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Optimization problem: simple constraints

Consider the problem: mig f(x),  where
xe

m Q is a closed convex set: x,y € Q@ = [x,y] C Q,

m f is a subdifferentiable on @ convex function:

fly) > f(x)+ (VFf(x),y — x), x,y € Q, Vf(x) € 9f(x).

Optimality condition: point x, € Q is optimal iff
(VF(xe),x —x¢) >0, Vxe€Q.

Interpretation: Function increases along any feasible direction.
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Examples

1. Interior solution. Let x, € int Q. Then
(VF(x),x —x) >0, Vx € Q implies Vf(x.) =0.

2. Optimization over positive orthant.
Let Q=R] ={xeR": x(N >0, i=1....,n}

Optimality condition: (V£ (x.),x — x) Vx € RY.

>0,
Coordinate form:  V;f(x) (X(i) _ xi”) >0, x>0,
This means that
u Vif(X*)ZO, i=1,...,n, (tend XU)—)OO)

m xi'l)V,-f(x*) =0, i=1,...,n, (set x(1) = 0.)
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Optimization problem: functional constraints

Problem: mig{fo(x), filx)<0,i=1,...,m}, where
x€e

m Q@ is a closed convex set,

m all f; are convex and subdifferentiable on @, i =0,..., m:

fily) = fi(x) +(Vhi(x),y = x), x,y € Q, Vfi(x) € 0fi(x).

Optimality condition (KKT, 1956): point x, € Q is optimal iff

there exist Lagrange multipliers )\S,j) >0,i=1,...,m, such that
1) (Vh(x)+ S AVA(x),x —x) >0, VYxeQ,
i=1

(2) : fi(x) <0, i=1,...,m, (feasibility)

(3): )\g)f,-(x*) =0, i=1,...,m (complementary slackness)
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Lagrange multipliers: interpretation

Let Z C {1,..., m} be an arbitrary set of indexes.
Denote f7(x) = fo(x) + > Agi)ﬁ(x). Consider the problem
i€l
Pr: mig{fz(x) : fi(x) <0, i ¢TI}
Xx€e

Observation: in any case, x, is the optimal solution of
problem Pz.

Interpretation: )\Sj) are the shadow prices for resources.
(Kantorovich, 1939)
Application examples:

m Traffic congestion: car flows on roads < size of queues.

m Electrical networks: currents in the wires < voltage
potentials, etc.

Main question: How to compute (x., Ax)?
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Algebraic interpretation

m .
Consider the Lagrangian  £(x,\) = fo(x) + > MO f(x).
i=1

m .
Condition KKT(1): (Vfo(x:) + > A&')Vﬁ(x*),x —Xx) >0,
i=1

Vx € Q, implies

X € Argmin L(x, A\y).
x€Q

Define the dual function ¢(\) = mig L(x,A), A >0. Itis concave!
XxXe
By Danskin's Theorem, Vi(A) = (fi(x(N)), ..., fm(x(X)), with
A) €A L(x,\).
x(A) € Argmax L(x, A)

Conditions KKT(2,3): fi(x.) <0, A\ fi(x.) =0, i=1,...,m,
imply (x. = x(A\s))

L EA .
Ax € Argmax ¢(2)
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Algorithmic aspects

Main idea: solve the dual problem r)r\1>a(>)<¢()\)

by the subgradient method:
1. Compute x(Ax) and define Vo(Ax) = (A (x(Ak)), - - -, fm(x(Ak)))-

2. Update Axq1 = Projectgs (Ak + heVo(Ak)).
Stepsizes hy > 0 are defined in the usual way.

Main difficulties:
m Each iteration is time consuming.
m Unclear termination criterion.

m Low rate of convergence (O (E%) upper-level iterations).
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Augmented Lagrangian (1970's)

[Hestenes, Powell, Rockafellar, Polyak, Bertsekas, . ..

Define the Augmented Lagrangian
~ m . 2
Li(x,\) = fo(x) + 5% ; (AD + Kfi(x)), — 3k lIM3, A eR™,

where K > 0 is a penalty_parameter.

~

Consider the dual function ¢(\) = mig L(x, A).

IS
m Main properties. Function qg is concave. lts gradient is
Lipschitz continuous with constant %

m Its unconstrained maximum is attained at the optimal dual
solution.

m The corresponding point X(A.) is the optimal primal solution.

Hint: Check that the equation ()\(i) + Kf,-(x))Jr =0
is equivalent to KKT(2,3).
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Method of Augmented Lagrangians

Note that V&(A) = & (AD) + Kfi(x)), — £.

Therefore, the usual gradient method Ag11 = Ax + KV(%()\;() is
exactly as follows:

Method: Akl = ()\k + Kf(j\(()\k)))Jr
Advantage: Fast local convergence of the dual process.

Disadvantages:

m Difficult iteration.
m Unclear termination.

m No global complexity analysis.
DO WE HAVE AN ALTERNATIVE?
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Problem formulation

Problem: f* = im(‘;){fg(x) D fi(x) <0, i=1,...,m}, where
xe

m fi(x), i=0,...,m, are closed convex functions on @ endowed
with a first-order black-box oracles,

m Q C E is a bounded simple closed convex set. (We can solve
some auxiliary optimization problems over Q.)

Defining the Lagrangian
L(x,\) = fo(x)+ S ADf(x), x€Q, NeRT,
i=1

we can introduce the Lagrangian dual problem | f, def sup ¢(A),

AER™

where ¢()) & inf £(x. A).
xe

Clearly, * > f,. Later, we will show f* = f, algorithmically.
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Bregman distances

Prox-function: d(-) is strongly convex on @ with parameter one:
d(y) > d(x) +(Vd(x),y = x) + 3lly = x|?, xy€Q.

Denote by xg the prox-center of the set Q: xp = arg mig d(x).
IS

Assume d(xp) = 0.

Bregman distance:

|B(x,y) = d(y) = d(x) = (Vd(x).y = x), x,y € Q.]

Clearly, B(x,y) > &[|Ix — y||? for all x,y € Q.

Bregman mapping: for x € Q, g € E* and h > 0 define
Br(x, ) = argmin{hig,y = x) + B0x, y)}-

The first-order condition for point x, & Bh(x, g) is as follows:

(hg +Vd(xy) = Vd(x),y —=x4) 20, y€ Q.
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Examples

n 712
1. Euclidean distance. We choose ||x| = |:Z(X('))2:| and
d(x) = Lx[%. Then B(x,y) = L|x — y|2, and we have
Bh(x,g) = Projectiong(x — hg).

2. Entropy distance. We choose ||x|| = 3 [x()| and
i=1

d(x)=Inn+ i xDnx(). Then
i=1

6(X7y) = En: y(’)[ln y(') — |nx(i)]_
i=1

If Q={xecR": Y x() =1} then
i=1
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Switching subgradient method

Input parameter: the step size h > 0.

Initialization : Compute the prox-center xg.
Iteration k > 0: a) Define Zy, = {i € {1,...,m} : fi(xx) > h||VFi(xk)|+}-
b) If Zx = 0, then compute xx11 = B, <Xk, %)_

c) If Zx # 0, then choose arbitrary iy € Zx and define

fi, (%)
hy = m. Compute xy+1 = B, (xk, Vi, (xk)).

After t > 0 iterations, define 7y = {k € {0,...,t} : Zx = 0}.
Denote N(t) = |F(t)|. Itis possible that N(t) = 0.
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Finding the dual multipliers

if N(t) > 0, define the dual multipliers as follows:

(o) _ 1
= A= h 2 R

-Ag’):ﬁ S he, i=1,....m,
t keA(t)
where A;(t) ={k e {0,...,t}: ik=1i},0<i<m.

Denote S; = ké—' m. If 7+ = 0, then we define S; = 0.

For proving convergence of the switching strategy, we find an
upper bound for the gap
be=% T [epign — o)
St KEF () 1V o (i) [+
assuming that N(t) > 0.
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Convergence analysis

Note that Aff’) = h-5(t). Therefore

0 X| 0 m
A&’-at:sup{h > rergn — AR - X 3 hkf,-(x)}

x€Q | keF(t) =1 ke Ai(t)

fo(xx)—rfo(x
~uph o A 5 )

x€EQ keF(t) kg F(t)

<supsh X W—I— > h[(VAi (i), xie — x) — fi. ()] ¢
x€Q | keF(x) : kg F(t)

Let us estimate from above the right-hand side of this inequality.
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Feasible step

For arbitrary x € Q, denote ri(x) = (x¢,x). Then

() — rex) = [d(x) — dxes1) — (Vd(xeen)ox — xein)]
—[d(x) — d(x) — (Vd(xe), x — x0)]

= (Vd(x) — Vd(xt+1), x — xe+1)
—[d(xe+1) — d(xe) — (Vd(xe), Xe41 — xt)]

< (Vd(xe) = Vd(xe11), x — xe41) — 3 lxe — xeq1]%.

In view of optimality condition, for all x € Q and k € F(t) we
have
Torta (Vi(k), X —x) < ({Vd(xks1) = Vd(xi), x = xpe1).-
Assume that k € F;. In this case,
rer1(x) —re(x) < —W<Vfo(xk),xk+1 —x) — Ixk — xu41]?
< —W<Vfo(xk),xk —x) + %hz.
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Infeasible step

If kK & F(t), then the optimality condition defining the point xx1
looks as follows:

(Vi (x), k41 — x) < (Vd(xuy1) — Vd(xi), X — Xks1).
Therefore,

1 (x) = (x) < —hi(VF, O, X1 = x) = 3lxe = xea |12

IN

—hi (Vi (xi), Xk — x) + 32|V £ (xi) |12
Hence,

£2 (xk)
MV i (i) xke = x) = fi, ()] < n(x) = rieya(x) — m

< (%) = repa(x) — %hz.
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Convergence result

Summing up all inequalities for k =0,...,t, and taking into
account that rry1(x) > 0, we obtain

A5, < ro(x) + IN(£)h? — 3(t — N(£))h? = ro(x) — Leh? + N(t)h2.
Denote D = :
enote max ro(x)
Theorem. If the number t > 2D, then F(t) # 0.
In this case 6 < Mh and max fi(xk) < Mh, k € F(t)

1<i<m

where M = max max ||V £(xk)||«
0<k<t0<i<m

Proof: If F(t) =0, then N(t) =0. Consequently, A§°’ =0.
This is impossible for t big enough.
Finally, A&O) > %N(t). Therefore, if t is big enough, then

6 < MGE < M D

t
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Conclusion

1. Optimal primal-dual solution can be approximated by a simple
switching subgradient scheme.

2. Dual process looks as a coordinate-descent method.
3. Approximations of dual multipliers have natural interpretation :

relative importance of corresponding constraints during the
adjustments process.

4. However, it has optimal worst-case efficiency estimate even if
the dual optimal solution does not exist.

5. Many interesting questions (influence of smoothness, strong
convexity, etc.)
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Linear Conic Problems

Assume that the space of primal variables E is partitioned:

Xl € E,j=1,...,n, = (x!,...,x") € E,
n
Thus, dim E = Z dim E;, and (c, x) e Z(cJ xJ) for any c € E*.
Jj=1 j=1
Linear operator: A= (Aj,...,A,), Ax def Z Aixl, x € E.
j=1
n
Primal cone: x € K = QQ Kj, K; C E; are closed convex pointed.
j=1
n
Thus, K* = @ K.
=1
Primal problem: f, = mf{ (¢,x): Ax=b}, beR™
xeK
Dual problem: sup  {(byy): s+ A*y =c}.
yYERM seK*

Assumption: Dual Problem is solvable. = (s*,x*) =0.
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Functional constraints

Important: Constraints in the dual problem are separable

sup {(b,y):sj:cf—AjTyGKj*,jzl,...,n}.
YERM scE*

We need to write them in a functional form.

In each cone K?" we fix a scaling element d/ € int KJ* Jj=1,...,n

For o € E;, define (v b e mln{ ToTd — W€ K }.

Note: ¢/ — Ay € K;" iff fi(y) o Pi(Aly = d) <.

Example: K = R]. Then K* = K. Choose d = e € K*. Then
Y(u) = max ().
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Subgradients of functional constraints

Primal form: ¢;(v/) = mal><<{<uJ XY (d X)) =1} .
xle

Thus, 81/1_,(UJ) = Arg ma’><({<u-/7xf> {(d, X)) =1} 3 X ().
x/e \j
Constraint:  fi(y) = Tﬁj(A-Ty —d).

def

Subgradient: f/(y) = A; x (A y—d) e ofi(y) c R™.

Denote F(-) a self-concordant barrier for cone K.

* def (1/2 sf i
Theorem: || /(y)llip < o7 & A <AJ-V2Fj(dJ)AjT).
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Examples

1. If Kj = R}r, then A; = Aej € R™, where ¢; is the jth basis
vector in R".
Let us take Fj(z) = —Inz and &/ = 1. Then V2F;(z/) =1 and

07 = Amax(AjA]) = || A%

2. Let K; = {S; = Opxp}. We take Fj(z) = —Indetz, and
Z=d =,

Then A7 (y) = Z A’y’ y € R™, where A’ are symmetric

i=1
p X p-matrices. Thus,
m L. m 1/2
= max | 55 Ayile = mox (5 Ay, 8) = max |82
lly || ””B“l‘ =1 BllF=1 [i=1
We assume that all o;, j = 1,...,n, are computed in advance.
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New Dual Problem

Denote gj(y) = U%)j(y) Consider the problem:

def
sup {<b,y>: €)™ max g(y) < o}.
yERM, seE* 1<j<n

Denote by j(y) the active index j such that gj(y) = g(y). Then
&) = 51 Ay ¥ (ATyy =) gl < 1

Maximization scheme: Choose h > 0. Define yy = 0.
For k > 0 do:

if g(yi) < h, then (F): yii1 =yi+h- b,
else (G): yir1 = vk — g(yvk) - & (k).
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Primal and dual minimization sequences

For N > 0, denote by Fy the set of iterations of type (F).

Let Gy % {0,..., NI\ Fu, Ne % |70, and N, & |Gl

For step (F), ¢ —Aj’-‘yk+hajdf €K', j=1,...,n, keFy.
W, =],

) i=1,...,n.
0, otherwise, T

Denote ¢j(x/) € E: ej(x/) = {

Define the approximate primal-dual solutions as follows:

5. def |lb|] &) '
xy < Wfkeglv Uj(};z) &) (XJ(}’k)( Yk — CJ()’k))) € K,
IN=w 2 Yk v o= c— ATy
keFn
This choice is motivated by the following relations:
sv=d -3 X Ay =k —hod,
k€.7:N
YN41 = ﬁ b— kezg UJ((Z? Aeity) (XJ(Yk)( Yk — CJ(n))) ,
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Convergence

Denote d € K*: &/ = o;d/, j=1,...,n

Theorem. Let D =2 <<||b||> + 1) For any N > 0 we have:
Ne> % (N+1- 1)
D
If Nf > 1, then (c, xn) — (b, yn) < 3h|b].
Finally, if N+ 1> 2 then
(x* ,sN> + (%n, s*) < hlb]],

and the residual in the primal-dual system vanishes as N — oo:

Iyl
Teyllb — Axwll </ +
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Example: Solving huge LP

Let K =R]. Then g; = [|Agj|, j=1,...,n.

Assume the data is uniformly sparse: for all i and j
p(c) < r, p(ATe,-) < r, p(b) <q, p(Aej) < 4q
with r < nand g < m.

Preliminary work: O(p(A)) operations at most.
One iteration:

m Update yx: O(q) operations at most.

m Update new slack sg11: O(rqlog, n) operations.

m Update the norm ||y, |>: O(q) operations.
Conclusion: cost of one iteration is  O(rqlog, n).

NB: Often r and g do not depend on n.
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Conclusion

1. We have seen that both smooth and nonsmooth Huge-Scale
convex optimization problems can be solved by gradient methods.

2. In many cases we can approximate the primal-dual solutions.

3. It is possible only if we properly use the problem structure.

4. It seems that in the future, any serious optimization problem
will require development of its own optimization scheme.

GoOOD LUCK!
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