
Edge-Disjoint Paths in Networks

(Part 1)

Sanjeev Khanna
University of Pennsylvania

Edge Disjoint Paths Problem (EDP)

Input: Graph G(V,E), source-sink pairs s1t1, s2t2,..., sktk

Goal: Route a maximum # of si-ti pairs using
edge-disjoint paths

s1

s2

s3

t1

t2

t3s4
t4

Edge Disjoint Paths Problem (EDP)

Input: Graph G(V,E), source-sink pairs s1t1, s2t2,..., sktk

Goal: Route a maximum # of si-ti pairs using
edge-disjoint paths

s1

s2

s3

t1

t2

t3s4
t4

EDP on Stars

u1 u4

u2 u3

u1 u2 u3 u4

Matching in G EDP in a Star Graph

(Edges in G become source-sink pairs in the Star Graph)

Complexity of EDP

 EDP on star graphs is equivalent to the maximum
matching problem in general graphs.

 Even for two pairs, EDP is NP-hard if G is a directed
graph [Fortune, Hopcroft, Wylie’80].

 Polynomial-time solvable for constant number of pairs
if G is undirected [Roberston, Seymour’88].

 NP-hard even on undirected trees when the edges
have capacities.

Coping with Hardness

Settle for sub-optimal solutions: route only a fraction
of the pairs that can be routed in an optimal solution.

Approximation algorithm A
 Runs in polynomial time
 Approximation ratio: how good is A
 Approx ratio α if A(I) ¸ OPT(I) / α for all I
 Smaller the α, the closer we are to the optimal.

Overview of the Talk

 Review of classical results for EDP.

 Survey of the current state-of-the-art.

 Key algorithmic ideas underlying recent
developments.

 Integrality gap and hardness results.

 Some open problems.

A Greedy Algorithm

 Among the unrouted pairs, pick the pair that has
the shortest path in the current graph.

 Route this pair and remove all edges on the path
from the graph.

 Repeat until no more pairs can be routed.

Clearly gives an edge-disjoint routing.

How good is this algorithm?

Analysis of the Greedy Algorithm
n: # of vertices m: # of edges

Fix an optimal solution, say, OPT.

As long as the greedy path has at most m1/2 edges, it
can destroy at most m1/2 paths in OPT.

Suppose at some point, a path chosen by greedy
is longer than m1/2. Since there are only m edges,
OPT can chose at most m1/2 paths from here on.

So greedy gives an O(m1/2)-approximation.

Can we improve it ?

Greedy chooses the red path and none of the blue pairs
can be routed as a result.

Multicommodity Flow Relaxation (LP)
 Routing is relaxed to be a flow from si to ti.
 A pair can be routed for a fractional amount.
xi : amount of si-ti flow that is routed.
f(p) : amount of flow routed on a path p.

Max i xi
s.t.

8 i xi = si-ti paths p f(p)
8 e p: e 2 p f(p) · 1.

0 · xi · 1.

A Simple Rounding Algorithm

 Among the unrouted pairs

 Pick a pair with a shortest flow path p s.t. f(p) > 0.
 Route this pair along the flow path p.
 Discard all flow paths that share an edge with p

(i.e. set f(p’) = 0 if p’ shares an edge with p).

 Repeat until no fractional flow left.

Clearly gives an edge-disjoint routing.
But how good is this algorithm?

Analysis of the Rounding Algorithm

n: # of vertices m: # of edges
Let OPT be an optimal fractional solution.

If chosen flow path p has length · m1/2, routing a
pair on p eliminates · m1/2 units of flow from OPT.
(for every edge on p, we discard at most one unit of flow.)

Once shortest available flow path has length ¸ m1/2,
total remaining fractional flow must be · m1/2.
(total capacity = m, and each unit of flow consumes ¸ m1/2 capacity.)

We get an O(m1/2)-approximation.

Could we do better?

s1s2si s3sk-1sk

t1

tk-1

tk

t3

t2

ti

[Garg, Vazirani, Yannakakis ’93]

Could we do better?

s1s2si s3sk-1sk

t1

tk-1

tk

t3

t2

ti

Gap holds for planar undirected graphs

[Garg, Vazirani, Yannakakis ’93]

(m1/2)

Integrality Gap

And if the Graph is Directed …

[Fortune, Hopcroft, Wylie ’80] Given a directed graph
G(V,E) and two pairs sa-ta and sb-tb, it is NP-hard to
decide if we can route sa to ta and sb to tb on
edge-disjoint paths.

sa

sb

tb

ta

Hardness of Approximation

s1s2si s3sk-1sk

t1

tk-1

tk

t3

t2

ti

(m1/2-)
hardness

2-pair
instance G

sa

tb

sb

ta

[Guruswami, K, Rajaraman, Shepherd, Yannakakis ’99]

EDP in Directed Acyclic Graphs

[Chekuri, K, Shepherd ’06]
O(n1/2)-approximation for EDP in DAGs via rounding of
the multicommodity flow relaxation.

[Chalermsook, Laekhanukit, Nanongkai ‘14]
(n1/2-²) -hardness for EDP in DAGs for any ² > 0.

What if we allow congestion …

EDP with congestion c : up to c paths can share an edge.

What happens to the integrality gap for c ¸ 2?

Key question: does EDP become well-approximable with
constant congestion?

What if we allow congestion …

Randomized Rounding [Raghavan-Thompson ’87]
 Route pair (si,ti) with probability xi.
 If (si,ti) is chosen, pick an si-ti flow path p for

routing: choose with probability proportional to f(p).

O(1)-approximation with congestion (lg n/lglg n).
[Raghavan and Thompson ’87]

O(n1/c)-approximation with constant congestion c.
[Srinivasan’ 97], [Baveja-Srinivasan’ 00],[Azar-Regev’01].

Could we do better?

EDP with Congestion in Directed Graphs

[Andrews, Zhang ’06] [Chuzhoy, Guruswami, K, Talwar ’07]

 Integrality gap of the flow relaxation is roughly
n1/(3c) for c up to (log n/loglog n).

 Also, n(1/c)-hardness for c up to (log n/loglog n).

 Randomized rounding is essentially optimal for the
directed edge-disjoint paths problems.

EDP with Congestion in Undirected Graphs

[Andrews, Zhang ’05]
[Andrews, Chuzhoy, Guruswami, K, Talwar, Zhang ’05]

 Integrality gap of the flow relaxation is at least
(log n)1/(c+1) with congestion c.

 (log1/(c+1) n)-hardness with congestion c.

Undirected Graphs: State of the Art

(log1/(c+1) n)-hardness with constant congestion c.
O(n1/c)-approximation with constant congestion c.

 O(log n)-approximation with congestion 2 for planar
graphs [Chekuri, K, Shepherd ’05]

 Polylog(n) approximation with no congestion for graphs
with large minimum cut [Rao-Zhou ’06]

 Polylog(n) approximation with poly(lg lg n) congestion in
arbitrary graphs [Andrews ’10]

 Polylog(n) approximation with constant congestion in
arbitrary graphs [Chuzhoy ’12] [Chuzhoy-Li ’12]

Well-linked Decomposition Framework for EDP

[Chekuri, K, Shepherd ’04, ’05]

 Start with a multicommodity flow solution but use it
only to partition the graph into well-linked instances.
We ignore the flow paths !

 Show that any well-linked instance contains a routing
structure called a crossbar on which EDP is easy to
solve.

 Route the given source-sink pairs using the crossbar.

Instance of EDP

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct and have
degree 1 in the graph.

The goal is to route a given matching on X.

Also assume w.l.o.g. that degree of any vertex in G
is bounded by 4.

Well-linked Set

Subset X is well-linked in G if for any partition (S,V-S):
of edges cut ¸ # of X vertices in the smaller side.

S V-S

8 S ½ V s.t. |S Å X| · |X|/2, |E(S, V-S)| ¸ |S Å X|.

Instance of EDP

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct.
The goal is to route a given matching on X.

Well-linked Instance of EDP

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct.
The goal is to route a given matching on X.

X is well-linked in G.

Theorem [Chekuri, K, Shepherd ’05] Any instance of
EDP can be reduced to a collection of well-linked
instances with only a polylog(n) factor loss in the
solution value.

Examples
s1 t1
s2 t2

s3 t3
s4 t4

Not a well-linked
instance

s1 t1
s2 t2

s3 t3
s4 t4

A well-linked instance

Well-linked Decomposition

G, X, M

G1, X1, M1

Mi ½ M

Xi is well-linked in Gi

i |Xi| ¸ OPT/polylog(k)

G2, X2, M2 Gr, Xr, Mr

Edge-disjoint subgraphs

H(V,E) is a cross-bar with respect to an interface
I µ V if any matching on I can be routed using
edge-disjoint paths.

Ex: a complete graph is a cross-bar with I=V

Crossbars

H

Grids as Crossbars

s1 s3s2 s4 s5t1 t2 t3 t4 t5

First row is
the interface

Application: EDP in Planar Graphs

 Solve the multicommodity flow relaxation.

 Use the solution to partition the given instance into
planar well-linked instances.

 Find a crossbar in each well-linked instance, and
route using the crossbar.

Planar Well-linked Instances

Theorem [Robertson, Seymour, Thomas ’94]
If G is a planar graph with k well-linked terminals,
then with congestion 2, an (k) x (k) grid H can be
embedded in G.

Routing pairs in X using H

X

H
Grid

Terminals

Interface I

Routing pairs in X using H

X

H

A Single-Source
Single-Sink Flow
Computation

Sink

Source

Routing pairs in X using H

X

H

Route X to I

Sink

Source

Routing pairs in X using H

X

H

Route X to I

Routing pairs in X using H

X

H

Route X to I
and use H for
pairing up

EDP in Planar Graphs

Theorem [Chekuri, K, Shepherd ’05]
EDP in planar graphs can be approximated to within a
factor of O(log n) with congestion 2.

 Prior to this, only n(1)-approximation was known for
any constant congestion.

 Recall that the integrality gap is (n1/2) when no
congestion is allowed.

 Later, O(1)-approximation with congestion 4, and
then O(1)-approximation with congestion 2 [Chekuri,
K, Shepherd ’06; Seguin-Charbonneau, Shepherd ‘11].

Well-linked Decomposition

Flow Well-Linked Sets

A subset X is flow-well-linked in G if the following
multicommodity flow is feasible in G:

for u,v in X, d(uv) = 1/|X|

An instance of product multicommodity flow on X.

Cut vs Flow Well-Linked Sets

X flow-linked) X is cut-linked
X cut-linked) X is flow-linked with congestion ¯(G)

¯(G) – flow-cut gap for product multicommodity
instances in G

Fractional Version

¼: a non-negative weight function on X
¼(v) : weight of v in X

X is ¼-cut-linked: for all S µ V with ¼(S Å X) · ¼(X)/2,
|E(S,V-S)| ¸ ¼(S Å X)

X is ¼-flow-linked: multicommodity flow instance with
d(uv) = ¼(u) ¼(v) / ¼(X) is feasible in G

Well-linked Instance

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct.
The goal is to route a given matching on X.

X is well-linked in G.

Fractional Well-linked Instance

G : the underlying graph.
X : {s1, t1, s2, t2, ..., sk, tk} is the terminal set.
Assume w.l.o.g. that si, ti are distinct.
The goal is to route a given matching on X.

X is ¼-well-linked in G, and for each pair sj,tj we
have ¼(sj) = ¼(tj).

Assume that for 0 · ¼(v) · 1 all v 2 X.

Decomposition using Sparse Cuts

We now describe the process for creating fractional
flow well-linked instances.

Start with the LP solution for the given instance.

fj : flow for pair sjtj.
f = i fj is the total flow in LP.

Define ¼ to be ¼(sj) = ¼(tj) = fj .

Decomposition Algorithm

¯(G) – flow-cut gap in G

If X is ¼/(10 ¯(G) log k)-flow-linked then stop;

Else
Find an approximate sparse cut (S,V-S) w.r.t. ¼ in G
Remove flow on edges of the cut (S,V-S)
G1 = G[S], G2 = G[V-S]
Recurse on G1, G2 with the remaining flow

Analysis

Suppose the remaining graphs at end of recursion are:
(G1,X1,¼1) , (G2,X2,¼2) ,, (Gr,Xr,¼r)

¼i is the remaining flow for Xi

Xi is ¼i/(10 ¯(G) log k) flow-linked in Gi


i
¼i(Xi) ¸ (Original flow) – (# of edges cut)

Bounding the # of Edges Cut

X is not ¼/(10 ¯(G) log k) flow-linked
) # of edges in the cut (S,V-S) · ¼(S)/(10 log k)

S V - S

Analysis Continued …

Claim: total number of edge cut is at most f/2.

T(x): max # of edges cut if started with flow x

T(f) · T(f1) + T(f2) + f1 / (10 log k)
) T(f) · f/2.

Thus i ¼i(Xi) ¸ f/2.

Each Xi is ¼i/(10 ¯(G) log k) flow-well-linked.

Fractional to Integer Well-linked

Theorem[Chekuri, K, Shepherd ’05]
Given an input instance G, X, M where X is ¼-flow
well-linked, we can recover G, X’, M’ such that

 X’ is ½-flow well-linked,
 |X’| = (¼(X)), and
 M’ µ M, is a matching defined over X’.

Proof Idea: Use a spanning tree to cluster fractional
mass into integral units.

A similar result can be shown for cut well-linked.

Thank You!

