Edge-Disjoint Paths in Networks

(Part 3)

Sanjeev Khanna
University of Pennsylvania

Recap

Expander Embedding

Starting Point:

= A graph G(V,E) that has a well-linked terminal set X
of size k, the degree of each vertex in the graph is at
most 4, and the degree of each terminal is 1.

Goal:

= Embed a low-degree expander of size k/polylog(k) on
the terminals with constant congestion on the edges.

Idea 1: Good Family of Sets

h = O(log? k)

e o e Terminals

lout(S;)|= # of edges on boundary of S; = k/polylog(k).
Each S, is well-linked w.r.t. its boundary out(S)).

Each S, can connect by edge-disjoint paths to
k/polylog(k) terminals.

Idea 2: Routing Trees

h = O(log? k)
e Terminals

For each terminal t;, there is a tree T, that spans
t; and a distinct edge e;; in out(S,) for each .

Embedding an Expander

——

cut-matching game.

Implementing one round of the ’74.

Routing on the Embedded Expander

Expander vertex: a connected component in G containing
the terminal.
Expander edge: a path in G connecting some pair of
vertices in the two components.
An edge of G belongs only to O(1) components/paths.
Degree of each expander vertex is ©(log? k).

Routing on the Embedded Expander

®
RS
O

Routing on vertex-disjoint paths in the expander
corresponds to a constant congestion routing in G |

Two Challenges

= How does one find a good family of sets?

= How do you use a good family to find the routing
Trees?

[Chuzhoy '12] tackles both challenges.

We will primarily focus on the second task.

Tools

= Mader's Theorem.

= Toughness and bounded degree spanning trees.

Mader's Theorem

Mader's Theorem: Given any undirected graph G and a
vertex v of degree not equal to 3 such that there is no
cut-edge incident on v, there always exists a splittable
pair of edges incident on v.

Starting from an Eulerian graph, we can repeatedly
apply Mader's theorem to preserve connectivity
between a special set of vertices while eliminating
edges incident on other vertices.

Splitting of f to preserve
pairwise edge connectivities
between the . vertices.

« Every edge in new graph
is a path in the old graph.

* These paths are edge-
disjoint.

* Degree of each t; vertex
remains unchanged.

» Edge-connectivity
between the . vertices is
preserved.

Toughness and Bounded Degree
Spanning Trees

The toughness 7(G) of a connected undirected graph G
is defined as the ratio

6) = ming |S|/c(S)
where the minimum is taken over c(S) > 1.
= Toughness of a star is 1/(n-1).
= Toughness of a cycle is 1.

Theorem [Furer and Raghavachari '94]
In any connected graph G, one can find in poly-time a

spanning tree T such that the maximum degree in T is
bounded by 1/76G) + 3.

Routing Trees for Terminals

Starting Point: Good Family of Sets
A collection of h = ©(log? k) vertex-disjoint subgraphs
Si, S5, ..., Sy, such that

= out(S;) is well-linked in G[S;] and has size k= k/polylog(k),

= out(S;) can send k,= k/polylog(k) units of flow without
congestion to a fixed set X' of k, ferminals.

Goal: Routing Trees
Find k/polylog(k) trees in G, say, T,, T,, ... such that

= each tree T, is rooted at a distinct terminal,

= each tree T, connects to a distinct edge on the boundary
out(S;) of each S;, and

= nho edge in the graph is used by more than O(1) trees.

Routing Trees for Terminals

Step One (The graph H,)

= Add new vertices sy, s,, ..., s, to G.

= Connect vertex s, fo the boundary of S..

= Double all edges so that we have an Eulerian graph.

= \(S;, s;) = edge connectivity between s; and s, = 2k;.

Routing Trees for Terminals

Step Two (The graph H,)

= Apply Mader's theorem to split of f all edges incident
on the original vertices in G.

= Theorem applies since we have an Eulerian graph.

= We end up with a new multigraph H, with only vertices
S1, S5, ..., S, such that A(s,, s;) = 2k,.

= Edges in H, correspond to edge-disjoint paths in G.

Routing Trees for Terminals

Step Three (The graph H;)
s Degree of each vertex in H, is 2k;.

= Discard from H, any edges with multiplicity less than
k, = ki/h? to get a new multigraph H;.

= Thus any pair of adjacent vertices in H; has at least
k,/h? parallel edges which correspond to k,/h? edge-
disjoint paths in G.

The Graph H;

Claim: There is a spanning tree T of degree at most 5 in
the graph H;.

= Suffices to show that toughness of H; is at least 3.

= Suppose deleting a set Z of vertices creates p
connected components, say, C;, C,, ...,.C_ in H,.

= Each C has at least 2k, edges leaving it in H,.

s AT most h? (k,/h?) = k, edges are discarded overall in
going from H, to H..

At least pk; edges must be leaving C;, C,, ...,.C_ in H..

The Graph H;

= On the other hand, total number of edges entering Z
is bounded by 2k, |Z| since degree of any vertex in H;
is at most 2k;.

= It follows that pk, < 2k,|Z|, and hence |Z| > p/2.
So 7(H3) > 3.

By [Furer and Raghavachari '94] theorem, H; has a
spanning tree with maximum degree 3 + 1/7(H,) = 5.

Constructing the Routing Trees

Final Step (Construct the Routing Trees)
= Fix any spanning tree T of degree at most 5 in H;.

s Each edge of T corresponds to k, = k;/h? parallel
edges (which in turn correspond to edge-disjoint
paths in G).

= Arbitrarily root the tree T and replace each vertex s,
by the good set S..

Low Degree Spanning Tree

Low Degree Spanning Tree Expanded

Low Degree Spanning Tree Expanded

Recovering the Routing Trees

» Using the fact that each S, is well-linked w.r.t. its
boundary, we can now recover T;, T,, ..., T} such that

= each T, is rooted at a distinct terminal, and

= no edge in the graph is used by more than O(1)
trees.

= Recovery creates congestion = Max degree in T.

= This is where the bounded degree assumption helps!

Finding a Good Family of Sets

Legal Contracted Graph (LCG)

s Let r = k/polylog(k).

= For any set S of vertices, G[S] - subgraph of G
induced by the set S.

s Agraph His an LCG of G if

= H is obtained by contracting a disjoint subset of
vertices that do not contain terminals.

= Degree of each vertex in H is at most r.

= For any vertex v where v possibly represents a
contracted set S of vertices, the graph G[S] is
a-well-linked w.r.t. out(S) in G for a = 1/polylog(k).

Partition of non-terminals into
clusters:

 Each cluster has degree at
most k/polylog(k).

 Each cluster is a-well-linked
w.r.t. its boundary where

a = 1/polylog(k).

« Contraction reduces the # of
edges but terminals remain
well-linked.

Properties of LCG

The initial graph G is an LCG of itself.

Terminals remain well-linked in any LCG H of
= Any cut in the LCG H maps to a cut of the same value in G.

Since maximum degree r in an LCG H is much smaller
than k, there must be Q(k) edges in H that are
incident only on non-terminals.

The last two properties will play a crucial role.

The Algorithm

Let m = # of edges between non-terminals.

= Start by randomly partitioning all hon-terminals into
h sets, say, X, X5, ..., X,.

= With constant probability, each X; satisfies:
m |E(X.)| > m/10h2

= Note that |Out(X)| and |E(X))| are separated only by
a factor of h = O(log ? k).

The Algorithm

Consider a set X..

= Uncontract all vertices inside X..

s If G[X.]is a-well-linked w.r.t. Out(X,), then X. is a
good set.

s If not then do a a-well-linked decomposition inside X..

= If the decomposition creates a a-well-linked piece with
boundary of size at least r, this is a good set.

= Otherwise, the process fails.

= But total # of edges cut in the well-linked decomposition
process is bounded by o|Out(X))|(log? k) < |E(X)| -- a
reduction in the size of the LCG if we contract new pieces.

The Algorithm

s If each of X, X, ..., X, succeeds, we get a good
family of sets.

s Otherwise, some X; fails and we get a hew LCG that
has fewer edges than before.

= We repeat this process until we succeed.

Random Partitioning

Randomly assign each non-
terminal to one of the h =
O(log? k) clusters.

With constant probability,
for each i

* lout(X;)| < 10m/h

* |[E(X)| > m/10h?

m = # of edges between
hon-terminals

unco ntract , \
M

If no large a-well .
linked cluster, then well-llnkeq .
contract and reduce decomposition

the number of edges
inside X,

If a large a-well linked cluster, l

then this cluster is our good set S,

EDP Hardness Results

Max Independent Set (MIS) to EDP

MIS
7
Z

EDP

For each vertex v in the MIS instance, there isan s,-t,
pair and a canonical path connecting s, to f,.

MIS to EDP

MIS EDP
X y SX TX
SY TY
Z
SZ TZ

Edge between two vertices in the MIS instance <
Canonical paths share an edge in the EDP instance.

MIS to EDP

MIS EDP
X Y Sx] Tx
Sy— Ty
Z
SZ TZ

Edge between two vertices in the MLS instance <
Canonical paths share an edge in the EDP instance.

MIS to EDP

MIS EDP
X Y Sx] Tx
Sy™ — T,
Z
SZ TZ

Edge between two vertices in the MIS instance <
Canonical paths share an edge in the EDP instance.

Seems Promising ...

= If we could enforce that every routed pair only
uses its canonical path, we would get n®®-hardness.

= But the path intersections create cheating (non-
canonical) paths.

MIS to EDP

MIS EDP
X Y Sx] Tx
Sy™ — T,
Z
SZ TZ

Edge between two vertices in the MIS instance <
Canonical paths share an edge in the EDP instance.

Seems Promising ...

= If we could enforce that every routed pair only
uses its canonical path, we would get n®®-hardness.

= But path intersections create cheating (non-
canonical) paths.

= How do we deal with them?

Directed Graphs

= Efficient labeling schemes to encode intersections of
canonical paths that eliminate all non-canonical paths.

= Once you leave the canonical path, you can not
return to the original path.

= So each pair is connected only by a canonical path.

= Allows us to essentially carry independent set
hardness to directed EDP even with congestion.

= n®/c)-hardness for directed EDP with congestion c.
[Andrews, Zhang '06] [Chuzhoy, Guruswami, K, Talwar '07]

Undirected Graphs

No efficient labeling schemes known, and instead we
rely on girth arguments.

Girth of a graph = length of the shortest cycle.
Canonical path + a non-canonical path = a cycle.

So if girth is large and the canonical path is short, it
follows that any cheating path must be large.

Undirected Graphs

" Each source-sink pair has a short canonical path.

" Path intersections are implemented using a “random
process” to get a high girth graph: ®©(log n) girth.

t t o~

Pairs routed on non-canonical paths consume too much
routing capacity.

Hardness of Undirected EDP

Simplified Analysis
(ignores implementation of girth property)

= Start with a degree d-bounded independent set
instance where d = log!/? n.

= Hard to decide if max independent set size is Q(n/d°)
(Yes case) or O(n/d'<) (No case) for any ¢ > 0.

= Create an Q)(log n) girth undirected EDP instance:
= Canonical paths have length d = log'/? n.
= Non canonical paths have length Q(log n).
= O(nd) edges in total.

Hardness of Undirected EDP

Yes Case

= We can route Q(n/d) pairs in an edge-disjoint manner
using canonical paths.

No Case
= Only O(n/d') pairs can be routed on canonical paths.

= Only O(nd/log n) pairs can be routed on non-canonical
paths since girth is Q(log n).

Hardness of Undirected EDP

Yes Case
= Q(n/log® n) pairs can be routed.

No Case

= O(n/d"€) + O(nd/log n) = O(n/log? n) pairs can be
routed when d = log'/? n.

So we get a Q(log!/?< n) hardness for undirected EDP
with no congestion.

So what remains to be done ...

Approximability of undirected EDP with no congestion.
On the positive side ...
O(n'/2)-approximation [Chekuri, K, Shepherd '06]

= Algorithm is based on rounding the multicommodity
flow relaxation.

= Upper bound matches the integrality gap of the flow
relaxation.

So what remains to be done ...

On the negative side ...

Q(log'/?2-¢ n) hardness [Andrews, Chuzhoy, Guruswami, K,
Talwar, Zhang '05]

Approximability of undirected EDP remains wide open!

Undirected Congestion Minimization

A related open problem is congestion minimization in
undirected graphs: minimize congestion needed to route
all pairs.

= Randomized rounding of LP gives an O(log n/log log n)
approximation [Raghavan and Thompson '87].

= A matching hardness result known in directed graphs.
[Andrews, Zhang '06] [Chuzhoy, Guruswami, K, Talwar ‘07]

= But in undirected graphs, best known hardness is
Q(loglog n / log log log n) [Andrews and Zhang '07]

Concluding Remarks

= Several beautiful ideas composed together to obtain
a constant congestion polylog-approximation for EDP.

= These ideas have already been used to obtain many
other important results.

= With constant congestion, it is also possible to get a
polylog-approximation for vertex-disjoint paths
[Chekuri, Ene '13].

Thank Youl

