
Edge-Disjoint Paths in Networks

(Part 1)

Sanjeev Khanna
University of Pennsylvania

Edge Disjoint Paths Problem (EDP)

Input: Graph G(V,E), source-sink pairs s1t1, s2t2,..., sktk

Goal: Route a maximum # of si-ti pairs using
edge-disjoint paths

s1

s2

s3

t1

t2

t3s4
t4

Edge Disjoint Paths Problem (EDP)

Input: Graph G(V,E), source-sink pairs s1t1, s2t2,..., sktk

Goal: Route a maximum # of si-ti pairs using
edge-disjoint paths

s1

s2

s3

t1

t2

t3s4
t4

EDP on Stars

u1 u4

u2 u3

u1 u2 u3 u4

Matching in G EDP in a Star Graph

(Edges in G become source-sink pairs in the Star Graph)

Complexity of EDP

 EDP on star graphs is equivalent to the maximum
matching problem in general graphs.

 Even for two pairs, EDP is NP-hard if G is a directed
graph [Fortune, Hopcroft, Wylie’80].

 Polynomial-time solvable for constant number of pairs
if G is undirected [Roberston, Seymour’88].

 NP-hard even on undirected trees when the edges
have capacities.

Coping with Hardness

Settle for sub-optimal solutions: route only a fraction
of the pairs that can be routed in an optimal solution.

Approximation algorithm A
 Runs in polynomial time
 Approximation ratio: how good is A
 Approx ratio α if A(I) ¸ OPT(I) / α for all I
 Smaller the α, the closer we are to the optimal.

Overview of the Talk

 Review of classical results for EDP.

 Survey of the current state-of-the-art.

 Key algorithmic ideas underlying recent
developments.

 Integrality gap and hardness results.

 Some open problems.

A Greedy Algorithm

 Among the unrouted pairs, pick the pair that has
the shortest path in the current graph.

 Route this pair and remove all edges on the path
from the graph.

 Repeat until no more pairs can be routed.

Clearly gives an edge-disjoint routing.

How good is this algorithm?

Analysis of the Greedy Algorithm
n: # of vertices m: # of edges

Fix an optimal solution, say, OPT.

As long as the greedy path has at most m1/2 edges, it
can destroy at most m1/2 paths in OPT.

Suppose at some point, a path chosen by greedy
is longer than m1/2. Since there are only m edges,
OPT can chose at most m1/2 paths from here on.

So greedy gives an O(m1/2)-approximation.

Can we improve it ?

Greedy chooses the red path and none of the blue pairs
can be routed as a result.

Multicommodity Flow Relaxation (LP)
 Routing is relaxed to be a flow from si to ti.
 A pair can be routed for a fractional amount.
xi : amount of si-ti flow that is routed.
f(p) : amount of flow routed on a path p.

Max i xi
s.t.

8 i xi = si-ti paths p f(p)
8 e p: e 2 p f(p) · 1.

0 · xi · 1.

A Simple Rounding Algorithm

 Among the unrouted pairs

 Pick a pair with a shortest flow path p s.t. f(p) > 0.
 Route this pair along the flow path p.
 Discard all flow paths that share an edge with p

(i.e. set f(p’) = 0 if p’ shares an edge with p).

 Repeat until no fractional flow left.

Clearly gives an edge-disjoint routing.
But how good is this algorithm?

Analysis of the Rounding Algorithm

n: # of vertices m: # of edges
Let OPT be an optimal fractional solution.

If chosen flow path p has length · m1/2, routing a
pair on p eliminates · m1/2 units of flow from OPT.
(for every edge on p, we discard at most one unit of flow.)

Once shortest available flow path has length ¸ m1/2,
total remaining fractional flow must be · m1/2.
(total capacity = m, and each unit of flow consumes ¸ m1/2 capacity.)

We get an O(m1/2)-approximation.

Could we do better?

s1s2si s3sk-1sk

t1

tk-1

tk

t3

t2

ti

[Garg, Vazirani, Yannakakis ’93]

Could we do better?

s1s2si s3sk-1sk

t1

tk-1

tk

t3

t2

ti

Gap holds for planar undirected graphs

[Garg, Vazirani, Yannakakis ’93]

(m1/2)

Integrality Gap

And if the Graph is Directed …

[Fortune, Hopcroft, Wylie ’80] Given a directed graph
G(V,E) and two pairs sa-ta and sb-tb, it is NP-hard to
decide if we can route sa to ta and sb to tb on
edge-disjoint paths.

sa

sb

tb

ta

Hardness of Approximation

s1s2si s3sk-1sk

t1

tk-1

tk

t3

t2

ti

(m1/2-)
hardness

2-pair
instance G

sa

tb

sb

ta

[Guruswami, K, Rajaraman, Shepherd, Yannakakis ’99]

EDP in Directed Acyclic Graphs

[Chekuri, K, Shepherd ’06]
O(n1/2)-approximation for EDP in DAGs via rounding of
the multicommodity flow relaxation.

[Chalermsook, Laekhanukit, Nanongkai ‘14]
(n1/2-²) -hardness for EDP in DAGs for any ² > 0.

What if we allow congestion …

EDP with congestion c : up to c paths can share an edge.

What happens to the integrality gap for c ¸ 2?

Key question: does EDP become well-approximable with
constant congestion?

What if we allow congestion …

Randomized Rounding [Raghavan-Thompson ’87]
 Route pair (si,ti) with probability xi.
 If (si,ti) is chosen, pick an si-ti flow path p for

routing: choose with probability proportional to f(p).

O(1)-approximation with congestion (lg n/lglg n).
[Raghavan and Thompson ’87]

O(n1/c)-approximation with constant congestion c.
[Srinivasan’ 97], [Baveja-Srinivasan’ 00],[Azar-Regev’01].

Could we do better?

EDP with Congestion in Directed Graphs

[Andrews, Zhang ’06] [Chuzhoy, Guruswami, K, Talwar ’07]

 Integrality gap of the flow relaxation is roughly
n1/(3c) for c up to (log n/loglog n).

 Also, n(1/c)-hardness for c up to (log n/loglog n).

 Randomized rounding is essentially optimal for the
directed edge-disjoint paths problems.

EDP with Congestion in Undirected Graphs

[Andrews, Zhang ’05]
[Andrews, Chuzhoy, Guruswami, K, Talwar, Zhang ’05]

 Integrality gap of the flow relaxation is at least
(log n)1/(c+1) with congestion c.

 (log1/(c+1) n)-hardness with congestion c.

Undirected Graphs: State of the Art

(log1/(c+1) n)-hardness with constant congestion c.
O(n1/c)-approximation with constant congestion c.

 O(log n)-approximation with congestion 2 for planar
graphs [Chekuri, K, Shepherd ’05]

 Polylog(n) approximation with no congestion for graphs
with large minimum cut [Rao-Zhou ’06]

 Polylog(n) approximation with poly(lg lg n) congestion in
arbitrary graphs [Andrews ’10]

 Polylog(n) approximation with constant congestion in
arbitrary graphs [Chuzhoy ’12] [Chuzhoy-Li ’12]

Well-linked Decomposition Framework for EDP

[Chekuri, K, Shepherd ’04, ’05]

 Start with a multicommodity flow solution but use it
only to partition the graph into well-linked instances.
We ignore the flow paths !

 Show that any well-linked instance contains a routing
structure called a crossbar on which EDP is easy to
solve.

 Route the given source-sink pairs using the crossbar.

Instance of EDP

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct and have
degree 1 in the graph.

The goal is to route a given matching on X.

Also assume w.l.o.g. that degree of any vertex in G
is bounded by 4.

Well-linked Set

Subset X is well-linked in G if for any partition (S,V-S):
of edges cut ¸ # of X vertices in the smaller side.

S V-S

8 S ½ V s.t. |S Å X| · |X|/2, |E(S, V-S)| ¸ |S Å X|.

Instance of EDP

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct.
The goal is to route a given matching on X.

Well-linked Instance of EDP

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct.
The goal is to route a given matching on X.

X is well-linked in G.

Theorem [Chekuri, K, Shepherd ’05] Any instance of
EDP can be reduced to a collection of well-linked
instances with only a polylog(n) factor loss in the
solution value.

Examples
s1 t1
s2 t2

s3 t3
s4 t4

Not a well-linked
instance

s1 t1
s2 t2

s3 t3
s4 t4

A well-linked instance

Well-linked Decomposition

G, X, M

G1, X1, M1

Mi ½ M

Xi is well-linked in Gi

i |Xi| ¸ OPT/polylog(k)

G2, X2, M2 Gr, Xr, Mr

Edge-disjoint subgraphs

H(V,E) is a cross-bar with respect to an interface
I µ V if any matching on I can be routed using
edge-disjoint paths.

Ex: a complete graph is a cross-bar with I=V

Crossbars

H

Grids as Crossbars

s1 s3s2 s4 s5t1 t2 t3 t4 t5

First row is
the interface

Application: EDP in Planar Graphs

 Solve the multicommodity flow relaxation.

 Use the solution to partition the given instance into
planar well-linked instances.

 Find a crossbar in each well-linked instance, and
route using the crossbar.

Planar Well-linked Instances

Theorem [Robertson, Seymour, Thomas ’94]
If G is a planar graph with k well-linked terminals,
then with congestion 2, an (k) x (k) grid H can be
embedded in G.

Routing pairs in X using H

X

H
Grid

Terminals

Interface I

Routing pairs in X using H

X

H

A Single-Source
Single-Sink Flow
Computation

Sink

Source

Routing pairs in X using H

X

H

Route X to I

Sink

Source

Routing pairs in X using H

X

H

Route X to I

Routing pairs in X using H

X

H

Route X to I
and use H for
pairing up

EDP in Planar Graphs

Theorem [Chekuri, K, Shepherd ’05]
EDP in planar graphs can be approximated to within a
factor of O(log n) with congestion 2.

 Prior to this, only n(1)-approximation was known for
any constant congestion.

 Recall that the integrality gap is (n1/2) when no
congestion is allowed.

 Later, O(1)-approximation with congestion 4, and
then O(1)-approximation with congestion 2 [Chekuri,
K, Shepherd ’06; Seguin-Charbonneau, Shepherd ‘11].

Well-linked Decomposition

Flow Well-Linked Sets

A subset X is flow-well-linked in G if the following
multicommodity flow is feasible in G:

for u,v in X, d(uv) = 1/|X|

An instance of product multicommodity flow on X.

Cut vs Flow Well-Linked Sets

X flow-linked) X is cut-linked
X cut-linked) X is flow-linked with congestion ¯(G)

¯(G) – flow-cut gap for product multicommodity
instances in G

Fractional Version

¼: a non-negative weight function on X
¼(v) : weight of v in X

X is ¼-cut-linked: for all S µ V with ¼(S Å X) · ¼(X)/2,
|E(S,V-S)| ¸ ¼(S Å X)

X is ¼-flow-linked: multicommodity flow instance with
d(uv) = ¼(u) ¼(v) / ¼(X) is feasible in G

Well-linked Instance

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct.
The goal is to route a given matching on X.

X is well-linked in G.

Fractional Well-linked Instance

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct.
The goal is to route a given matching on X.

X is ¼-well-linked in G, and for each pair sj,tj we
have ¼(sj) = ¼(tj).

Assume that for 0 · ¼(v) · 1 all v 2 X.

Decomposition using Sparse Cuts

We now describe the process for creating fractional
flow well-linked instances.

Start with the LP solution for the given instance.

fj : flow for pair sjtj.
f = i fj is the total flow in LP.

Define ¼ to be ¼(sj) = ¼(tj) = fj .

Decomposition Algorithm

¯(G) – flow-cut gap in G

If X is ¼/(10 ¯(G) log k)-flow-linked then stop;

Else
Find an approximate sparse cut (S,V-S) w.r.t. ¼ in G
Remove flow on edges of the cut (S,V-S)
G1 = G[S], G2 = G[V-S]
Recurse on G1, G2 with the remaining flow

Analysis

Suppose the remaining graphs at end of recursion are:
(G1,X1,¼1) , (G2,X2,¼2) ,, (Gr,Xr,¼r)

¼i is the remaining flow for Xi

Xi is ¼i/(10 ¯(G) log k) flow-linked in Gi

i
¼i(Xi) ¸ (Original flow) – (# of edges cut)

Bounding the # of Edges Cut

X is not ¼/(10 ¯(G) log k) flow-linked
) # of edges in the cut (S,V-S) · ¼(S)/(10 log k)

S V - S

Analysis Continued …

Claim: total number of edge cut is at most f/2.

T(x): max # of edges cut if started with flow x

T(f) · T(f1) + T(f2) + f1 / (10 log k)
) T(f) · f/2.

Thus i ¼i(Xi) ¸ f/2.

Each Xi is ¼i/(10 ¯(G) log k) flow-well-linked.

Fractional to Integer Well-linked

Theorem[Chekuri, K, Shepherd ’05]
Given an input instance G, X, M where X is ¼-flow
well-linked, we can recover G, X’, M’ such that

 X’ is ½-flow well-linked,
 |X’| = (¼(X)), and
 M’ µ M, is a matching defined over X’.

Proof Idea: Use a spanning tree to cluster fractional
mass into integral units.

A similar result can be shown for cut well-linked.

Thank You!

