
Edge-Disjoint Paths in Networks

(Part 3)

Sanjeev Khanna
University of Pennsylvania

Recap

Expander Embedding

Starting Point:

 A graph G(V,E) that has a well-linked terminal set X
of size k, the degree of each vertex in the graph is at
most 4, and the degree of each terminal is 1.

Goal:

 Embed a low-degree expander of size k/polylog(k) on
the terminals with constant congestion on the edges.

Idea 1: Good Family of Sets

|out(Sj)|= # of edges on boundary of Sj = k/polylog(k).

Each Sj is well-linked w.r.t. its boundary out(Sj).

Each Sj can connect by edge-disjoint paths to
k/polylog(k) terminals.

h = £(log2 k)

Terminals

Sh
S1 S2

Idea 2: Routing Trees

For each terminal ti, there is a tree Ti that spans
ti and a distinct edge eij in out(Sj) for each j.

h = £(log2 k)

Terminals

Sh
S1 S2

Embedding an Expander

Implementing one round of the
cut-matching game.

Routing on the Embedded Expander

Expander vertex: a connected component in G containing
the terminal.

Expander edge: a path in G connecting some pair of
vertices in the two components.

An edge of G belongs only to O(1) components/paths.
Degree of each expander vertex is £(log2 k).

Routing on the Embedded Expander

Routing on vertex-disjoint paths in the expander
corresponds to a constant congestion routing in G !

Two Challenges

 How does one find a good family of sets?

 How do you use a good family to find the routing
trees?

[Chuzhoy ’12] tackles both challenges.

We will primarily focus on the second task.

Tools

 Mader’s Theorem.

 Toughness and bounded degree spanning trees.

Mader’s Theorem

Mader’s Theorem: Given any undirected graph G and a
vertex v of degree not equal to 3 such that there is no
cut-edge incident on v, there always exists a splittable
pair of edges incident on v.

Starting from an Eulerian graph, we can repeatedly
apply Mader’s theorem to preserve connectivity
between a special set of vertices while eliminating
edges incident on other vertices.

Splitting off to preserve
pairwise edge connectivities
between the ti vertices.

• Every edge in new graph
is a path in the old graph.

• These paths are edge-
disjoint.

• Degree of each ti vertex
remains unchanged.

• Edge-connectivity
between the ti vertices is
preserved.

• Every edge in new graph
is a path in the old graph.

• These paths are edge-
disjoint.

• Degree of each ti vertex
remains unchanged.

• Edge-connectivity
between the ti vertices is
preserved.

Toughness and Bounded Degree
Spanning Trees

The toughness ¿(G) of a connected undirected graph G
is defined as the ratio

¿(G) = minS |S|/c(S)
where the minimum is taken over c(S) > 1.
 Toughness of a star is 1/(n-1).
 Toughness of a cycle is 1.

Theorem [Furer and Raghavachari ’94]
In any connected graph G, one can find in poly-time a
spanning tree T such that the maximum degree in T is
bounded by 1/¿(G) + 3.

Routing Trees for Terminals

Starting Point: Good Family of Sets
A collection of h = £(log2 k) vertex-disjoint subgraphs
S1, S2, ..., Sh such that

 out(Si) is well-linked in G[Si] and has size k1= k/polylog(k),
 out(Si) can send k1= k/polylog(k) units of flow without

congestion to a fixed set X’ of k1 terminals.
Goal: Routing Trees
Find k/polylog(k) trees in G, say, T1, T2, ... such that

 each tree Ti is rooted at a distinct terminal,
 each tree Ti connects to a distinct edge on the boundary

out(Sj) of each Sj, and
 no edge in the graph is used by more than O(1) trees.

Routing Trees for Terminals

Step One (The graph H1)

 Add new vertices s1, s2, …, sh to G.

 Connect vertex si to the boundary of Si.

 Double all edges so that we have an Eulerian graph.

 ¸(si, sj) = edge connectivity between si and sj = 2k1.

Routing Trees for Terminals

Step Two (The graph H2)

 Apply Mader’s theorem to split off all edges incident
on the original vertices in G.

 Theorem applies since we have an Eulerian graph.

 We end up with a new multigraph H2 with only vertices
s1, s2, …, sh such that ¸(si, sj) = 2k1.

 Edges in H2 correspond to edge-disjoint paths in G.

Routing Trees for Terminals

Step Three (The graph H3)

 Degree of each vertex in H2 is 2k1.

 Discard from H2 any edges with multiplicity less than
k2 = k1/h2 to get a new multigraph H3.

 Thus any pair of adjacent vertices in H3 has at least
k1/h2 parallel edges which correspond to k1/h2 edge-
disjoint paths in G.

The Graph H3

Claim: There is a spanning tree T of degree at most 5 in
the graph H3.

 Suffices to show that toughness of H3 is at least ½.
 Suppose deleting a set Z of vertices creates p
connected components, say, C1, C2, …,Cp in H3.
 Each Ci has at least 2k1 edges leaving it in H2.
 At most h2 (k1/h2) = k1 edges are discarded overall in
going from H2 to H3.

At least pk1 edges must be leaving C1, C2, …,Cp in H3.

The Graph H3

 On the other hand, total number of edges entering Z
is bounded by 2k1|Z| since degree of any vertex in H3
is at most 2k1.

 It follows that pk1 · 2k1|Z|, and hence |Z| ¸ p/2.

So ¿(H3) ¸ ½.

By [Furer and Raghavachari ’94] theorem, H3 has a
spanning tree with maximum degree 3 + 1/¿(H3) = 5.

Constructing the Routing Trees

Final Step (Construct the Routing Trees)

 Fix any spanning tree T of degree at most 5 in H3.

 Each edge of T corresponds to k2 = k1/h2 parallel
edges (which in turn correspond to edge-disjoint
paths in G).

 Arbitrarily root the tree T and replace each vertex si
by the good set Si.

Low Degree Spanning Tree

s1

s3s2

Low Degree Spanning Tree Expanded

s1

s3s2

k1/h2 edges

Low Degree Spanning Tree Expanded
S1

S2 S3

Recovering the Routing Trees

 Using the fact that each Si is well-linked w.r.t. its
boundary, we can now recover T1, T2, ..., Tk2

such that
 each Ti is rooted at a distinct terminal, and
 no edge in the graph is used by more than O(1)

trees.

 Recovery creates congestion = Max degree in T.

 This is where the bounded degree assumption helps!

Finding a Good Family of Sets

Legal Contracted Graph (LCG)

 Let r = k/polylog(k).
 For any set S of vertices, G[S] – subgraph of G

induced by the set S.
 A graph H is an LCG of G if

 H is obtained by contracting a disjoint subset of
vertices that do not contain terminals.

 Degree of each vertex in H is at most r.
 For any vertex v where v possibly represents a

contracted set S of vertices, the graph G[S] is
®-well-linked w.r.t. out(S) in G for ® = 1/polylog(k).

Partition of non-terminals into
clusters:
• Each cluster has degree at
most k/polylog(k).
• Each cluster is ®-well-linked
w.r.t. its boundary where
® = 1/polylog(k).
• Contraction reduces the # of
edges but terminals remain
well-linked.

A contraction of GA contraction of G

G

H

Properties of LCG

 The initial graph G is an LCG of itself.

 Terminals remain well-linked in any LCG H of
 Any cut in the LCG H maps to a cut of the same value in G.

 Since maximum degree r in an LCG H is much smaller
than k, there must be (k) edges in H that are
incident only on non-terminals.

 The last two properties will play a crucial role.

The Algorithm

Let m = # of edges between non-terminals.
 Start by randomly partitioning all non-terminals into
h sets, say, X1, X2, …, Xh.

 With constant probability, each Xi satisfies:
 |Out(Xi)| · 10m/h.
 |E(Xi)| ¸ m/10h2.

 Note that |Out(Xi)| and |E(Xi)| are separated only by
a factor of h = £(log 2 k).

The Algorithm

Consider a set Xi.
 Uncontract all vertices inside Xi.
 If G[Xi] is ®-well-linked w.r.t. Out(Xi), then Xi is a
good set.
 If not then do a ®-well-linked decomposition inside Xi.

 If the decomposition creates a ®-well-linked piece with
boundary of size at least r, this is a good set.

 Otherwise, the process fails.
 But total # of edges cut in the well-linked decomposition

process is bounded by ®|Out(Xi)|(log2 k) < |E(Xi)| -- a
reduction in the size of the LCG if we contract new pieces.

The Algorithm

 If each of X1, X2, …, Xh succeeds, we get a good
family of sets.

 Otherwise, some Xi fails and we get a new LCG that
has fewer edges than before.

 We repeat this process until we succeed.

Random Partitioning

Randomly assign each non-
terminal to one of the h =
£(log2 k) clusters.

With constant probability,
for each i
• |out(Xi)| · 10m/h
• |E(Xi)| ¸ m/10h2

m = # of edges between
non-terminals

H

XhX1 X2 X3

uncontract

well-linked
decomposition

If a large ®-well linked cluster,
then this cluster is our good set Si

If no large ®-well
linked cluster, then
contract and reduce
the number of edges
inside Xi

Xi

EDP Hardness Results

Max Independent Set (MIS) to EDP
MIS EDP

z

x y sx

sy

sz tz

ty

tx

For each vertex v in the MIS instance, there is an sv-tv
pair and a canonical path connecting sv to tv.

MIS to EDP

MIS EDP

z

x y sx

sy

sz tz

ty

tx

Edge between two vertices in the MIS instance $
Canonical paths share an edge in the EDP instance.

MIS to EDP

MIS EDP

z

x y sx

sy

sz tz

ty

tx

Edge between two vertices in the MIS instance $
Canonical paths share an edge in the EDP instance.

MIS to EDP

MIS EDP

z

x y sx

sy

sz tz

ty

tx

Edge between two vertices in the MIS instance $
Canonical paths share an edge in the EDP instance.

Seems Promising …

 If we could enforce that every routed pair only
uses its canonical path, we would get n(1)-hardness.

 But the path intersections create cheating (non-
canonical) paths.

MIS to EDP

MIS EDP

z

x y sx

sy

sz tz

ty

tx

Edge between two vertices in the MIS instance $
Canonical paths share an edge in the EDP instance.

Seems Promising …

 If we could enforce that every routed pair only
uses its canonical path, we would get n(1)-hardness.

 But path intersections create cheating (non-
canonical) paths.

 How do we deal with them?

Directed Graphs

 Efficient labeling schemes to encode intersections of
canonical paths that eliminate all non-canonical paths.
 Once you leave the canonical path, you can not

return to the original path.
 So each pair is connected only by a canonical path.

 Allows us to essentially carry independent set
hardness to directed EDP even with congestion.
 n(1/c)-hardness for directed EDP with congestion c.

[Andrews, Zhang ’06] [Chuzhoy, Guruswami, K, Talwar ’07]

Undirected Graphs

 No efficient labeling schemes known, and instead we
rely on girth arguments.

 Girth of a graph = length of the shortest cycle.

 Canonical path + a non-canonical path = a cycle.

 So if girth is large and the canonical path is short, it
follows that any cheating path must be large.

t
s

t

s

t
s

 Each source-sink pair has a short canonical path.

 Path intersections are implemented using a “random
process” to get a high girth graph: (log n) girth.

Pairs routed on non-canonical paths consume too much
routing capacity.

Undirected Graphs

Hardness of Undirected EDP

Simplified Analysis
(ignores implementation of girth property)

 Start with a degree d-bounded independent set
instance where d = log1/2 n.
 Hard to decide if max independent set size is (n/d²)
(Yes case) or O(n/d1-²) (No case) for any ² > 0.
 Create an (log n) girth undirected EDP instance:
 Canonical paths have length d = log1/2 n.
 Non canonical paths have length (log n).
 O(nd) edges in total.

Hardness of Undirected EDP

Yes Case
We can route (n/d²) pairs in an edge-disjoint manner
using canonical paths.

No Case
 Only O(n/d1-²) pairs can be routed on canonical paths.

 Only O(nd/log n) pairs can be routed on non-canonical
paths since girth is (log n).

Hardness of Undirected EDP

Yes Case
 (n/log² n) pairs can be routed.

No Case
 O(n/d1-²) + O(nd/log n) = O(n/log1/2 n) pairs can be
routed when d = log1/2 n.

So we get a (log1/2-² n) hardness for undirected EDP
with no congestion.

So what remains to be done …

Approximability of undirected EDP with no congestion.

On the positive side …

O(n1/2)-approximation [Chekuri, K, Shepherd ’06]

 Algorithm is based on rounding the multicommodity
flow relaxation.

 Upper bound matches the integrality gap of the flow
relaxation.

So what remains to be done …

On the negative side …

(log1/2-² n) hardness [Andrews, Chuzhoy, Guruswami, K,
Talwar, Zhang ’05]

Approximability of undirected EDP remains wide open!

Undirected Congestion Minimization

A related open problem is congestion minimization in
undirected graphs: minimize congestion needed to route
all pairs.

 Randomized rounding of LP gives an O(log n/log log n)
approximation [Raghavan and Thompson ’87].
 A matching hardness result known in directed graphs.

[Andrews, Zhang ’06] [Chuzhoy, Guruswami, K, Talwar ’07]
 But in undirected graphs, best known hardness is
(log log n / log log log n) [Andrews and Zhang ’07]

Concluding Remarks

 Several beautiful ideas composed together to obtain
a constant congestion polylog-approximation for EDP.

 These ideas have already been used to obtain many
other important results.

 With constant congestion, it is also possible to get a
polylog-approximation for vertex-disjoint paths
[Chekuri, Ene ’13].

Thank You!

