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A Quick Recap

[Chekuri, K, Shepherd ’04, ’05]

 Start with a multicommodity flow solution but use it
only to partition the graph into well-linked instances.
This step can be done for any undirected graph.

 Show that any well-linked instance contains a crossbar
routing structure on which EDP is easy to solve.
(Planar well-linked instances have a grid crossbar.)

 Route the given source-sink pairs using the crossbar.



EDP in General Graphs

Crossbar Conjecture: Let X be a well-linked set of
terminals in a graph G. Then there is a crossbar
reachable from X such that given any matching M on X,
we can use the crossbar to route |X|/polylog(n) pairs in
M with O(1) congestion.

If the crossbar conjecture is true, then integrality gap
of the flow relaxation is polylog(n) with O(1) congestion.

Thus the crossbar conjecture implies that EDP has a
polylog(n) factor approximation with O(1) congestion.



Converse is Also True!

If the integrality gap of the flow relaxation is polylog(n)
with O(1) congestion, then the crossbar conjecture holds.

 For a well-linked instance, given any matching M on the
terminals, the fractional flow value is (|X|/log n).

 If the integrality gap is polylog(n) with O(1) congestion,
we can route |X|/polylog(n) pairs in M with O(1)
congestion.

 Thus the terminals form the interface of a crossbar.

Integrality gap of flow relaxation $ Crossbar conjecture



Proving the Crossbar Conjecture …

Plan: Show that in a well-linked instance on k terminals,
we can embed with constant congestion a low-degree
expander of size k/polylog(n).

Given a low-degree expander H and any matching M
on the vertices of H, we can route a 1/polylog(n)
fraction of pairs in M in an edge-disjoint manner.

 Greedily routing pairs along shortest paths suffices.
 Low degree implies that we can actually get a vertex-

disjoint routing.



®-Expanders

A graph H(V’,E’) is an ®-expander if for any S µ V’ with
|S| · |V’|/2, we have |E(S, V’nS)| ¸ ®|S|.

 Same definition as ®-cut well-linked.

 We will be interested in degree d-bounded
®-expanders where d = poly-log(n) and ® = £(1).



Embedding an Expander

We say that an expander H(V’, E’) can be embedded
with congestion c in G(V,E) if there is a mapping Á s.t.

 for each v 2 V’, Á(v) is a connected subgraph in G,
 for each (u,v) 2 E’, there is a path Pu,v in G that

connects some vertex in Á(u) to some vertex in Á(v),
and

 no edge appears in more than c connected subgraphs
or paths.



Two Key Tools

 Solving EDP in expander graphs.

 Building expanders via a cut-matching game.



Disjoint Paths on an Expander

Theorem [Rao-Zhou ‘06]: Suppose G is a d-regular
£(1)-expander, and let M be any collection of n/2
disjoint pairs in G. Then one can route (n/(d2 log n))
pairs on vertex-disjoint paths.

Algorithm:
 Among the yet unrouted pairs, route a pair with the

shortest path in the current graph.
 Remove all vertices on the path, and repeat.



Analysis of Expander Routing

For concreteness, assume ® = 1.
Set L = 4d log n.
Stop as soon as the algorithm when the shortest path
length exceeds L.

 Each routed pair removes at most (L+1)d ¼ d2 log n
edges from the graph.

 We will show that when the algorithm terminates,
many edges in the graph must have been removed.

 Combining the two facts gives the desired result.



Analysis of Expander Routing

E’ = set of edges removed by the algorithm.
E’’ = set of edges remaining in the graph when we stop.

Claim 1: G has a multicut of size · |E’| +|E’’|(log n)/L.

 Routed pairs are disconnected by edges in E’.
 Unrouted pairs can be disconnected by a fractional

solution of size |E’’|/L : assign a weight of 1/L to each
edge.

Thus there is an integral solution to disconnect all
unrouted pairs that has size |E’’|(log n)/L.



Analysis of Expander Routing

Claim 2: Any multicut of an ®-expander must have at
least (® n)/2 edges.

 If E* is a multicut, then removal of E* leaves a graph
where each connected component has at most (n/2)
vertices.

 By definition of an ®-expander, each connected
component C has at least ®|V(C)| edges going out
from C.

 Thus E* must contain at least (® n)/2 edges.



Putting Together …

Combining Claims 1 and 2 (with ® = 1), we get:

|E’| + (|E”| log n)/L ¸ n/2

Using our choice of L = (4d log n), we conclude that
|E’| ¸ n/4.

Hence at least (n/4)/d(L+1) = (n/d2 log n) pairs must
have been routed.



Cut-Matching Game [Khandekar,Rao,Vazirani’06]

Cut Player: wants to build an expander.
Matching Player: wants to delay its construction.

 The game proceeds in rounds where in each round
 Cut player picks a partition of vertices into 2

equal-sized sets, say, A and B.
 Matching player responds with an arbitrary

matching between the sets A and B.

 How many rounds are needed to obtain an expander?



Cut-Matching Game [Khandekar,Rao,Vazirani’06]

Cut Player: wants to build an expander.
Matching Player: wants to delay its construction.

There is a strategy for the cut
player s.t. after O(log2n) rounds,
we get a £(1)-expander with
degree = O(log2n).



Connection to Well-Linked Sets

Claim: Let X be a well-linked set in a graph G. Then
given any partition of X into 2 equal-sized sets A and B,
there exist |X|/2 edge-disjoint paths from A to B.

A B



Expander Embedding on Terminals

Matching Edges $ Edge-Disjoint Paths between Terminals

G



Expander Embedding on Terminals

Expander on X
G

After O(log2 k) iterations, we get an expander on X
that can be embedded in the graph G.

Problem: (log2 k) congestion!



The [Rao-Zhou ’06] Approach

Theorem: If min-cut in G is (log3 n), then an expander
on the terminals X can be embedded with congestion 1.

 Randomly partition G into log2 n edge-disjoint graphs
G1,…,Gh.
 Use the large min-cut condition to show that each Gi is
still well-linked for the terminals.
 Run the cut-matching game: use Gi to route the

matching in iteration i.



The [Andrews ’10] Approach

[Andrews ’10] Min-cut condition can be eliminated
provided we allow poly(log log n) congestion.

 Contract regions in the graph that violate the min-cut
condition to a single node.
 Now use [Rao-Zhou ’06] approach to embed an
expander.
 Poly(log log n) congestion is needed to route through
the contracted regions.



The [Chuzhoy’ 12] Approach

 Find £(log2 k) vertex-disjoint well-linked sets in G of
size k/polylog(k) each.

 Each round of the cut-matching game can be run in a
distinct well-linked set – no accumulation of congestion.

 Show that terminals can be routed to these well-
linked sets with constant congestion.

 A constant congestion expander embedding.



Good Family of Sets

 Identify h = £(log2 k) vertex-disjoint sets S1,…,Sh s.t.

 Each Sj has a boundary out(Sj) of size k/polylog(k).

 Each Sj is well-linked w.r.t. its boundary.

 Each Sj can reach k/polylog(k) terminals using
edge-disjoint paths.

 The set Sj is used to implement round j of the cut-
matching game.

Such a family of sets is called a good family of sets.



Good Family of Sets

|out(Sj)|= # of edges on the boundary of Sj = k/polylog(k).

Each Sj is well-linked w.r.t. its boundary i.e. out(Sj).

Each Sj is connected by edge-disjoint paths to
k/polylog(k) terminals.

h = £(log2 k)

Terminals

Sh
S1 S2



Routing Trees

Theorem [Chuzhoy ‘12]: Given a good family of sets, we
can find k/polylog(k) trees in G, say, T1, T2, ... such that

 each tree Ti is rooted at a distinct terminal,

 each tree Ti connects to a distinct edge on the
boundary out(Si) of each Si, and

 no edge in the graph is used by more than O(1) trees.



Good Family of Sets

Each Sj is well-linked w.r.t. its boundary i.e. out(Sj).

For each terminal ti, there is a tree Ti that spans
ti and a distinct edge eij in out(Sj) for each j.

h = £(log2 k)

Terminals

Sh
S1 S2



Embedding an Expander

Implementing one round of the
cut-matching game.



Embedding an Expander

After £(log2 k) iterations, we obtain an
expander on terminals embedded in G.



Routing on the Embedded Expander

Expander vertex: a connected component in G containing
the terminal.

Expander edge: a path in G connecting some pair of
vertices in the two components.

An edge of G belongs only to O(1) components/paths.
Degree of each expander vertex is £(log2 k).



Routing on the Embedded Expander

Routing on vertex-disjoint paths in the expander
corresponds to a constant congestion routing in G !

Further Improvement: Polylog(n) approximation with
congestion 2 [Chuzhoy, Li ’12]



Expander Embedding Details

Starting Point:

 A graph G(V,E) that has a well-linked terminal set X
of size k, the degree of each vertex in the graph is at
most 4, and the degree of each terminal is 1.

Goal:

 Embed a low-degree expander of size k/polylog(k) on
the terminals with constant congestion on the edges.



Two Challenges

 How does one find a good family of sets?

 How do you use a good family to find the routing
trees?

We will primarily focus on the second task.



Routing Trees for Terminals

 We will use a good family of sets to construct a tree
for each terminal that allows the terminal to reach
every good set – a unique edge on the boundary of
each Si.

 Specifically, we will find k/polylog(k) trees in G, say,
T1, T2, ... such that
 each tree Ti is rooted at a distinct terminal,
 each tree Ti connects to a distinct edge on the boundary

out(Si) of each Si, and
 no edge in the graph is used by more than O(1) trees.



Some More Tools



The Splitting Off Operation

An operation to modify edges in a graph while
preserving pairwise connectivity.

Splitting Off operation: Given a pair (v,y) and (v,z) of
edges in an undirected graph, the splitting off
operation replaces them with edge (y,z).

Splittable Pair of Edges: A pair of edges (v,y) and (v,z)
is splittable if replacing them with the edge (y,z)
preserves all pairwise edge-connectivities (except for
pairs involving v).



Mader’s Theorem

Mader’s Theorem: Given any undirected graph G and a
vertex v of degree not equal to 3 such that there is no
cut-edge incident on v, there always exists a splittable
pair of edges incident on v.

We can repeatedly apply this theorem to preserve
connectivity between a special set of vertices while
eliminating edges incident on other vertices.



Splitting off to preserve
pairwise edge connectivities
between the ti vertices.



Splitting off operation
at vertex v



Splitting off operation
at vertex v



Splitting off operation
at vertex v



Splitting off operation
at vertex v









• Every edge in new graph
is a path in the old graph.

• These paths are edge-
disjoint.

• Degree of each ti vertex
remains unchanged.

• Edge-connectivity
between the ti vertices is
preserved.

• Every edge in new graph
is a path in the old graph.

• These paths are edge-
disjoint.

• Degree of each ti vertex
remains unchanged.

• Edge-connectivity
between the ti vertices is
preserved.



Mader’s Theorem

Mader’s Theorem: Given any undirected graph G and a
vertex v of degree not equal to 3 such that there is no
cut-edge incident on v, there always exists a splittable
pair of edges incident on v.

Corollary: Let H(V,E) be an Eulerian graph, and let (S,T)
be any partition of V. Then one can create a new graph
H’(T,E’) such that H’ preserves all pairwise edge
connectivities between vertices in T.



Toughness of a Graph

The toughness ¿(G) of a connected undirected graph G
is defined as the ratio

¿(G) = minS |S|/c(S)
where the minimum is taken over c(S) > 1.

 Toughness of a clique is defined to be infinite.
 Toughness of a star is 1/(n-1).
 Toughness of a cycle is 1.



Toughness and Bounded Degree
Spanning Trees

There has been much work on understanding the
connection between toughness and existence of low
degree spanning trees and Hamiltonian cycles.

Theorem [Furer and Raghavachari ’94]
In any connected graph G, one can find in poly-time a
spanning tree T such that the maximum degree in T is
bounded by 1/¿(G) + 3.



Next …

We will use Mader’s theorem along with the connection
between toughness and bounded degree spanning trees
to find our routing trees.



Thank You!


