Edge-Disjoint Paths in Networks (Part 3)

Sanjeev Khanna University of Pennsylvania

Expander Embedding

Starting Point:

• A graph G(V,E) that has a well-linked terminal set X of size k, the degree of each vertex in the graph is at most 4, and the degree of each terminal is 1.

Goal:

Embed a low-degree expander of size k/polylog(k) on the terminals with constant congestion on the edges.

Idea 1: Good Family of Sets

 $|out(S_j)| = #$ of edges on boundary of $S_j = k/polylog(k)$.

Each S_j is well-linked w.r.t. its boundary out(S_j).

Each S_j can connect by edge-disjoint paths to k/polylog(k) terminals.

Idea 2: Routing Trees

For each terminal t_i , there is a tree T_i that spans t_i and a distinct edge e_{ij} in $out(S_j)$ for each j.

Embedding an Expander

Implementing one round of the cut-matching game.

Routing on the Embedded Expander

Expander vertex: a connected component in G containing the terminal.
Expander edge: a path in G connecting some pair of vertices in the two components.

An edge of G belongs only to O(1) components/paths. Degree of each expander vertex is $\Theta(\log^2 k)$.

Routing on the Embedded Expander

Routing on vertex-disjoint paths in the expander corresponds to a constant congestion routing in G !

Two Challenges

- How does one find a good family of sets?
- How do you use a good family to find the routing trees?

[Chuzhoy '12] tackles both challenges.

We will primarily focus on the second task.

Tools

- Mader's Theorem.
- Toughness and bounded degree spanning trees.

Mader's Theorem

Mader's Theorem: Given any undirected graph G and a vertex v of degree not equal to 3 such that there is no cut-edge incident on v, there always exists a splittable pair of edges incident on v.

Starting from an Eulerian graph, we can repeatedly apply Mader's theorem to preserve connectivity between a special set of vertices while eliminating edges incident on other vertices.

Splitting off to preserve pairwise edge connectivities between the t_i vertices.

- Every edge in new graph is a path in the old graph.
- These paths are edgedisjoint.
- Degree of each t_i vertex remains unchanged.
- Edge-connectivity between the t_i vertices is preserved.

Toughness and Bounded Degree Spanning Trees

The toughness $\tau(G)$ of a connected undirected graph G is defined as the ratio

 $\tau(G) = \min_{S} |S|/c(S)$

where the minimum is taken over c(5) > 1.

- Toughness of a star is 1/(n-1).
- Toughness of a cycle is 1.

Theorem [Furer and Raghavachari '94]

In any connected graph G, one can find in poly-time a spanning tree T such that the maximum degree in T is bounded by $1/\tau(G) + 3$.

Starting Point: Good Family of Sets

A collection of $h = \Theta(\log^2 k)$ vertex-disjoint subgraphs $S_1, S_2, ..., S_h$ such that

- $out(S_i)$ is well-linked in $G[S_i]$ and has size $k_1 = k/polylog(k)$,
- out(S_i) can send k₁= k/polylog(k) units of flow without congestion to a fixed set X' of k₁ terminals.

Goal: Routing Trees

Find k/polylog(k) trees in G, say, T_1 , T_2 , ... such that

- each tree T_i is rooted at a distinct terminal,
- each tree T_i connects to a distinct edge on the boundary out(S_j) of each S_j, and
- no edge in the graph is used by more than O(1) trees.

Step One (The graph H_1)

- Add new vertices s₁, s₂, ..., s_h to G.
- Connect vertex s_i to the boundary of S_i .
- Double all edges so that we have an Eulerian graph.
- $\lambda(s_i, s_j)$ = edge connectivity between s_i and s_j = $2k_1$.

Step Two (The graph H_2)

• Apply Mader's theorem to split off all edges incident on the original vertices in G.

- Theorem applies since we have an Eulerian graph.
- We end up with a new multigraph H_2 with only vertices $s_1, s_2, ..., s_h$ such that $\lambda(s_i, s_j) = 2k_1$.
- Edges in H_2 correspond to edge-disjoint paths in G.

Step Three (The graph H_3)

• Degree of each vertex in H_2 is $2k_1$.

• Discard from H_2 any edges with multiplicity less than $k_2 = k_1/h^2$ to get a new multigraph H_3 .

• Thus any pair of adjacent vertices in H_3 has at least k_1/h^2 parallel edges which correspond to k_1/h^2 edgedisjoint paths in G.

The Graph H₃

Claim: There is a spanning tree T of degree at most 5 in the graph H_3 .

- Suffices to show that toughness of H_3 is at least $\frac{1}{2}$.
- Suppose deleting a set Z of vertices creates p connected components, say, C_1 , C_2 , ..., C_p in H_3 .
- Each C_i has at least $2k_1$ edges leaving it in H_2 .

• At most $h^2(k_1/h^2) = k_1$ edges are discarded overall in going from H_2 to H_3 .

At least pk_1 edges must be leaving $C_1, C_2, ..., C_p$ in H_3 .

The Graph H₃

- On the other hand, total number of edges entering Z is bounded by $2k_1|Z|$ since degree of any vertex in H_3 is at most $2k_1$.
- It follows that $pk_1 \leq 2k_1|Z|$, and hence $|Z| \geq p/2$.

So $\tau(H_3) \geq \frac{1}{2}$.

By [Furer and Raghavachari '94] theorem, H_3 has a spanning tree with maximum degree $3 + 1/\tau(H_3) = 5$.

Constructing the Routing Trees

Final Step (Construct the Routing Trees)

- Fix any spanning tree T of degree at most 5 in H_3 .
- Each edge of T corresponds to k₂ = k₁/h² parallel edges (which in turn correspond to edge-disjoint paths in G).
- Arbitrarily root the tree T and replace each vertex s_i by the good set S_i.

Low Degree Spanning Tree

Low Degree Spanning Tree Expanded

Low Degree Spanning Tree Expanded

Recovering the Routing Trees

- Using the fact that each S_i is well-linked w.r.t. its boundary, we can now recover T₁, T₂, ..., T_{k2} such that
 - each T_i is rooted at a distinct terminal, and
 - no edge in the graph is used by more than O(1) trees.
- Recovery creates congestion = Max degree in T.
- This is where the bounded degree assumption helps!

Finding a Good Family of Sets

Legal Contracted Graph (LCG)

- Let r = k/polylog(k).
- For any set S of vertices, G[S] subgraph of G induced by the set S.
- A graph H is an LCG of G if
 - H is obtained by contracting a disjoint subset of vertices that do not contain terminals.
 - Degree of each vertex in H is at most r.
 - For any vertex v where v possibly represents a contracted set S of vertices, the graph G[S] is α-well-linked w.r.t. out(S) in G for α = 1/polylog(k).

Partition of non-terminals into clusters:

- Each cluster has degree at most k/polylog(k).
- Each cluster is α -well-linked w.r.t. its boundary where $\alpha = 1/\text{polylog}(k)$.
- Contraction reduces the # of edges but terminals remain well-linked.

Н

A contraction of G

Properties of LCG

- The initial graph G is an LCG of itself.
- Terminals remain well-linked in any LCG H of
 - Any cut in the LCG H maps to a cut of the same value in G.
- Since maximum degree r in an LCG H is much smaller than k, there must be Ω(k) edges in H that are incident only on non-terminals.
- The last two properties will play a crucial role.

The Algorithm

Let m = # of edges between non-terminals.

• Start by randomly partitioning all non-terminals into h sets, say, $X_1, X_2, ..., X_h$.

- With constant probability, each X_i satisfies:
 - $|Out(X_i)| \le 10m/h.$
 - $|E(X_i)| \ge m/10h^2$.

• Note that $|Out(X_i)|$ and $|E(X_i)|$ are separated only by a factor of $h = \Theta(\log^2 k)$.

The Algorithm

Consider a set X_i .

- Uncontract all vertices inside X_i.
- If $G[X_i]$ is α -well-linked w.r.t. $Out(X_i)$, then X_i is a good set.
- If not then do a α -well-linked decomposition inside X_i .
 - If the decomposition creates a α -well-linked piece with boundary of size at least \mathbf{r} , this is a good set.
 - Otherwise, the process fails.
 - But total # of edges cut in the well-linked decomposition process is bounded by α|Out(X_i)|(log² k) < |E(X_i)| -- a reduction in the size of the LCG if we contract new pieces.

The Algorithm

- If each of X₁, X₂, ..., X_h succeeds, we get a good family of sets.
- Otherwise, some X_i fails and we get a new LCG that has fewer edges than before.
- We repeat this process until we succeed.

Random Partitioning

Randomly assign each nonterminal to one of the $h = \Theta(\log^2 k)$ clusters.

With constant probability, for each i

- $|out(X_i)| \leq 10m/h$
- $|E(X_i)| \ge m/10h^2$
- m = # of edges between non-terminals

EDP Hardness Results

Max Independent Set (MIS) to EDP

For each vertex v in the MIS instance, there is an s_v-t_v pair and a canonical path connecting s_v to t_v .

Seems Promising ...

- If we could enforce that every routed pair only uses its canonical path, we would get $n^{\Omega(1)}$ -hardness.
- But the path intersections create cheating (noncanonical) paths.

Seems Promising ...

- If we could enforce that every routed pair only uses its canonical path, we would get $n^{\Omega(1)}$ -hardness.
- But path intersections create cheating (noncanonical) paths.
- How do we deal with them?

Directed Graphs

- Efficient labeling schemes to encode intersections of canonical paths that eliminate all non-canonical paths.
 - Once you leave the canonical path, you can not return to the original path.
 - So each pair is connected only by a canonical path.
- Allows us to essentially carry independent set hardness to directed EDP even with congestion.
 - n^{Ω(1/c)}-hardness for directed EDP with congestion c. [Andrews, Zhang '06] [Chuzhoy, Guruswami, K, Talwar '07]

Undirected Graphs

- No efficient labeling schemes known, and instead we rely on girth arguments.
- Girth of a graph = length of the shortest cycle.
- Canonical path + a non-canonical path = a cycle.
- So if girth is large and the canonical path is short, it follows that any cheating path must be large.

Undirected Graphs

- Each source-sink pair has a short canonical path.
- Path intersections are implemented using a "random process" to get a high girth graph: O(log n) girth.

Pairs routed on non-canonical paths consume too much routing capacity.

Hardness of Undirected EDP

Simplified Analysis (ignores implementation of girth property)

- Start with a degree d-bounded independent set instance where $d = \log^{1/2} n$.
- Hard to decide if max independent set size is $\Omega(n/d^{\epsilon})$ (Yes case) or $O(n/d^{1-\epsilon})$ (No case) for any $\epsilon > 0$.
- Create an $\Omega(\log n)$ girth undirected EDP instance:
 - Canonical paths have length $d = \log^{1/2} n$.
 - Non canonical paths have length $\Omega(\log n)$.
 - O(nd) edges in total.

Hardness of Undirected EDP

Yes Case

• We can route $\Omega(n/d^{\epsilon})$ pairs in an edge-disjoint manner using canonical paths.

No Case

• Only $O(n/d^{1-\epsilon})$ pairs can be routed on canonical paths.

• Only O(nd/log n) pairs can be routed on non-canonical paths since girth is $\Omega(log n)$.

Hardness of Undirected EDP

Yes Case

• $\Omega(n/\log^{\epsilon} n)$ pairs can be routed.

No Case

• $O(n/d^{1-\epsilon}) + O(nd/\log n) = O(n/\log^{1/2} n)$ pairs can be routed when d = $\log^{1/2} n$.

So we get a $\Omega(\log^{1/2-\epsilon} n)$ hardness for undirected EDP with no congestion.

So what remains to be done ...

Approximability of undirected EDP with no congestion.

On the positive side ...

O(n^{1/2})-approximation [Chekuri, K, Shepherd '06]

- Algorithm is based on rounding the multicommodity flow relaxation.
- Upper bound matches the integrality gap of the flow relaxation.

So what remains to be done ...

On the negative side ...

Ω(log^{1/2-ε} n) hardness [Andrews, Chuzhoy, Guruswami, K, Talwar, Zhang '05]

Approximability of undirected EDP remains wide open!

Undirected Congestion Minimization

A related open problem is congestion minimization in undirected graphs: minimize congestion needed to route all pairs.

- Randomized rounding of LP gives an O(log n/log log n) approximation [Raghavan and Thompson '87].
- A matching hardness result known in directed graphs. [Andrews, Zhang '06] [Chuzhoy, Guruswami, K, Talwar '07]
- But in undirected graphs, best known hardness is $\Omega(\log \log n / \log \log \log n)$ [Andrews and Zhang '07]

Concluding Remarks

- Several beautiful ideas composed together to obtain a constant congestion polylog-approximation for EDP.
- These ideas have already been used to obtain many other important results.
- With constant congestion, it is also possible to get a polylog-approximation for vertex-disjoint paths [Chekuri, Ene '13].

