
ADFOCS 2015 Pruhs Homework 1

We will consider the following problem (and some variations thereof): A problem instance consists of n
tasks. Task i has a release time ri, a deadline di > ri, and work wi > 0. In the online version of the problem,
the scheduler learns about a task only at its release time; at this time, the scheduler also learns the exact
work requirement and the deadline of the task. We assume that time is continuous. A schedule specifies for
each time a task to be run and a speed at which to run the task. The speed is the amount of work performed
on the task per unit time. A task with work w run at a constant speed s thus takes w

s time to complete.
More generally, the work done on a task during a time period is the integral over that time period of the
speed at which the task is run. A schedule is feasible if for each task i, work at least wi is done on task i
during [ri, di]. Note that the times at which work is performed on task i do not have to be contiguous. If a
task is run at speed s, then the power is P (s) = s2. The energy used during a time period is the integral of
the power over that time period. The objective is to minimize the total energy used.

1. (Warmup) Assume for the moment that the speed at each time was fixed a priori. So there may not be
a feasible schedule. Convince yourself that if a feasible schedule exists, then a feasible schedule can be
produced by always running the released unfinished job with an earliest deadline. This can formally
be shown using an exchange argument, but you do not need to do a formal proof. So we can conclude
from this that the job selection policy can without loss of generality be to run the earliest deadline job,
and we need only focus on algorithms for setting the speed.

2. (Warmup) Consider the offline YDS algorithm defined below. Let w(t1, t2) denote the work that has
release time at least t1 and has deadline at most t2. The intensity I(t1, t2) of the time interval [t1, t2]
is defined to be w(t1, t2)/(t2 − t1).

Algorithm YDS: The algorithm repeats the following steps until all jobs are scheduled:

• Let [t1, t2] be the maximum intensity time interval.

• The processor will run at speed I(t1, t2) during [t1, t2] and schedule all the jobs comprising
w(t1, t2), always running the released, unfinished task with the earliest deadline.

• Then the instance is modified as if the times [t1, t2] didn’t exist. That is, all deadlines di > t1 are
reduced to max(t1, di−(t2−t1)), and all release times ri > t1 are reduced to max(t1, ri−(t2−t1)).

Explain why YDS is optimal with respect to the objective of minimizing the maximum of all times t
of the power used at time t. Hint: There is a very simple proof. The purpose of this problem is just
to get you to understand the YDS algorithm.

3. Express the energy minimization problem as a convex program, and then use the KKT conditions to
show that YDS also produces an energy optimal schedule. Below find a review of the KKT conditions
and a few hints.

KKT Conditions: Consider a convex program

min f0(x)

fi(x) ≤ 0 i = 1, . . . , n

Assume that this program is strictly feasible, that is, there is some point x where fi(x) < 0 for
i = 1, . . . , n. Assume that the fi are all differentiable. Then a necessary condition for a solution x be
be optimal is the existence of a Lagrangian multiplier λi associated with each function fi(x) such that:

fi(x) ≤ 0 i = 1, . . . , n (1)

λi ≥ 0 i = 1, . . . , n (2)

λifi(x) = 0 i = 1, . . . , n (3)

∇f0(x) +

n∑
i=1

λi∇fi(x) = 0 (4)
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Hint: To state the energy minimization problem as a convex program, break time into intervals t0, . . . tm
at release times and deadlines of the tasks. Why can you assume that the processor runs at constant
speed throughout any such interval? Introduce a variable xi,j that represents the work done on task
j during time [ti, ti+1]. The (interval indexed) program has as its objective energy, and two types of
constraints: that every job is run enough, and that the xi,j ’s are positive. Associate a dual variable
δj with the constraint saying that job j must be finished, and γi,j with the constraint that xi,j ’s is
positive. You will need to find settings of the dual variables so that the primal solution produce by
YDS satisfies the KKT conditions. Complementary slackness will be useful.

4. Consider the following online algorithm OA and show that it is O(1)-competitive with respect to energy
using the standard potential function under the simplifying assumption that all jobs have the same
deadline. Conceptually the analysis for arbitrary deadlines is the same, just more notation heavy. Some
review and copious hints follow. Don’t worry about optimizing/minimizing the competitive ratio.

Algorithm OA: Maintain the invariant that at all times t, the task with the earliest deadline is run
at speed maxt w(t)/t, where w(t) is the unfinished work that has deadline within the next t units of
time. An alternative description is that OA’s schedule for the future is always the optimal energy YDS
schedule based on the current state.

Review of Amortized Local Competitiveness: Let Ga(t) and Go(t) be the objective value (en-
ergy in this problem) accumulated by an online algorithm A and optimal up to time t, respectively. To
prove that an online scheduling algorithm A is c-competitive using an amortized local competitiveness
argument, it suffices to give a potential function Φ(t) such that the following conditions hold.

Boundary condition: Φ is zero before any job is released and Φ is non-negative after all jobs are
finished.

Completion condition: Φ does not increase when either the algorithm or the adversary completes
a job.

Arrival condition: For all job arrivals, Φ does not increase.

Running condition: At any time t when no job arrives or is completed,

dGa(t)

dt
+

dΦ(t)

dt
≤ c · dGo(t)

dt
(5)

Integrating these conditions over time one gets that Ga−Φ(0)+Φ(∞) ≤ c·Go. Informally the standard
potential function is the future cost to the online algorithm if no more jobs arrive and if the remaining
work for each job is how far the online algorithm is behind on that job.

Some notation: Let t be the time until the common deadline. Let wa be the amount of unfinished work
OA has, and wo be the amount of unfinished work that optimal has. Let sa be the speed on OA and
so be the speed of optimal. Note that all of wa, wo, sa and so are functions of t, which we suppress
for notational simplicity.

(a) Why is OA’s future cost if no more jobs arrive equal to ts2
a, and equal to w2

a/t? Thus the standard
potential function is Φ = β[max(0, wa − wo)]2/t, for some constant β.

(b) Why does Φ satisfy the boundary, completion and arrival conditions? So let us turn to the running
condition for the rest of the problem.

(c) Why is so ≥ wo/t?

(d) Why is dGa(t)
dt

= s2
a? Why is dGo(t)

dt
= s2

o?

(e) Why does the running condition obviously hold when wo ≥ wa? So from now on let us assume
wa > wo.

(f) What is dΦ(t)
dt

? Be very careful about the signs when you differentiate, it is easy to make sign
errors.
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(g) Now prove the running condition for some constant c using the facts that sa = wa/t, wa−wo ≤ wa,
so ≥ wo/t, and Young’s inequality that ab ≤ a2/2 + b2/2.

5. Here we give another online algorithm PD using the online primal dual technique. Your goal is to show
using dual fitting that PD is 4-competitive. A review and copious hints follow. We can think of this
problem as being modeled by the following convex program

min
∑
t

(∑
j

xjt

)2

(6)

subject to
∑
t

xjt ≥ 1 j = 1, . . . , n

where xjt denotes the extent to which job j is run at time t. Here we are assuming without loss of
generality that each job has one unit of work. Note that an online algorithm can view the constraints
as arriving online.

The Lagrangian dual of the primal is then

g(λ) = min
x�0

(∑
j

λj +
∑
t

(∑
j

xjt

)2

−
∑
j,t

λj xjt

)
(7)

One can think of the dual problem as having the same instance as the primal, but where jobs are
allowed to be assigned to extents less than unit. This is compensated for in the objective function: in
addition to the load cost

∑
t

(∑
j xjt

)α
as in the primal, a fixed cost of λj is paid for each job j, and

a payment (or negative cost) of λj is obtained for each unit of job j assigned.

Online PD Algorithm Description: Now the algorithm works as follows when a new job j arrives:
until a unit fraction is scheduled, job j is scheduled on all feasible times for which the increase in the
cost will be the least. More formally, the value of all the primal variables xjt for all the times t that
minimize 2

∑
i≤j xit are increased until all the work from job j is scheduled. Let x̃ denote the final

value of the xjt variables for the online algorithm.

Now, for the purpose of analysis, let λ̂j to be half the rate of increase of the objective value when
algorithm PD assigned the last infinitesimal portion of job j, and then let x̂ be the value of the
minimizing x variables in g(λ̂)

(a) (Warmup) Show that if there is a common deadline for all jobs that the algorithm PD and the
algorithm OA always are running at the same speed.

(b) (Warmup) Give an instance where PD and OA will run at different speeds at some times.

(c) Express the value of λ̂j in terms of the variables x̃i,t, where t is some time that the algorithm PD
runs j.

(d) Give a greedy algorithm to compute g(λ̂). Give the values of the x̂jt variables computed by this

algorithm in terms of the λ̂j terms. Hint: Only one variable of the form x̂∗t will be positive. Call
this variable x̂ψ(t)t.

(e) What is special about the job ψ(t) for the algorithm PD? That is, if you watched PD’s execution,
how could you identify the job ψ(t)?

(f) Show that
∑
j λ̂j is at least half of the cost of the algorithm PD. Hint:

∑
j λ̂j =

∑
j,t λ̂j x̃jt.

Previously, you determined how to relate the λ̂ terms to the x̃ terms.

(g) Show that
∑
t

(∑
j x̂jt

)2

−
∑
j,t λ̂j x̂jt is equal to minus one quarter of the cost of the algorithm

PD. Hint: Use the fact that you know how to express the x̂ terms in terms of the λ̂ terms, which
in turn you know how to relate to the x̃ terms.

(h) Put all this together to conclude that the algorithm PD is 4-competitive.
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