ALGORITHMIC CHALLENGES OF BIG DATA

Finding primal-dual solutions for Huge Scale Problems

Yurii Nesterov, CORE/INMA (UCL)

August 15, 2014

Lecture 3 (Max Planck Institute)

Outline

- 1 Constrained optimization problem
- 2 Dual function and dual problem
- 3 Augmented Lagrangian
- 4 Switching subgradient method
- 5 Finding the dual multipliers
- 6 Complexity analysis
- 7 Linear Conic Problems: functional form
- 8 Generating the prima-dual solution

Optimization problem: simple constraints

Consider the problem: $\min_{x \in Q} f(x)$, where

- Q is a closed convex set: $x, y \in Q \Rightarrow [x, y] \subseteq Q$,
- f is a <u>subdifferentiable</u> on Q convex function:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad x, y \in Q, \ \nabla f(x) \in \partial f(x).$$

Optimality condition: point $x_* \in Q$ is optimal iff

$$\langle \nabla f(x_*), x - x_* \rangle \ge 0, \quad \forall x \in Q.$$

Interpretation: Function increases along any feasible direction.

Examples

- **1. Interior solution.** Let $x_* \in \text{int } Q$. Then $\langle \nabla f(x_*), x x_* \rangle \geq 0$, $\forall x \in Q$ implies $\nabla f(x_*) = 0$.
- 2. Optimization over positive orthant.

Let
$$Q \equiv \mathbb{R}^n_+ = \{ x \in \mathbb{R}^n : x^{(i)} \ge 0, i = 1, \dots, n \}.$$

Optimality condition: $\langle \nabla f(x_*), x - x_* \rangle \ge 0$, $\forall x \in \mathbb{R}^n_+$.

Coordinate form:
$$\nabla_i f(x_*) \left(x^{(i)} - x_*^{(i)} \right) \ge 0, \quad \forall x^{(i)} \ge 0.$$

This means that

$$\nabla_i f(x_*) \ge 0, \quad i = 1, \dots, n, \quad (\text{tend } x^{(i)} \to \infty)$$

$$x_*^{(i)} \nabla_i f(x_*) = 0, \quad i = 1, \dots, n,$$
 (set $x^{(i)} = 0.$)

Optimization problem: functional constraints

Problem: $\min_{x \in Q} \{ f_0(x), f_i(x) \le 0, i = 1, \dots, m \},$ where

- Q is a closed convex set,
- all f_i are convex and <u>subdifferentiable</u> on Q, i = 0, ..., m:

$$f_i(y) \ge f_i(x) + \langle \nabla f_i(x), y - x \rangle, \quad x, y \in Q, \ \nabla f_i(x) \in \partial f_i(x).$$

Optimality condition (KKT, 1956): point $x_* \in Q$ is optimal iff there exist Lagrange multipliers $\lambda_*^{(i)} \geq 0$, $i = 1, \ldots, m$, such that

(1):
$$\langle \nabla f_0(x_*) + \sum_{i=1}^m \lambda_*^{(i)} \nabla f_i(x_*), x - x_* \rangle \geq 0, \quad \forall x \in Q,$$

- (2): $f_i(x_*) \leq 0$, $i = 1, \ldots, m$, (feasibility)
- (3): $\lambda_*^{(i)} f_i(x_*) = 0$, $i = 1, \ldots, m$. (complementary slackness)

Lagrange multipliers: interpretation

Let $\mathcal{I} \subseteq \{1, \dots, m\}$ be an arbitrary set of indexes.

Denote
$$f_{\mathcal{I}}(x) = f_0(x) + \sum_{i \in \mathcal{I}} \lambda_*^{(i)} f_i(x)$$
. Consider the problem $\mathcal{P}_{\mathcal{I}}: \min_{\mathbf{x} \in \mathcal{O}} \{f_{\mathcal{I}}(\mathbf{x}): f_i(\mathbf{x}) \leq 0, \ i \notin \mathcal{I}\}.$

Observation: in any case, x_* is the optimal solution of problem $\mathcal{P}_{\mathcal{T}}$.

Interpretation: $\lambda_*^{(i)}$ are the *shadow prices* for resources. (Kantorovich, 1939)

Application examples:

- Traffic congestion: car flows on roads ⇔ size of queues.
- Electrical networks: currents in the wires ⇔ voltage potentials, etc.

Main question: How to compute (x_*, λ_*) ?

Algebraic interpretation

Consider the Lagrangian
$$\mathcal{L}(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda^{(i)} f_i(x)$$
.

Condition KKT(1):
$$\langle \nabla f_0(x_*) + \sum_{i=1}^m \lambda_*^{(i)} \nabla f_i(x_*), x - x_* \rangle \ge 0$$
,

 $\forall x \in Q$, implies

$$x_* \in \operatorname{Arg}\min_{x \in Q} \mathcal{L}(x, \lambda_*).$$

Define the <u>dual</u> function $\phi(\lambda) = \min_{x \in Q} \mathcal{L}(x, \lambda)$, $\lambda \ge 0$. It is concave!

By Danskin's Theorem,
$$\nabla \psi(\lambda) = (f_1(x(\lambda)), \dots, f_m(x(\lambda)),$$
 with $x(\lambda) \in \operatorname{Arg}\max_{x \in Q} \mathcal{L}(x,\lambda).$

Conditions KKT(2,3): $f_i(x_*) \le 0$, $\lambda_*^{(i)} f_i(x_*) = 0$, i = 1, ..., m, imply $(x_* = x(\lambda_*))$

$$\lambda_* \in \operatorname{Arg} \max_{\lambda > 0} \phi(\lambda).$$

Algorithmic aspects

Main idea: solve the dual problem

$$\max_{\lambda \geq 0} \phi(\lambda)$$

by the subgradient method:

- **1**. Compute $x(\lambda_k)$ and define $\nabla \phi(\lambda_k) = (f_1(x(\lambda_k)), \dots, f_m(x(\lambda_k)))$.
- **2**. Update $\lambda_{k+1} = \mathsf{Project}_{\mathbb{R}^n_+}(\lambda_k + h_k \nabla \phi(\lambda_k))$.

Stepsizes $h_k > 0$ are defined in the usual way.

Main difficulties:

- Each iteration is time consuming.
- Unclear termination criterion.
- Low rate of convergence $(O(\frac{1}{\epsilon^2})$ upper-level iterations).

Augmented Lagrangian (1970's) [Hestenes, Powell, Rockafellar, Polyak, Bertsekas, . . .]

Define the Augmented Lagrangian

$$\widehat{\mathcal{L}}_{K}(x,\lambda) = f_{0}(x) + \frac{1}{2K} \sum_{i=1}^{m} \left(\lambda^{(i)} + K f_{i}(x) \right)_{+}^{2} - \frac{1}{2K} \|\lambda\|_{2}^{2}, \quad \lambda \in \mathbb{R}^{m},$$

where K > 0 is a penalty parameter.

Consider the dual function $\hat{\phi}(\lambda) = \min_{x \in Q} \widehat{\mathcal{L}}(x, \lambda)$.

- Main properties. Function $\hat{\phi}$ is concave. Its gradient is Lipschitz continuous with constant $\frac{1}{K}$.
- Its <u>unconstrained</u> maximum is attained at the optimal dual solution.
- The corresponding point $\hat{x}(\lambda_*)$ is the optimal primal solution.

Hint: Check that the equation $(\lambda^{(i)} + Kf_i(x))_+ = \lambda^{(i)}$ is equivalent to KKT(2,3).

Method of Augmented Lagrangians

Note that
$$\nabla \hat{\phi}(\lambda) = \frac{1}{K} \left(\lambda^{(i)} + K f_i(x) \right)_+ - \frac{1}{K} \lambda$$
.

Therefore, the usual gradient method $\lambda_{k+1} = \lambda_k + K \nabla \hat{\phi}(\lambda_k)$ is exactly as follows:

Method:
$$\lambda_{k+1} = (\lambda_k + Kf(\hat{x}(\lambda_k)))_+$$
.

Advantage: Fast *local* convergence of the dual process.

Disadvantages:

- Difficult iteration.
- Unclear termination.
- No global complexity analysis.

Do we have an alternative?

Problem formulation

Problem:
$$f^* = \inf_{x \in Q} \{ f_0(x) : f_i(x) \le 0, i = 1, ..., m \}, \text{ where }$$

- $f_i(x)$, i = 0, ..., m, are closed convex functions on Q endowed with a first-order black-box oracles.
- $Q \subset \mathbb{E}$ is a bounded *simple* closed convex set. (We can solve some auxiliary optimization problems over Q.)

Defining the Lagrangian

$$\mathcal{L}(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda^{(i)} f_i(x), \quad x \in Q, \ \lambda \in \mathbb{R}_+^m,$$

we can introduce the Lagrangian dual problem $\left|f_*\stackrel{\mathrm{def}}{=}\sup_{\lambda\in\mathbb{R}^m_+}\phi(\lambda),
ight|$

$$f_* \stackrel{\mathrm{def}}{=} \sup_{\lambda \in \mathbb{R}_+^m} \phi(\lambda),$$

where
$$\phi(\lambda) \stackrel{\text{def}}{=} \inf_{x \in Q} \mathcal{L}(x, \lambda)$$
.

Clearly, $f^* \ge f_*$. Later, we will show $f^* = f_*$ algorithmically.

Bregman distances

Prox-function: $d(\cdot)$ is strongly convex on Q with parameter one:

$$d(y) \ge d(x) + \langle \nabla d(x), y - x \rangle + \frac{1}{2} ||y - x||^2, \quad x, y \in Q.$$

Denote by x_0 the prox-center of the set Q: $x_0 = \arg\min_{x \in Q} d(x)$.

Assume $d(x_0) = 0$.

Bregman distance:

$$\beta(x,y) = d(y) - d(x) - \langle \nabla d(x), y - x \rangle, \ x, y \in Q.$$

Clearly, $\beta(x,y) \ge \frac{1}{2} ||x-y||^2$ for all $x, y \in Q$.

Bregman mapping: for $x \in Q$, $g \in E^*$ and h > 0 define

$$\mathcal{B}_h(x,g) = \arg\min_{y \in Q} \{h\langle g, y - x \rangle + \beta(x,y)\}.$$

The first-order condition for point $x_+ \stackrel{\text{def}}{=} \mathcal{B}_h(x,g)$ is as follows:

$$\langle hg + \nabla d(x_+) - \nabla d(x), y - x_+ \rangle \ge 0, \quad y \in Q.$$

Examples

- **1. Euclidean distance.** We choose $||x|| = \left[\sum_{i=1}^{n} (x^{(i)})^2\right]^{1/2}$ and $d(x) = \frac{1}{2}||x||^2$. Then $\beta(x,y) = \frac{1}{2}||x-y||^2$, and we have $\mathcal{B}_h(x,g) = \operatorname{Projection}_Q(x-hg)$.
- **2. Entropy distance.** We choose $||x|| = \sum_{i=1}^{n} |x^{(i)}|$ and $d(x) = \ln n + \sum_{i=1}^{n} x^{(i)} \ln x^{(i)}$. Then $\beta(x,y) = \sum_{i=1}^{n} y^{(i)} [\ln y^{(i)} \ln x^{(i)}].$ If $Q = \{x \in \mathbb{R}^n : \sum_{i=1}^{n} x^{(i)} = 1\}$, then $\mathcal{B}_h^{(i)}(x,g) = x^{(i)} e^{-hg^{(i)}} / \left[\sum_{i=1}^{n} x^{(i)} e^{-hg^{(i)}} \right], i = 1, \dots, n.$

Switching subgradient method

Input parameter: the step size h > 0.

Initialization: Compute the prox-center x_0 .

Iteration
$$k \geq 0$$
: a) Define $\mathcal{I}_k = \{i \in \{1, \dots, m\} : f_i(x_k) > h \|\nabla f_i(x_k)\|_*\}.$

b) If
$$\mathcal{I}_k = \emptyset$$
, then compute $x_{k+1} = \mathcal{B}_h\left(x_k, \frac{\nabla f_0(x_k)}{\|\nabla f_0(x_k)\|_*}\right)$.

c) If $\mathcal{I}_k \neq \emptyset$, then choose arbitrary $i_k \in \mathcal{I}_k$ and define

$$h_k = \frac{f_{i_k}(x_k)}{\|\nabla f_{i_k}(x_k)\|_*^2}$$
. Compute $x_{k+1} = \mathcal{B}_{h_k}(x_k, \nabla f_{i_k}(x_k))$.

After $t \ge 0$ iterations, define $\mathcal{F}_t = \{k \in \{0, \dots, t\} : \mathcal{I}_k = \emptyset\}$.

Denote $N(t) = |\mathcal{F}(t)|$. It is possible that N(t) = 0.

Finding the dual multipliers

if N(t) > 0, define the dual multipliers as follows:

$$lacksquare \lambda_t^{(0)} = h \sum_{k \in \mathcal{F}_t} rac{1}{\| \nabla f_0(x_k) \|_*},$$

$$lacksquare \lambda_t^{(i)} = rac{1}{\lambda_t^{(0)}} \sum_{k \in \mathcal{A}_i(t)} h_k, \quad i = 1, \dots, m,$$

where
$$A_i(t) = \{k \in \{0, ..., t\} : i_k = i\}, 0 \le i \le m$$
.

Denote
$$S_t = \sum_{k \in \mathcal{F}_t} \frac{1}{\|\nabla f_0(x_k)\|_*}$$
. If $\mathcal{F}_t = \emptyset$, then we define $S_t = 0$.

For proving convergence of the switching strategy, we find an upper bound for the gap

$$\delta_t = \frac{1}{S_t} \sum_{k \in \mathcal{F}(t)} \frac{f_0(x_k)}{\|\nabla f_0(x_k)\|_*} - \phi(\lambda_t),$$

assuming that N(t) > 0.

Convergence analysis

Note that $\lambda_t^{(0)} = h \cdot S(t)$. Therefore

$$\begin{split} &\lambda_t^{(0)} \cdot \delta_t = \sup_{\mathbf{x} \in Q} \left\{ h \sum_{k \in \mathcal{F}(t)} \frac{f_0(\mathbf{x}_k)}{\|\nabla f_0(\mathbf{x}_k)\|_*} - \lambda_t^{(0)} f_0(\mathbf{x}) - \sum_{i=1}^m \sum_{k \in \mathcal{A}_i(t)} h_k f_i(\mathbf{x}) \right\} \\ &= \sup_{\mathbf{x} \in Q} \left\{ h \sum_{k \in \mathcal{F}(t)} \frac{f_0(\mathbf{x}_k) - f_0(\mathbf{x})}{\|\nabla f_0(\mathbf{x})\|_*} - \sum_{k \notin \mathcal{F}(t)} h_k f_{i_k}(\mathbf{x}) \right\} \\ &\leq \sup_{\mathbf{x} \in Q} \left\{ h \sum_{k \in \mathcal{F}(t)} \frac{\langle \nabla f_0(\mathbf{x}_k), \mathbf{x}_k - \mathbf{x} \rangle}{\|\nabla f_0(\mathbf{x}_k)\|_*} + \sum_{k \notin \mathcal{F}(t)} h_k [\langle \nabla f_{i_k}(\mathbf{x}_k), \mathbf{x}_k - \mathbf{x} \rangle - f_{i_k}(\mathbf{x}_k)] \right\} \end{split}$$

Let us estimate from above the right-hand side of this inequality.

Feasible step

For arbitrary $x \in Q$, denote $r_t(x) = \beta(x_t, x)$. Then

$$r_{t+1}(x) - r_{t}(x) = [d(x) - d(x_{t+1}) - \langle \nabla d(x_{t+1}), x - x_{t+1} \rangle] \\ -[d(x) - d(x_{t}) - \langle \nabla d(x_{t}), x - x_{t} \rangle]$$

$$= \langle \nabla d(x_{t}) - \nabla d(x_{t+1}), x - x_{t+1} \rangle \\ -[d(x_{t+1}) - d(x_{t}) - \langle \nabla d(x_{t}), x_{t+1} - x_{t} \rangle]$$

$$\leq \langle \nabla d(x_{t}) - \nabla d(x_{t+1}), x - x_{t+1} \rangle - \frac{1}{2} ||x_{t} - x_{t+1}||^{2}.$$

In view of optimality condition, for all $x \in Q$ and $k \in \mathcal{F}(t)$ we have

$$\frac{h}{\|\nabla f_0(x_k)\|_*}\langle \nabla f_0(x_k), x_{k+1} - x \rangle \leq \langle \nabla d(x_{k+1}) - \nabla d(x_k), x - x_{k+1} \rangle.$$

Assume that $k \in \mathcal{F}_t$. In this case,

$$r_{k+1}(x) - r_k(x) \leq -\frac{h}{\|\nabla f_0(x_k)\|_*} \langle \nabla f_0(x_k), x_{k+1} - x \rangle - \frac{1}{2} \|x_k - x_{k+1}\|^2$$

$$\leq -\frac{h}{\|\nabla f_0(x_k)\|_*} \langle \nabla f_0(x_k), x_k - x \rangle + \frac{1}{2} h^2.$$

Infeasible step

If $k \notin \mathcal{F}(t)$, then the optimality condition defining the point x_{k+1} looks as follows:

$$h_k\langle \nabla f_{i_k}(x_k), x_{k+1} - x \rangle \le \langle \nabla d(x_{k+1}) - \nabla d(x_k), x - x_{k+1} \rangle.$$

Therefore,

$$r_{k+1}(x) - r_k(x) \leq -h_k \langle \nabla f_{i_k}(x_k), x_{k+1} - x \rangle - \frac{1}{2} \|x_k - x_{k+1}\|^2$$

$$\leq -h_k \langle \nabla f_{i_k}(x_k), x_k - x \rangle + \frac{1}{2} h_k^2 \|\nabla f_{i_k}(x_k)\|_*^2.$$

Hence,

$$h_{k}[\langle \nabla f_{i_{k}}(x_{k}), x_{k} - x \rangle - f_{i_{k}}(x_{k})] \leq r_{k}(x) - r_{k+1}(x) - \frac{f_{i_{k}}^{2}(x_{k})}{2\|\nabla f_{i_{k}}(x_{k})\|_{*}^{2}}$$

$$\leq r_{k}(x) - r_{k+1}(x) - \frac{1}{2}h^{2}.$$

Convergence result

Summing up all inequalities for k = 0, ..., t, and taking into account that $r_{t+1}(x) \ge 0$, we obtain

$$\lambda_t^{(0)} \delta_t \le r_0(x) + \frac{1}{2} N(t) h^2 - \frac{1}{2} (t - N(t)) h^2 = r_0(x) - \frac{1}{2} t h^2 + N(t) h^2.$$

Denote $D = \max_{x \in Q} r_0(x)$.

Theorem. If the number $t \geq \frac{2}{h^2}D$, then $\mathcal{F}(t) \neq \emptyset$.

In this case $\delta_t \leq Mh$ and $\max_{1 \leq i \leq m} f_i(x_k) \leq Mh$, $k \in \mathcal{F}(t)$

where $M = \max_{0 \le k \le t} \max_{0 \le i \le m} \|\nabla f_i(x_k)\|_*$.

Proof: If $\mathcal{F}(t) = \emptyset$, then N(t) = 0. Consequently, $\lambda_t^{(0)} = 0$. This is impossible for t big enough.

Finally, $\lambda_t^{(0)} \geq \frac{h}{M} N(t)$. Therefore, if t is big enough, then $\delta_t \leq \frac{N(t)h^2}{\lambda_s^{(0)}} \leq Mh$. \square

Conclusion

- **1.** Optimal primal-dual solution can be approximated by a simple switching subgradient scheme.
- 2. Dual process looks as a coordinate-descent method.
- **3.** Approximations of dual multipliers have natural interpretation : relative importance of corresponding constraints during the adjustments process.
- **4.** However, it has optimal worst-case efficiency estimate even if the dual optimal solution does not exist.
- **5.** Many interesting questions (influence of smoothness, strong convexity, etc.)

Linear Conic Problems

Assume that the space of primal variables E is partitioned:

$$x^j \ \in \ E_j, \, j=1,\ldots,n, \quad x \ = \ \left(x^1,\ldots,x^n\right) \in E,$$

Thus, dim $E = \sum_{j=1}^n \dim E_j$, and $\langle c, x \rangle \stackrel{\text{def}}{=} \sum_{j=1}^n \langle c^j, x^j \rangle$ for any $c \in E^*$.

Linear operator:
$$A = (A_1, ..., A_n), A_i \stackrel{\text{def}}{=} \sum_{j=1}^n A_j x^j, x \in E.$$

Primal cone: $x \in K = \bigotimes_{j=1}^{n} K_j$, $K_j \subset E_j$ are closed convex pointed.

Thus,
$$K^* = \bigotimes_{j=1}^n K_j^*$$
.

Primal problem: $f_* \stackrel{\text{def}}{=} \inf_{x \in K} \{ \langle c, x \rangle : Ax = b \}, b \in \mathbb{R}^m.$

Dual problem: $\sup_{y \in R^m, \ s \in K^*} \{ \langle b, y \rangle : \ s + A^*y = c \}.$

Assumption: Dual Problem is solvable. $\Rightarrow \langle s^* | x^* \rangle = 0$.

Functional constraints

Important: Constraints in the dual problem are separable

$$\sup_{y \in R^m, s \in E^*} \Big\{ \langle b, y \rangle : \ s^j = c^j - A_j^T y \in K_j^*, \ j = 1, \dots, n \Big\}.$$

We need to write them in a functional form.

In each cone K_j^* we fix a scaling element $d^j \in \operatorname{int} K_j^*$, $j=1,\ldots,n$.

For
$$u^j \in E_j^*$$
, define $\psi_j(u^j) \stackrel{\text{def}}{=} \min_{\tau} \{ \ \tau : \ \tau d^j - u^j \in K_j^* \ \}.$

Note:
$$c^j - A_j^T y \in K_j^*$$
 iff $f_j(y) \stackrel{\text{def}}{=} \psi_j (A_j^T y - c^j) \le 0$.

Example: $K = R_+^n$. Then $K^* = K$. Choose $d = e \in K^*$. Then

$$\psi(u) = \max_{1 \le i \le n} u_{(i)}.$$

Subgradients of functional constraints

Primal form:
$$\psi_j(u^j) = \max_{x^j \in K_i} \{\langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1\}$$
.

Thus,
$$\partial \psi_j(u^j) = \operatorname{Arg} \max_{x^j \in K_j} \{ \langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1 \} \ni x^j(u^j).$$

Constraint:
$$f_j(y) = \psi_j(A_i^T y - c^j).$$

Subgradient:
$$f'_j(y) \stackrel{\text{def}}{=} A_j x^j (A_j^T y - c^j) \in \partial f_j(y) \subset R^m$$
.

Denote $F_j^*(\cdot)$ a self-concordant barrier for cone K_j^* .

Theorem:
$$||f'_j(y)||^*_{(2)} \leq \sigma_j \stackrel{\text{def}}{=} \lambda_{\max}^{1/2} \left(A_j \nabla^2 F_j^*(d^j) A_j^T \right).$$

Examples

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is the jth basis vector in R^n .

Let us take $F_j(z)=-\ln z$ and $d^j=1$. Then $\nabla^2 F_j(z^j)=1$ and $\sigma_j^2=\lambda_{\max}(A_jA_j^T)=\|A_j\|^2.$

2. Let $K_j = \{S_j \succeq 0_{p \times p}\}$. We take $F_j(z) = -\ln \det z$, and $z^j = d^j = I_p$.

Then $A_j^*(y) = \sum_{i=1}^m A_j^i y^i$, $y \in R^m$, where A_j^i are symmetric $p \times p$ -matrices. Thus,

$$\sigma_{j} = \max_{\|y\|=1} \|\sum_{i=1}^{m} A_{j}^{i} y^{i}\|_{F} = \max_{\substack{\|y\|=1,\\ \|B\|_{F}=1}} \langle \sum_{i=1}^{m} A_{j}^{i} y^{i}, B \rangle = \max_{\|B\|_{F}=1} \left[\sum_{i=1}^{m} \langle A_{j}^{i}, B \rangle^{2}\right]^{1/2}.$$

We assume that all σ_j , $j=1,\ldots,n$, are computed in advance.

New Dual Problem

Denote $g_j(y) = \frac{1}{\sigma_j} f_j(y)$. Consider the problem:

$$\sup_{y \in R^m, \ s \in E^*} \left\{ \ \langle b, y \rangle : \ g(y) \stackrel{\mathrm{def}}{=} \max_{1 \leq j \leq n} g_j(y) \ \leq \ 0 \ \right\}.$$

Denote by j(y) the active index j such that $g_j(y) = g(y)$. Then

$$g'(y) = \frac{1}{\sigma_{j(y)}} A_{j(y)} x^{j(y)} \left(A_{j(y)}^T y - c^{j(y)} \right), \quad \|g'(y)\| \leq 1.$$

Maximization scheme: Choose h > 0. Define $y_0 = 0$.

For $k \ge 0$ do:

if
$$g(y_k) \le h$$
, then (F): $y_{k+1} = y_k + h \cdot \frac{b}{\|b\|}$,

else (G):
$$y_{k+1} = y_k - g(y_k) \cdot g'(y_k)$$
.

Primal and dual minimization sequences

For $N \ge 0$, denote by \mathcal{F}_N the set of iterations of type (F).

Let
$$\mathcal{G}_N \stackrel{\mathrm{def}}{=} \{0, \dots, N\} \setminus \mathcal{F}_N$$
, $N_f \stackrel{\mathrm{def}}{=} |\mathcal{F}_N|$, and $N_g \stackrel{\mathrm{def}}{=} |\mathcal{G}_N|$.

For step (F),
$$c^j - A_j^* y_k + h \sigma_j d^j \in K_j^*, \ j = 1, \ldots, n, \quad k \in \mathcal{F}_N$$
.

Denote
$$e_j(x^j) \in E$$
: $e_j^i(x^j) = \begin{cases} x^j, & i = j, \\ 0, & \text{otherwise,} \end{cases}$ $i = 1, \dots, n$.

Define the approximate primal-dual solutions as follows:

$$\bar{x}_{N} \stackrel{\text{def}}{=} \frac{\|\dot{b}\|}{hN_{f}} \sum_{k \in \mathcal{G}_{N}} \frac{g(y_{k})}{\sigma_{j(y_{k})}} e_{j(y_{k})} \left(x^{j(y_{k})} (A_{j(y_{k})}^{*} y_{k} - c^{j(y_{k})}) \right) \in K,$$

$$\bar{y}_{N} = \frac{1}{N_{f}} \sum_{k \in \mathcal{F}_{N}} y_{k}, \quad \bar{s}_{N} = c - A^{T} \bar{y}_{N}.$$

This choice is motivated by the following relations:

$$\begin{split} \overline{s}_N^j &= c^j - \frac{1}{N_f} \sum_{k \in \mathcal{F}_N} A_j^* y_k \succeq_{K_j^*} - h \sigma_j d^j, \\ y_{N+1} &= \frac{h N_f}{\|b\|} \cdot b - \sum_{k \in \mathcal{G}_N} \frac{g(y_k)}{\sigma_{j(y_k)}} A e_{j(y_k)} \left(x^{j(y_k)} (A_{j(y_k)}^* y_k - c^{j(y_k)}) \right). \end{split}$$

Convergence

Denote $\hat{d} \in K^*$: $\hat{d}^j = \sigma_j d^j$, $j = 1, \ldots, n$.

Theorem. Let $\hat{D}=2\left(\frac{\langle \hat{d},x^*\rangle}{\|b\|}+1\right)$. For any $N\geq 0$ we have: $N_f\geq \frac{1}{\hat{D}}\left(N+1-\frac{\|y^*\|^2}{h^2}\right)$.

If $N_f \geq 1$, then $\langle c, \bar{x}_N \rangle - \langle b, \bar{y}_N \rangle \leq \frac{1}{2} h \|b\|$.

Finally, if $N+1>\frac{\|y^*\|^2}{h^2}$, then

$$\langle x^*, \bar{s}_N \rangle + \langle \bar{x}_N, s^* \rangle \leq h \|b\|,$$

and the residual in the primal-dual system vanishes as $N \to \infty$:

$$\frac{1}{\|b\|}\|b - A\bar{x}_N\| \le \sqrt{\frac{\hat{D}}{N_f}} + \frac{\|y^*\|}{hN_f}.$$

Example: Solving huge LP

Let
$$K = R_+^n$$
. Then $\sigma_j = ||Ae_j||$, $j = 1, \ldots, n$.

Assume the data is uniformly sparse: for all i and j $p(c) \le r$, $p(A^T e_i) \le r$, $p(b) \le q$, $p(Ae_j) \le q$, with $r \ll n$ and $q \ll m$.

Preliminary work: O(p(A)) operations at most.

One iteration:

- Update y_k : O(q) operations at most.
- Update new slack s_{k+1} : $O(rq \log_2 n)$ operations.
- Update the norm $||y_k||^2$: O(q) operations.

Conclusion: cost of one iteration is $O(rq \log_2 n)$.

NB: Often r and q do not depend on n.

Conclusion

- 1. We have seen that both smooth and nonsmooth Huge-Scale convex optimization problems can be solved by gradient methods.
- 2. In many cases we can approximate the primal-dual solutions.
- 3. It is possible only if we properly use the problem structure.
- **4.** It seems that in the future, any serious optimization problem will require development of its own optimization scheme.

GOOD LUCK!

