ADFOCS 2015

Exercises on the s-t Path TSP Problem

August 17-21, 2015

1. Consider the following standard linear programming relaxation of the traveling salesman problem:

$$\operatorname{Min} \quad \sum_{e \in E} c_e x_e$$

subject to:

$$\begin{split} x(\delta(v)) &= 2, & \forall v \in V, \\ x(\delta(S)) &\geq 2, & \forall S \subset V, S \neq \emptyset, \\ 0 &\leq x_e \leq 1, & \forall e \in E. \end{split}$$

Let x^* be an optimal solution to the LP, and let OPT_{LP} be the optimal value of the LP.

- (a) Show that $\frac{n-1}{n}x^*$ is feasible for the spanning tree polytope.
- (b) Show that Christofides' algorithm returns a solution of cost at most $\frac{3}{2}OPT_{LP}$.
- 2. Recall the LP relaxation for the s-t TSP path problem:

$$\operatorname{Min} \quad \sum_{e \in E} c_e x_e$$

subject to:

$$\begin{aligned} x(\delta(v)) &= \begin{cases} 1, & v = s, t, \\ 2, & v \neq s, t, \end{cases} \\ x(\delta(S)) &\geq \begin{cases} 1, & |S \cap \{s, t\}| = 1 \\ 2, & |S \cap \{s, t\}| \neq 1 \end{cases} \\ 0 &\leq x_e \leq 1, \qquad \forall e \in E. \end{cases} \end{aligned}$$

Let x^* be an optimal solution to the LP, and let OPT_{LP} be the optimal value of the LP.

In this problem, we will show that the Best-of-Many Christofides' algorithm is a $\frac{3}{2}$ approximation algorithm if $x_e^* \in \{0, \frac{1}{2}, 1\}$ for all $e \in E$. Let F_1, \ldots, F_k be the spanning
trees in the convex combination given by x^* , and let T_1, \ldots, T_k be the sets of vertices
whose parity needs fixing in the trees F_1, \ldots, F_k (respectively). A set S is odd for a
tree F_i if $|S \cap T_i|$ is odd.

- (a) Prove that for any tree F_i , $x^*(\delta(S))$ is integral for any odd set S.
- (b) Prove that for any tree F_i , $x^*(\delta(S)) \ge 2$ for any odd set S.

- (c) Prove that Best-of-Many Christofides' algorithm returns a solution of cost at most $\frac{3}{2}OPT_{LP}$.
- 3. Consider a solution x to the LP relaxation in Problem 1 that is a fractional 2-matching: $x_e \in \{0, 1/2, 1\}$ for all $e \in E$, and all the edges with $x_e = 1/2$ form vertex-disjoint cycles with odd numbers of edges. A 2-matching is a set of edges such that each vertex has degree two, and each connected component has at least 3 vertices in it (and is thus a collection of cycles, each of which has at least 3 vertices in it). A graphical 2-matching is a multiset of edges such that each vertex has even degree, and each connected component has at least 3 vertices, we will show that we can find a 2-matching of cost at most 4/3 times the value of the LP solution.

To do this, consider a graph G' obtained from the LP solution by any path of edges e with $x_e = 1$ and replacing the path with a single edge, and including any edge e with $x_e = 1/2$. The resulting graph is cubic (each vertex has degree exactly 3) and is 2-edge-connected (argue to yourself that this must be true). Let the cost c'_e of any edge e in the graph G' be the cost of the path (if e corresponds to a path in the original graph) or the negative of the cost of the edge e (if the edge e had $x_e = 1/2$) in the original graph. Compute a minimum-cost perfect matching M. We now construct a set of edges F. If $e \in M$ corresponded to a path in the original graph, then add two copies of each edge in the path to F. If $e \notin M$ and e corresponded to a path in the original graph, then include one copy of each edge in the path in F. If for edge e we had $x_e = 1/2$ and $e \notin M$, then add this edge to F (if $e \in M$ then we do not add this edge to F).

- (a) Argue that the resulting set of edges F must be a graphical 2-matching.
- (b) Prove that the cost of the edges in F must be at most $\frac{4}{3} \sum_{e \in E} c_e x_e$.
- (c) Prove that there is a 2-matching of cost at most the cost of the edges in F.
- 4. In the *prize-collecting* traveling salesman problem, we are given a complete graph G = (V, E), costs $c_e \ge 0$ on the edges $e \in E$ that obey the triangle inequality, a root vertex $r \in V$, and penalties $\pi_i \ge 0$ for all $i \in V$. The goal is to find a set of vertices S with $r \in S$, and a tour T on S that minimizes $\sum_{e \in T} c_e + \sum_{i \notin S} \pi_i$; that is, we minimize the total cost of the tour on S plus the penalties of the vertices not in S.

In the prize-collecting Steiner tree problem, we are given a graph G = (V, E), costs $c_e \ge 0$ on the edges $e \in E$, a root vertex $r \in V$, and penalties $\pi_i \ge 0$ for all $i \in V$. The goal is to find a set of vertices S with $r \in S$, and a tree T spanning S that minimizes $\sum_{e \in T} c_e + \sum_{i \notin S} \pi_i$; that is, we minimize the total cost of the tree on S plus the penalties of the vertices not in S. Consider the following linear program.

$$\operatorname{Min} \quad \sum_{e \in E} c_e x_e + \sum_{i \in V} \pi_i (1 - y_i)$$

subject to

We assert that the LP can be solved in polynomial time (using an algorithm known as the ellipsoid method). Let (x^*, y^*) be an optimal solution. Consider the following algorithm for the prize-collecting Steiner tree problem. We let $S = \{i \in V : y_i^* \ge \alpha\}$ for some α . Find a minimum-cost spanning tree T on S. It is possible to show that $\sum_{e \in T} c_e \le \frac{2}{\alpha} \sum_{e \in E} c_e x_e^*$.

- (a) Argue that the linear program is a relaxation of the prize-collecting Steiner tree problem.
- (b) If you are familiar with the ellipsoid method, argue that the linear program can be solved in polynomial time.
- (c) Show that there is a value for α such that the algorithm is a 3-approximation algorithm for the prize-collecting Steiner tree problem.
- (d) Use the 3-approximation algorithm for the prize-collecting Steiner tree problem to devise an approximation algorithm for the prize-collecting traveling salesman problem. How good a performance guarantee can you get?