{ of edges cut})$

Bounding the # of Edges Cut

X is not $\pi/(10 \beta(G) \log k)$ flow-linked $\Rightarrow \#$ of edges in the cut $(S,V-S) \le \pi(S)/(10 \log k)$



Analysis Continued ...

Claim: total number of edge cut is at most f/2.

T(x): max # of edges cut if started with flow x

 $T(f) \leq T(f_1) + T(f_2) + f_1 / (10 \log k)$ $\Rightarrow T(f) \leq f/2.$

Thus $\ddot{y}_i \pi_i(X_i) \ge f/2$.

Each X_i is $\pi_i/(10 \beta(G) \log k)$ flow-well-linked.

Fractional to Integer Well-linked

Theorem[Chekuri, K, Shepherd '05] Given an input instance G, X, M where X is π -flow well-linked, we can recover G, X', M' such that

- X' is $\frac{1}{2}$ -flow well-linked,
- $|X'| = \Omega(\pi(X))$, and
- $M' \subseteq M$, is a matching defined over X'.

Proof Idea: Use a spanning tree to cluster fractional mass into integral units.

A similar result can be shown for cut well-linked.

