s-t path TSP

David P. Williamson
Cornell University

August 17-21, 2015
ADFOCS
Traveling Salesman Problem (TSP)

Input:
- A complete, undirected graph $G = (V, E)$;
- Edge costs $c(i, j) \geq 0$ for all $e = (i, j) \in E$.

Goal: Find the min-cost tour that visits each city exactly once.

Costs are *symmetric* ($c(i, j) = c(j, i)$) and obey the *triangle inequality* ($c(i, k) \leq c(i, j) + c(j, k)$).

Asymmetric TSP (ATSP) input has complete directed graph, and $c(i, j)$ may not equal $c(j, i)$.
The traveling salesman problem

From Bill Cook, tour of 647 US colleges (www.math.uwaterloo.ca/tsp/college)
The traveling salesman problem

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)
Definition

An α-approximation algorithm is a polynomial-time algorithm that returns a solution of cost at most α times the cost of an optimal solution.

Long known: A $\frac{3}{2}$-approximation algorithm due to Christofides (1976). No better approximation algorithm yet known.
Christofides’ algorithm

Compute minimum spanning tree (MST) F on G, then compute a minimum-cost perfect matching M on odd-degree vertices of T. “Shortcut” Eulerian traversal in resulting Eulerian graph of $F \cup M$.
Christofides’ algorithm

Compute minimum spanning tree (MST) F on G, then compute a minimum-cost perfect matching M on odd-degree vertices of T. “Shortcut” Eulerian traversal in resulting Eulerian graph of $F \cup M$.
Christofides’ algorithm

Compute minimum spanning tree (MST) F on G, then compute a minimum-cost perfect matching M on odd-degree vertices of T. “Shortcut” Eulerian traversal in resulting Eulerian graph of $F \cup M$.
Christofides’ algorithm

Compute minimum spanning tree (MST) F on G, then compute a minimum-cost perfect matching M on odd-degree vertices of T. “Shortcut” Eulerian traversal in resulting Eulerian graph of $F \cup M$.
The s-t path TSP:
Usual TSP input plus $s, t \in V$, find a min-cost path from s to t visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’ algorithm gives a $\frac{5}{3}$-approximation algorithm.
The s-t path TSP:
Usual TSP input plus $s, t \in V$, find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’
algorithm gives a $\frac{5}{3}$-approximation algorithm.

What is the natural variant for the s-t path TSP?
Eulerian path

There is an Eulerian path that starts at s, ends at t, and visits every edge exactly once iff s and t have odd-degree and all other vertices have even degree.
Eulerian path

There is an Eulerian path that starts at s, ends at t, and visits every edge exactly once iff s and t have odd-degree and all other vertices have even degree.
Hoogeveen’s algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose *parity needs changing*: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost perfect matching M on the vertices in T. Find Eulerian path on $F \cup M$; shortcut to an s-t Hamiltonian path.
Hoogeveen’s algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose *parity needs changing*: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost perfect matching M on the vertices in T. Find Eulerian path on $F \cup M$; shortcut to an s-t Hamiltonian path.
Hoogeveen’s algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose *parity needs changing*: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost perfect matching M on the vertices in T. Find Eulerian path on $F \cup M$; shortcut to an s-t Hamiltonian path.
Hoogeveen’s algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose *parity needs changing*: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost perfect matching M on the vertices in T. Find Eulerian path on $F \cup M$; shortcut to an s-t Hamiltonian path.
Rather than a minimum-cost perfect matching on T, will construct a minimum-cost \textit{T-join}: a set of edges that has odd degree at every vertex in T, even degree at every vertex not in T.

![Diagram of T-join](attachment:image.png)
Rather than a minimum-cost perfect matching on T, we will construct a minimum-cost T-join: a set of edges that has odd degree at every vertex in T, even degree at every vertex not in T.
Rather than a minimum-cost perfect matching on T, will construct a minimum-cost T-join: a set of edges that has odd degree at every vertex in T, even degree at every vertex not in T.
Rather than a minimum-cost perfect matching on T, will construct a minimum-cost T-join: a set of edges that has odd degree at every vertex in T, even degree at every vertex not in T.
Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing. Then find a minimum-cost T-join J. Find Eulerian path on $F \cup J$; shortcut to an s-t Hamiltonian path.

Theorem Hoogeveen’s algorithm is a $5/3$-approximation algorithm.
Hoogeveen’s algorithm

Let \(F \) be the min-cost spanning tree. Let \(T \) be the set of vertices whose parity needs changing. Then find a minimum-cost \(T \)-join \(J \). Find Eulerian path on \(F \cup J \); shortcut to an \(s-t \) Hamiltonian path.

Theorem

Hoogeveen’s algorithm is a \(\frac{5}{3} \)-approximation algorithm.
Proof of theorem

Let F be edges in MST, $c(F) = \sum_{e \in F} c_e$.

Let O be edges in optimal soln, $OPT = c(O)$.

Clearly $c(F) \leq OPT$ since O is a spanning tree.

Let T be vertices in F whose parity needs changing.

Idea: Construct 3 T-joins of total cost $c(F) + OPT$.

Then $\text{MST} + \text{min-cost T-join} \leq c(F) + \frac{1}{3} (c(F) + OPT)
\leq OPT + \frac{2}{3} OPT = \frac{5}{3} OPT$.

Let R be edges on s-t path in MST F.

Color edges of O green or blue: start at s, color blue until first node in T, then switch colors as each node in T reached. Gives G (green), B (blue).
F-R a T-join: \(F \cup (F - R) \) has even degree at every node except s, t

G a T-join: pairs up nodes in T.

B is not a T-join: \(F \cup B \) has even degree at all nodes but then \(B \cup R \) is a T-join.

\[c(F - R) + c(G) + c(B \cup R) = c(F) + c(O). \]
Proof of theorem
Tight Example

The analysis is tight. Consider the graph TSP instance below: cost c_e for $e = (i, j)$ is number of edges in shortest i-j path in graph.
The analysis is tight. Consider the graph TSP instance below: cost c_e for $e = (i, j)$ is number of edges in shortest i-j path in graph.
Tight Example

The analysis is tight. Consider the graph TSP instance below: cost \(c_e \) for \(e = (i, j) \) is number of edges in shortest \(i-j \) path in graph.
The analysis is tight. Consider the graph TSP instance below: cost c_e for $e = (i, j)$ is number of edges in shortest i-j path in graph.
Improvements

No improvement on Hoogeveen’s algorithm for s-t path TSP, until just the last few years.

Hoogeveen (1991) $\frac{5}{3}$
Improvements

No improvement on Hoogeveen’s algorithm for s-t path TSP, until just the last few years.

Hoogeveen (1991) $\frac{5}{3}$

An, Kleinberg, Shmoys (2012) $\frac{1+\sqrt{5}}{2} \approx 1.618$
No improvement on Hoogeveen’s algorithm for \(s-t \) path TSP, until just the last few years.

- Hoogeveen (1991) \(\frac{5}{3} \)

- An, Kleinberg, Shmoys (2012) \(\frac{1 + \sqrt{5}}{2} \approx 1.618 \)

- Sebő (2013) \(\frac{8}{5} = 1.6 \)
Improvements

No improvement on Hoogeveen’s algorithm for \(s-t\) path TSP, until just the last few years.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Year</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoogeveen</td>
<td>1991</td>
<td>(\frac{5}{3})</td>
</tr>
<tr>
<td>An, Kleinberg, Shmoys</td>
<td>2012</td>
<td>(\frac{1+\sqrt{5}}{2} \approx 1.618)</td>
</tr>
<tr>
<td>Sebő</td>
<td>2013</td>
<td>(\frac{8}{5} = 1.6)</td>
</tr>
<tr>
<td>Vygen</td>
<td>2015</td>
<td>1.599</td>
</tr>
</tbody>
</table>

Goal: Understand the An et al. and Sebő algorithm and analysis.
A Linear Programming Relaxation

Min $\sum_{e \in E} c_e x_e$

subject to:

$x(\delta(v)) = \begin{cases} 1 & v = s, t \\ 2 & v \neq s, t \end{cases}$

$x(\delta(S)) \geq \begin{cases} 1 & |s \cap S \cap t| = 1 \\ 2 & |s \cap S \cap t| \neq 1 \end{cases}$

$0 \leq x_e \leq 1, \quad \forall e \in E,$

where $\delta(S)$ is the set of edges with exactly one endpoint in S, and $x(E') \equiv \sum_{e \in E'} x_e$.
A Linear Programming Relaxation

Minimize \(\sum_{e \in E} c_e x_e \)

subject to:
\[
x(\delta(v)) = \begin{cases}
1, & v = s, t, \\
2, & v \neq s, t,
\end{cases}
\]

\[
x(\delta(S)) \geq \begin{cases}
1, & |S \cap \{s, t\}| = 1, \\
2, & |S \cap \{s, t\}| \neq 1,
\end{cases}
\]

\[0 \leq x_e \leq 1, \quad \forall e \in E,
\]

where \(\delta(S) \) is the set of edges with exactly one endpoint in \(S \), and
\[x(E') \equiv \sum_{e \in E'} x_e.\]
LP relaxation
LP relaxation
LP relaxation
LP relaxation
LP relaxation
The spanning tree polytope

The spanning tree polytope (convex hull of all spanning trees) is defined by the following inequalities:

\[
\sum_{e \in E} x_e = |V| - 1,
\]

\[
x(E(S)) \leq |S| - 1, \quad \forall |S| \subseteq V, |S| \geq 2,
\]

\[
\sum_{e \in E(S)} x_e \geq 0, \quad \forall e \in E,
\]

where \(E(S)\) is the set of all edges with both endpoints in \(S\).
The LP relaxation and spanning trees

Lemma

Any solution \(x \) feasible for the \(s-t \) path TSP LP relaxation is in the spanning tree polytope.
\[x(E) = \sum_{e \in E} x_e = \frac{1}{2} \sum_{v \in V} x(\delta(v)) = \frac{1}{2} (|V| - 2) \cdot 2 + 2 = |V| - 1 \]

\[x(E(S)) = \frac{1}{2} \left(\sum_{v \in S} x(\delta(v)) - x(\delta(S)) \right) \]

- If \(|S \cap E_s, t_3| = 1\)
 \[x(E(S)) \leq \frac{1}{2} \left(1 + 2(|S| - 1) - 1 \right) = |S| - 1. \]
- If \(|S \cap E_s, t_3 = \emptyset|\)
- If \(|S \cap E_s, t_3 = \{s, t_3|\} \)
Proof

\[x(δ(v)) = \begin{cases}
1, & v = s, t, \\
2, & v \neq s, t,
\end{cases} \]

\[x(δ(S)) \geq \begin{cases}
1, & |S \cap \{s, t\}| = 1, \\
2, & |S \cap \{s, t\}| \neq 1,
\end{cases} \]

\[0 \leq x_e \leq 1, \quad \forall e \in E. \]

\[x(E) = |V| - 1, \]

\[x(E(S)) \leq |S| - 1, \quad \forall |S| \subseteq V, |S| \geq 2, \]

\[x_e \geq 0, \quad \forall e \in E. \]
Let OPT_{LP} be the value of an optimal solution x^* to the LP relaxation.

Theorem (An, Kleinberg, Shmoys (2012))

*Hoogeveen’s algorithm returns a solution of cost at most $\frac{5}{3} OPT_{LP}$.***
An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity needs fixing in F.

Definition

S is an **odd set** if $|S \cap T|$ is odd.

Lemma

Let S be an odd set. If $|S \cap \{s, t\}| = 1$, then $|F \cap \delta(S)|$ is even. If $|S \cap \{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.
Lemma

Let S be an odd set. If $|S \cap \{s, t\}| = 1$, then $|F \cap \delta(S)|$ is even. If $|S \cap \{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.
Lemma

Let S be an odd set. If $|S \cap \{s, t\}| = 1$, then $|F \cap \delta(S)|$ is even. If $|S \cap \{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.
 Lemma

Let S be an odd set. If $|S \cap \{s, t\}| = 1$, then $|F \cap \delta(S)|$ is even. If $|S \cap \{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.
Lemma

Let S be an odd set. If $|S \cap \{s, t\}| = 1$, then $|F \cap \delta(S)|$ is even. If $|S \cap \{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.
Lemma

Let S be an odd set. If $|S \cap \{s, t\}| = 1$, then $|F \cap \delta(S)|$ is even. If $|S \cap \{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.
Proof of lemma

\[
\sum_{v \in S} \deg_F(v) = 2|E(S) \cap F| + |\delta(S) \cap F|
\]
Proof of Lemma

If $|s_n|^2 = 1$, spec $S \subseteq S$. set T iff $\deg(S)$ even.

S odd \Rightarrow even $\#$ of odd deg. vertices in S.

$|s_n|^2$ odd

$\sum \deg(v) - 2|E(S) \cap F| = |\partial(S) \cap F|

\text{even even}

\text{In fact } |\partial(S) \cap F| \geq 2

$|s_n|^2, t_3| = 1$ & S odd \Rightarrow odd $\#$ odd deg. verts in S

$\sum \deg(v) - 2|E(S) \cap F| = |\partial(S) \cap F|

\text{odd even odd}$
The solution to the following linear program is the minimum-cost T-join for costs $c \geq 0$:

$$\text{Min} \quad \sum_{e \in E} c_e x_e$$

subject to:

$$x(\delta(S)) \geq 1, \quad \forall S \subseteq V, |S \cap T| \text{ odd}$$

$$x_e \geq 0, \quad \forall e \in E.$$
The solution to the following linear program is the minimum-cost T-join for costs $c \geq 0$:

\[
\begin{align*}
\text{Min} & \quad \sum_{e \in E} c_e x_e \\
\text{subject to:} & \quad x(\delta(S)) \geq 1, \quad \forall S \subseteq V, |S \cap T| \text{ odd} \\
& \quad x_e \geq 0, \quad \forall e \in E.
\end{align*}
\]

\[
\sum_{v \in S} \deg_J(v) = 2|E(S) \cap J| + |\delta(S) \cap J|
\]
Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))

Hoogeveen’s algorithm returns a solution of cost at most $\frac{5}{3} \text{OPT}_L$.

Lemma

Let S be an odd set. If $|S \cap \{s, t\}| = 1$, then $|F \cap \delta(S)|$ is even. If $|S \cap \{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

Min $\sum_{e \in E} c_e x_e$

$x(\delta(S)) \geq 1, \quad \forall S \subseteq V, |S \cap T| \text{ odd}$

$x_e \geq 0, \quad \forall e \in E.$
Proof: Let x^* be an opt. soln to LP relaxation.

Cost of MST $\leq \sum_{ee} c_e x_e^* = \text{OPT}_{LP}$.

since x^* is feasible for spanning tree polytope.

Let $X_F \in \{0,1\}^{E_1}$ s.t. $X_F(e) = \begin{cases} 1 & \text{if } ee \in F \\ 0 & \text{o.w.} \end{cases}$

Claim: $y = \frac{1}{3} X_F + \frac{1}{3} x^*$ feasible for T-join LP.

Then $c(F \cup J) = c(F) + c(J) \leq \text{OPT}_{LP} + \frac{1}{3} c(F) + \frac{1}{3} \text{OPT}_{LP}$ \[\leq \frac{5}{3} \text{OPT}_{LP} \]
\[y = \frac{1}{3} X_{F} + \frac{1}{3} x^{*} \text{ feas. for T-join LP.} \]

Need to show that if \(|S_{N}| \text{ odd, then } y(\delta(S)) \geq 1.\]

If \(|S_{N} \cap S, t \cap 1| \neq 1\), then
\[y(\delta(S)) = \frac{1}{3} |F \cap \delta(S)| + \frac{1}{3} x^{*}(\delta(S)) \geq \frac{1}{3} + \frac{2}{3} = 1 \]

If \(|S_{N} \cap S, t \cap 1| = 1\), then
\[y(\delta(S)) = \frac{1}{3} |F \cap \delta(S)| + \frac{1}{3} x^{*}(\delta(S)) \geq \frac{2}{3} + \frac{1}{3} = 1 \]

\[\square \]
Convex combination

Let x^* be an optimal LP solution. Let χ_F be the characteristic vector of a set of edges F, so that

$$\chi_F(e) = \begin{cases} 1 & e \in F \\ 0 & e \notin F \end{cases}$$

Since x^* is in the spanning tree polytope, can write x^* as a convex combination of spanning trees F_1, \ldots, F_k:

$$x^* = \sum_{i=1}^{k} \lambda_i \chi_{F_i},$$

such that $\sum_{i=1}^{k} \lambda_i = 1$, $\lambda_i \geq 0$.
An, Kleinberg, Shmoys (2012) propose the Best-of-Many Christofides’ algorithm: given optimal LP solution x^*, compute convex combination of spanning trees

$$x^* = \sum_{i=1}^{k} \lambda_i x_{F_i}.$$

For each spanning tree F_i, let T_i be the set of vertices whose parity needs fixing, let J_i be the minimum-cost T_i-join. Find s-t Hamiltonian path by shortcutting $F_i \cup J_i$. Return the shortest path found over all i.
Best-of-Many Christofides’ Algorithm

\[x^* = \sum_{i=1}^{k} \lambda_i \chi_{F_i}. \]

For each spanning tree \(F_i \), let \(T_i \) be the set of vertices whose parity needs fixing, \(J_i \) be the minimum-cost \(T_i \)-join. Find \(s-t \) Hamiltonian path by shortcutting \(F_i \cup J_i \). Return the shortest path found over all \(i \).

Theorem

The Best-of-Many Christofides’ algorithm returns a solution of cost at most \(\frac{5}{3} \text{OPT}_{LP} \).