
Edge-Disjoint Paths in Networks

(Part 3)

Sanjeev Khanna
University of Pennsylvania

Recap

Expander Embedding

Starting Point:

 A graph G(V,E) that has a well-linked terminal set X
of size k, the degree of each vertex in the graph is at
most 4, and the degree of each terminal is 1.

Goal:

 Embed a low-degree expander of size k/polylog(k) on
the terminals with constant congestion on the edges.

Idea 1: Good Family of Sets

|out(Sj)|= # of edges on boundary of Sj = k/polylog(k).

Each Sj is well-linked w.r.t. its boundary out(Sj).

Each Sj can connect by edge-disjoint paths to
k/polylog(k) terminals.

h = £(log2 k)

Terminals

Sh
S1 S2

Idea 2: Routing Trees

For each terminal ti, there is a tree Ti that spans
ti and a distinct edge eij in out(Sj) for each j.

h = £(log2 k)

Terminals

Sh
S1 S2

Embedding an Expander

Implementing one round of the
cut-matching game.

Routing on the Embedded Expander

Expander vertex: a connected component in G containing
the terminal.

Expander edge: a path in G connecting some pair of
vertices in the two components.

An edge of G belongs only to O(1) components/paths.
Degree of each expander vertex is £(log2 k).

Routing on the Embedded Expander

Routing on vertex-disjoint paths in the expander
corresponds to a constant congestion routing in G !

Two Challenges

 How does one find a good family of sets?

 How do you use a good family to find the routing
trees?

[Chuzhoy ’12] tackles both challenges.

We will primarily focus on the second task.

Tools

 Mader’s Theorem.

 Toughness and bounded degree spanning trees.

Mader’s Theorem

Mader’s Theorem: Given any undirected graph G and a
vertex v of degree not equal to 3 such that there is no
cut-edge incident on v, there always exists a splittable
pair of edges incident on v.

Starting from an Eulerian graph, we can repeatedly
apply Mader’s theorem to preserve connectivity
between a special set of vertices while eliminating
edges incident on other vertices.

Splitting off to preserve
pairwise edge connectivities
between the ti vertices.

• Every edge in new graph
is a path in the old graph.

• These paths are edge-
disjoint.

• Degree of each ti vertex
remains unchanged.

• Edge-connectivity
between the ti vertices is
preserved.

• Every edge in new graph
is a path in the old graph.

• These paths are edge-
disjoint.

• Degree of each ti vertex
remains unchanged.

• Edge-connectivity
between the ti vertices is
preserved.

Toughness and Bounded Degree
Spanning Trees

The toughness ¿(G) of a connected undirected graph G
is defined as the ratio

¿(G) = minS |S|/c(S)
where the minimum is taken over c(S) > 1.
 Toughness of a star is 1/(n-1).
 Toughness of a cycle is 1.

Theorem [Furer and Raghavachari ’94]
In any connected graph G, one can find in poly-time a
spanning tree T such that the maximum degree in T is
bounded by 1/¿(G) + 3.

Routing Trees for Terminals

Starting Point: Good Family of Sets
A collection of h = £(log2 k) vertex-disjoint subgraphs
S1, S2, ..., Sh such that

 out(Si) is well-linked in G[Si] and has size k1= k/polylog(k),
 out(Si) can send k1= k/polylog(k) units of flow without

congestion to a fixed set X’ of k1 terminals.
Goal: Routing Trees
Find k/polylog(k) trees in G, say, T1, T2, ... such that

 each tree Ti is rooted at a distinct terminal,
 each tree Ti connects to a distinct edge on the boundary

out(Sj) of each Sj, and
 no edge in the graph is used by more than O(1) trees.

Routing Trees for Terminals

Step One (The graph H1)

 Add new vertices s1, s2, …, sh to G.

 Connect vertex si to the boundary of Si.

 Double all edges so that we have an Eulerian graph.

 ¸(si, sj) = edge connectivity between si and sj = 2k1.

Routing Trees for Terminals

Step Two (The graph H2)

 Apply Mader’s theorem to split off all edges incident
on the original vertices in G.

 Theorem applies since we have an Eulerian graph.

 We end up with a new multigraph H2 with only vertices
s1, s2, …, sh such that ¸(si, sj) = 2k1.

 Edges in H2 correspond to edge-disjoint paths in G.

Routing Trees for Terminals

Step Three (The graph H3)

 Degree of each vertex in H2 is 2k1.

 Discard from H2 any edges with multiplicity less than
k2 = k1/h2 to get a new multigraph H3.

 Thus any pair of adjacent vertices in H3 has at least
k1/h2 parallel edges which correspond to k1/h2 edge-
disjoint paths in G.

The Graph H3

Claim: There is a spanning tree T of degree at most 5 in
the graph H3.

 Suffices to show that toughness of H3 is at least ½.
 Suppose deleting a set Z of vertices creates p
connected components, say, C1, C2, …,Cp in H3.
 Each Ci has at least 2k1 edges leaving it in H2.
 At most h2 (k1/h2) = k1 edges are discarded overall in
going from H2 to H3.

At least pk1 edges must be leaving C1, C2, …,Cp in H3.

The Graph H3

 On the other hand, total number of edges entering Z
is bounded by 2k1|Z| since degree of any vertex in H3
is at most 2k1.

 It follows that pk1 · 2k1|Z|, and hence |Z| ¸ p/2.

So ¿(H3) ¸ ½.

By [Furer and Raghavachari ’94] theorem, H3 has a
spanning tree with maximum degree 3 + 1/¿(H3) = 5.

Constructing the Routing Trees

Final Step (Construct the Routing Trees)

 Fix any spanning tree T of degree at most 5 in H3.

 Each edge of T corresponds to k2 = k1/h2 parallel
edges (which in turn correspond to edge-disjoint
paths in G).

 Arbitrarily root the tree T and replace each vertex si
by the good set Si.

Low Degree Spanning Tree

s1

s3s2

Low Degree Spanning Tree Expanded

s1

s3s2

k1/h2 edges

Low Degree Spanning Tree Expanded
S1

S2 S3

Recovering the Routing Trees

 Using the fact that each Si is well-linked w.r.t. its
boundary, we can now recover T1, T2, ..., Tk2

such that
 each Ti is rooted at a distinct terminal, and
 no edge in the graph is used by more than O(1)

trees.

 Recovery creates congestion = Max degree in T.

 This is where the bounded degree assumption helps!

Finding a Good Family of Sets

Legal Contracted Graph (LCG)

 Let r = k/polylog(k).
 For any set S of vertices, G[S] – subgraph of G

induced by the set S.
 A graph H is an LCG of G if

 H is obtained by contracting a disjoint subset of
vertices that do not contain terminals.

 Degree of each vertex in H is at most r.
 For any vertex v where v possibly represents a

contracted set S of vertices, the graph G[S] is
®-well-linked w.r.t. out(S) in G for ® = 1/polylog(k).

Partition of non-terminals into
clusters:
• Each cluster has degree at
most k/polylog(k).
• Each cluster is ®-well-linked
w.r.t. its boundary where
® = 1/polylog(k).
• Contraction reduces the # of
edges but terminals remain
well-linked.

A contraction of GA contraction of G

G

H

Properties of LCG

 The initial graph G is an LCG of itself.

 Terminals remain well-linked in any LCG H of
 Any cut in the LCG H maps to a cut of the same value in G.

 Since maximum degree r in an LCG H is much smaller
than k, there must be (k) edges in H that are
incident only on non-terminals.

 The last two properties will play a crucial role.

The Algorithm

Let m = # of edges between non-terminals.
 Start by randomly partitioning all non-terminals into
h sets, say, X1, X2, …, Xh.

 With constant probability, each Xi satisfies:
 |Out(Xi)| · 10m/h.
 |E(Xi)| ¸ m/10h2.

 Note that |Out(Xi)| and |E(Xi)| are separated only by
a factor of h = £(log 2 k).

The Algorithm

Consider a set Xi.
 Uncontract all vertices inside Xi.
 If G[Xi] is ®-well-linked w.r.t. Out(Xi), then Xi is a
good set.
 If not then do a ®-well-linked decomposition inside Xi.

 If the decomposition creates a ®-well-linked piece with
boundary of size at least r, this is a good set.

 Otherwise, the process fails.
 But total # of edges cut in the well-linked decomposition

process is bounded by ®|Out(Xi)|(log2 k) < |E(Xi)| -- a
reduction in the size of the LCG if we contract new pieces.

The Algorithm

 If each of X1, X2, …, Xh succeeds, we get a good
family of sets.

 Otherwise, some Xi fails and we get a new LCG that
has fewer edges than before.

 We repeat this process until we succeed.

Random Partitioning

Randomly assign each non-
terminal to one of the h =
£(log2 k) clusters.

With constant probability,
for each i
• |out(Xi)| · 10m/h
• |E(Xi)| ¸ m/10h2

m = # of edges between
non-terminals

H

XhX1 X2 X3

uncontract

well-linked
decomposition

If a large ®-well linked cluster,
then this cluster is our good set Si

If no large ®-well
linked cluster, then
contract and reduce
the number of edges
inside Xi

Xi

EDP Hardness Results

Max Independent Set (MIS) to EDP
MIS EDP

z

x y sx

sy

sz tz

ty

tx

For each vertex v in the MIS instance, there is an sv-tv
pair and a canonical path connecting sv to tv.

MIS to EDP

MIS EDP

z

x y sx

sy

sz tz

ty

tx

Edge between two vertices in the MIS instance $
Canonical paths share an edge in the EDP instance.

MIS to EDP

MIS EDP

z

x y sx

sy

sz tz

ty

tx

Edge between two vertices in the MIS instance $
Canonical paths share an edge in the EDP instance.

MIS to EDP

MIS EDP

z

x y sx

sy

sz tz

ty

tx

Edge between two vertices in the MIS instance $
Canonical paths share an edge in the EDP instance.

Seems Promising …

 If we could enforce that every routed pair only
uses its canonical path, we would get n(1)-hardness.

 But the path intersections create cheating (non-
canonical) paths.

MIS to EDP

MIS EDP

z

x y sx

sy

sz tz

ty

tx

Edge between two vertices in the MIS instance $
Canonical paths share an edge in the EDP instance.

Seems Promising …

 If we could enforce that every routed pair only
uses its canonical path, we would get n(1)-hardness.

 But path intersections create cheating (non-
canonical) paths.

 How do we deal with them?

Directed Graphs

 Efficient labeling schemes to encode intersections of
canonical paths that eliminate all non-canonical paths.
 Once you leave the canonical path, you can not

return to the original path.
 So each pair is connected only by a canonical path.

 Allows us to essentially carry independent set
hardness to directed EDP even with congestion.
 n(1/c)-hardness for directed EDP with congestion c.

[Andrews, Zhang ’06] [Chuzhoy, Guruswami, K, Talwar ’07]

Undirected Graphs

 No efficient labeling schemes known, and instead we
rely on girth arguments.

 Girth of a graph = length of the shortest cycle.

 Canonical path + a non-canonical path = a cycle.

 So if girth is large and the canonical path is short, it
follows that any cheating path must be large.

t
s

t

s

t
s

 Each source-sink pair has a short canonical path.

 Path intersections are implemented using a “random
process” to get a high girth graph: (log n) girth.

Pairs routed on non-canonical paths consume too much
routing capacity.

Undirected Graphs

Hardness of Undirected EDP

Simplified Analysis
(ignores implementation of girth property)

 Start with a degree d-bounded independent set
instance where d = log1/2 n.
 Hard to decide if max independent set size is (n/d²)
(Yes case) or O(n/d1-²) (No case) for any ² > 0.
 Create an (log n) girth undirected EDP instance:
 Canonical paths have length d = log1/2 n.
 Non canonical paths have length (log n).
 O(nd) edges in total.

Hardness of Undirected EDP

Yes Case
We can route (n/d²) pairs in an edge-disjoint manner
using canonical paths.

No Case
 Only O(n/d1-²) pairs can be routed on canonical paths.

 Only O(nd/log n) pairs can be routed on non-canonical
paths since girth is (log n).

Hardness of Undirected EDP

Yes Case
 (n/log² n) pairs can be routed.

No Case
 O(n/d1-²) + O(nd/log n) = O(n/log1/2 n) pairs can be
routed when d = log1/2 n.

So we get a (log1/2-² n) hardness for undirected EDP
with no congestion.

So what remains to be done …

Approximability of undirected EDP with no congestion.

On the positive side …

O(n1/2)-approximation [Chekuri, K, Shepherd ’06]

 Algorithm is based on rounding the multicommodity
flow relaxation.

 Upper bound matches the integrality gap of the flow
relaxation.

So what remains to be done …

On the negative side …

(log1/2-² n) hardness [Andrews, Chuzhoy, Guruswami, K,
Talwar, Zhang ’05]

Approximability of undirected EDP remains wide open!

Undirected Congestion Minimization

A related open problem is congestion minimization in
undirected graphs: minimize congestion needed to route
all pairs.

 Randomized rounding of LP gives an O(log n/log log n)
approximation [Raghavan and Thompson ’87].
 A matching hardness result known in directed graphs.

[Andrews, Zhang ’06] [Chuzhoy, Guruswami, K, Talwar ’07]
 But in undirected graphs, best known hardness is
(log log n / log log log n) [Andrews and Zhang ’07]

Concluding Remarks

 Several beautiful ideas composed together to obtain
a constant congestion polylog-approximation for EDP.

 These ideas have already been used to obtain many
other important results.

 With constant congestion, it is also possible to get a
polylog-approximation for vertex-disjoint paths
[Chekuri, Ene ’13].

Thank You!

