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Motivation: Moore’s Gap

• Moore’s Law: Transistor density doubles every 18-24 
months.

• Computer performance has not kept pace over the last 10 
years due to the prohibitive cost of cooling such a high 
density of switches.  The result is “Moore’s Gap”.

• One possible partial solution: Near Threshold Computing



Transistors 101

• The building blocks of computers

• Acts as a switch when supplied 
with a high voltage

• Threshold Voltage: The lowest 
voltage at which the switch works 
(ideally)

• In reality, the probability that the 
switch works depends on the 
difference between the supply and 
threshold voltages.

“Open” 
Switch

“Closed” 
Switch

High Voltage:

Low Voltage:

Open or
Closed?

??

Threshold 
Voltage

Voltage to turn “on”



Traditional Approach to Setting the 
Supply Voltage

• Increase supply voltage so, by the union 
bound over all transistors, no transistor fails.

• Benefits:

– Reliability

– Also speed



Near-Threshold Computing

• Set the supply voltage close 
to the threshold voltage

• Advantage: Save energy per 
transistor

• Disadvantage: Decrease 
reliability per transistor. 
Requires fault-tolerant 
circuits.



Minimizing Energy is a Balancing Act

• Traditional:
– Smaller number of 

transistors 
• nonfault tolerant 

circuit

– Higher energy per 
transistor

• Near-threshold:
– Larger number of 

transistors in a fault 
tolerant

– Lower energy per 
transistor

vs.

SRAM circuits



Current State Of Theory of Energy as a 
Computational Resource: 

Energy vs. Performance Tradeoffs

Performance
Metric

Energy

Design Space

Sweet 
Spot ?



From Transistors to Gates

• Gates are composed of 
resistors and transistors, 
e.g.,
– High Voltage: 1

– Low Voltage: 0

• For simplicity, consider 
gates rather than 
transistors

Two transistor AND gate



• If you wanted to do algorithmic research on 
near-threshold computing, what would you 
have to do first?



•Accuracy
•Realism
•Predictive

Algorithmists’
View of Science/Theory

• Science research tries to model a complex 
system by something simple, accurate, 
amenable to math and predictive. Muthu

Muthukrishnan’s blog

10

•Simplicity
•Amenable to math



Two Modeling Issues

• Relationship between energy and error at a 
gate

• What happens when there is a error



Voltage, Energy, and Error

• Let v be the supply voltage

• Power/Energy = v2

• Error Probability ε = 2-v

• There, error to energy 
function E(ε) = log2 1/ε

• Not crucial



Modeling Errors

• Error type models:
– Toggle

– Stuck-at

– Generally not crucial

• Probability models
– Exact: probability of error is exactly ε

– Bounded: probability of error is adversarially set 
to be in the range [0, ε ]

– Generally not crucial



Example – 3 AND Gates

Each gate fails/toggles independently with 
probability ε

𝜖
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0



• Now what are some interesting research 
questions?



Natural Problem: Finding Minimum 
Energy Circuit (MEC)

• Input: 

– A function/relation F

– Desired error bound δ

• Output: 

– Circuit C that computes F

– Setting of the supply voltage

• Constraint: On all inputs the circuit should be correct 
with probability > 1-δ 

• Objective: Minimize power



Unfortunately…

• This problem is too hard. We don’t have a clue 
how to find small circuits. As hard as P vs. NP.



Natural Fallback Problem: Deciding the 
Right Supply Voltage for a Circuit (MCE)

• Input: 

– Combinatorial circuit

– Desired error bound δ

• Output: 

– Setting of the supply voltage

• Constraint: On all inputs the circuit should be correct 
with probability > 1-δ

• Objective: Minimize power



MCE Problem

Input: Following circuit and δ = .75

• Output:
– ε ≈ .099

– Energy = 3 log2 (1/.099) ≈ 33.39

𝜖 = .099

𝜖 = .099

𝜖 = .099



Obvious Natural Questions

• MEC

– General lower bounds on energy?

– General upper bounds on energy?

– Energy for a random function?

• MCE

– Complexity?

– Approximation ratio of traditional approach?

– Best possible approximation ratio?



Less Obvious Natural Questions

• Can you save energy by making supply 
voltages heterogeneous?

– Does it matter whether you computing a function 
or an injective relation (so you don’t care on some 
inputs)?

– Does it matter the circuit error bound δ is a 
constant or if δ goes to 0 as the circuit size 
increases?



Roadmap

• General bounds

• Approximation for Minimum Circuit Energy 
(MCE)

• Minimum Energy Circuit (MEC) for random 
functions

• Energy savings from allowing heterogeneous 
supply voltages



Previous Work: Fault Tolerant Circuits

• Introduced by von Neumann in 1956: fixed probability 
of error 𝜖

• Upper bound of 𝑂 𝑁 log𝑁 given a faultless circuit of 
size 𝑁.
– Heuristically argued by von Neumann, formalized and 

made more explicit by Dobrushin and Ortyukov (77), 
Pippenger (85), and Gács (05).

• Lower bound of Ω(𝑠 log 𝑠) for functions with sensitivity 
𝑠.
– Dobrushin and Ortyukov (77) published proof containing 

errors, correctly proved by Gács and Gál (94).



Warmup
– Recall δ is given circuit error

– Recall ε is gate error that needs to be determined

– Recall s = number of gates

– Energy E(ε) = log2 1/ε

• Lemma: δ/s ≤ ε ≤ δ

• Proof?

• Corollary: Energy per gate is Ω(1).

• Proof?

• Corollary: Energy per gate is O(log2 δ/s ), which is O(log2 s) if δ is constant.

• Proof?



General Energy Upper Bound

Theorem: Given a circuit C with  n gates that 
computes a relation f (with no failures), and a 
constant δ, the optimal solution to MEC uses 
energy O(n log n).

Proof idea:



General Energy Lower Bound

Theorem: Given  δ and a relation f with sensitivity s, 
the optimal solution to MEC requires  energy Ω(s 
log (s/δ)). 

• The sensitivity of  on an input  is the number of 
bits of  that, if flipped, change the output of . 

• The sensitivity of  is the maximum sensitivity of  
over all inputs.

Proof idea:



Roadmap

• General bounds

• Approximation for Minimum Circuit Energy 
(MCE)

• Minimum Energy Circuit (MEC) for random 
functions

• Energy savings from allowing heterogeneous 
supply voltages



MCE Problem

• Theorem: For constant δ, the traditional 
approach is an θ(log2 s) approximation. 

– Proof: 

– Traditional approach sets gate error ε = 
circuit error bound δ / s

– So traditional approach E = s log2

1/(δ/n)

– Optimal E ≥ s log 2 1/δ since ε ≤ δ



MCE Problem

• Theorem: For constant δ, it is NP-
hard to obtain an o(log2 s) 
approximation.
– Proof: 

• Reduction for gapped version of 3SAT
• NP-hard Gapped 3SAT Problem: 

– Input: Formula F

– If F is satisfiable then the output has to be 
1

– If no assignment can not not satisfy more 
than 15/16 of the clauses of F then the 
output has to be 0



NP-hardness Hardness via Reduction 
From 3SAT

Clause Gates

Tree of 

AND Gates

Input bits
• Consider the natural circuit corresponding to 

formula in conjunctive normal form

– If no assignment can not not satisfy more than 
15/16 of the clauses then AND gates can 
occasionally fault 

• OK to set ε≈ δ

• and hence the power can be a factor of log2 s
less than traditional amount

– If the formula is satisfiable, 

• then the AND gates basically can’t fault on a 
satisfying input, 

• So we need ε ≤ δ / s

• and hence the power is the traditional amount



MCE Problem

• Theorem: It is NP-hard to obtain 
an o(log2 n) approximation even 
for a fixed input.
– Proof: 

• Reduction for gapped version of 3SAT
• NP-hard Gapped 3SAT Problem: 

– Input: Formula F

– If F is satisfiable then the output has to 
be 1

– If no assignment can not not satisfy 
more than 15/16 of the clauses of F 
then the output has to be 0



NP-hardness Hardness via Reduction 
From 3SAT

Clause Gates

Tree of 

AND Gates

Randomize bits
• Consider the natural circuit corresponding 

to formula in conjunctive normal form

– How do you randomize a bit using faulty 
gates?

Input bits



NP-hardness Hardness via Reduction 
From 3SAT

Clause Gates

Tree of 

AND Gates

Randomize bits
• Consider the natural circuit corresponding 

to formula in conjunctive normal form

– How do you randomize a bit using faulty 
gates?

Input bits



NP-hardness Hardness via Reduction 
From 3SAT

Clause Gates

Tree of 

AND Gates

Randomize bits
• Consider the natural circuit corresponding 

to formula in conjunctive normal form

– If  at most 15/16th of the clauses are 
satisfiable

• then many outputs of the clause gates are 
0

• OK if some of the AND gates fail

• OK to set ε≈ δ

• and hence the power can be a factor of 
log2 n less than traditional amount

Input bits



NP-hardness Hardness via Reduction 
From 3SAT

Clause Gates

Tree of 

AND Gates

Randomize bits
• Consider the natural circuit corresponding 

to formula in conjunctive normal form

– If the formula is satisfiable, 

• then the AND gates basically can’t fault on 
the satisfying assignment, 

• So we need ε ≤ δ / s

• and hence the power is the traditional 
amount

Input bits



Take Away Point: Beating the 
Traditional Approach is NP-hard

• Therefore, there is a complexity 
theoretic barrier to 
systematically achieving energy 
savings with near-threshold 
circuits.



Positive Result MCE
• Optimal supply voltage can be computed if 

the circuit is a tree (out-degree of all gates 
is 1).

– Suggests tractability for nearly treelike 
circuits



Roadmap

• General bounds

• Approximation for Minimum Circuit Energy 
(MCE)

• Minimum Energy Circuit (MEC) for random 
functions

• Energy savings from allowing heterogeneous 
supply voltages



• Theorem [Shannon 1949]: Almost all Boolean functions on 
n bits require exponentially sized circuits:

• Proof: 
– There are 2^2n Boolean functions on n bits
– There are only 2j circuits described by j bits

• Thus at most 2k log k circuits of k gates

– Thus in order for 2k log k > 2^2n / 2 then k needs to at least 2n/n

• Theorem: Almost all Boolean functions on n bits require 
exponential energy circuits

• Proof: Why won’t the same proof work as we know you 
need constant energy per gate?



Why Shannon’s Proof Does Not 
Extend: Homogeneous Case

…

OR

AND

AND
AND

Computes Ω
log n

log log n

different functions

0

0
0

𝜖

0
1

2

𝜖 𝜖 𝜖



• Theorem: A circuit C with n inputs and s gates 
can compute at most s 2n different functions.

– Proof: Sufficient to show that on each input I (of 
the 2n inputs), C can only change its output s 
times.

– Let pI(ε) be the probability that C outputs a 1 on 
input I when the gate error is ε

– In order for the output to change pI(ε) has to 
transition from <δ to >(1-δ), or visa versa.



• Theorem: A circuit C with n inputs and s gates can compute 
at most s 2n different functions.

• Proof: Sufficient to show that on each input I (of the 2n

inputs), C can only change its output s times.
• Let pI(ε) be the probability that C outputs a 1 on input I 

when the gate error is ε
• In order for the output to change pI(ε) has to transition 

from <δ to >(1-δ), or visa versa. 
• pI(ε) = Σk ΣG(k, I) ε

k (1-ε)s-k

– k in [0, s] is number of gate failures
– G(k, I) collections of k gates such that when exactly these gates 

fail, the C on I outputs 1

• How often can pI(ε) transition?



• Theorem: Almost all Boolean functions on n 
bits require exponential energy circuits

• Proof: 
– There are 2^2n Boolean functions on n bits

– There are only 2j circuits described by j bits
• Thus at most 2k log k circuits of k gates

• Thus there are at most k 2n different functions that 
each circuit can compute

– Thus in order for 2k log k k 2n > 2^2n / 2 then k 
needs to at least 2n/n



Roadmap

• General bounds

• Approximation for Minimum Circuit Energy 
(MCE)

• Minimum Energy Circuit (MEC) for random 
functions

• Energy savings from allowing heterogeneous 
supply voltages



Homogeneous vs. Heterogeneous 
Supply Voltages

• Homogeneous supply voltages: the error 
probability εg is the same for each gate g

• Heterogeneous supply voltages: each game g may 
have a different error probability εg

• Essentially all results so far would still hold if 
heterogeneous voltages were allowed, although 
sometimes the proof is harder. 



MCE Problem: Homogeneous Supply 
Voltages

Input: Following circuit and δ = .75

• Output:
– ε ≈ .099

– Energy = 3 log2 (1/.099) ≈ 33.39

𝜖 = .099

𝜖 = .099

𝜖 = .099



MCE Problem:
Heterogeneous Supply Voltages

Input: Following circuit and δ = .75

Output:

• ε’s as shown above 

• Energy = 2 log2 (1/.096) + log2 (1/.105) ≈ 33.39

• Better by .1 % compared to optimal homogeneous

𝜖 = .096

𝜖 = .096

𝜖 = .105

ε=.096

ε=.096

ε=.105



• Can you think of a circuit where heterogeneity 
would help save significant energy, and a 
circuit where it wouldn’t?

Low
“Sensitivity”

=
Low Energy

High
“Sensitivity”

=
High Energy

High
“Sensitivity”

=
High Energy



A Case Where 
Heterogeneity Does Not Help

Theorem: For constant 𝛿 ∈ 0,
1

2
, the solutions to MEC and 

HMEC for parity are within a constant.

• Parity has sensitivity 𝑛 so the lower bound says that 
Ω(𝑛 log 𝑛) energy is required.

• This circuit computes the parity 
function:

• It has size 𝑂(𝑛) so the upper bound says 𝑂(𝑛 log 𝑛) energy  
sufficient (and it uses homogeneous failure rates).



A Case Where 
Heterogeneity Does Help

• Relation: The logarithmic supermajority 
relation,  LSR(x) =

– 1 if > n – (log3 n)/2 of the input bits are 1

– 0 if > n – (log3 n)/2 of the input bits are 0

– Don’t care otherwise

• Circuit Computing This Relation: Ternary tree 
of majority gates



Supermajority Circuit

0 1 1 0 0 1 1 1 1Input

Majority Gates

Output

1
0

1

1



Supermajority Circuit

• Root is more “sensitive” to failures.

Low
“Sensitivity”

High
“Sensitivity”



Big Question
• Are there functions/relations where there is an almost 

minimum energy circuit that is homogeneous?

• Are there functions/relations where there is no almost 
minimum energy circuit that is homogeneous?

Low
“Sensitivity”

=
Low Energy

High
“Sensitivity”

=
High Energy

High
“Sensitivity”

=
High Energy



Energy Savings From Heterogeneity

δ = constant δ = 1/poly

Functions Θ(1) for some
O(log2 n) for all

• Θ(log n) for all
functions with linear sized 
circuits

Injective Relations Θ(1) for some
O(log2 n) for all

• Ω(log2 n) for some
• O(log2 n) for relations 

with linear sized circuits

Energy savings  for function/relation F = ratio

Minimum energy used by a homogeneous circuit for F

Minimum energy used by a heterogeneous circuit for F



Energy Savings From Heterogeneity

δ = constant δ = 1/poly

Functions Θ(1) for some
O(log2 n) for all

• Θ(log n) for all
functions with linear sized 
circuits

Injective Relations Θ(1) for some
O(log2 n) for all

• Ω(log2 n) for some
• O(log2 n) for relations 

with linear sized circuits

Proofs?



Ω(log n) Energy Savings For Functions 
when δ = 1/n

• Theorem: For δ = 1/n, and for every function F on 
n input bits with a s gate circuit:
– Every circuit with homogeneous supply voltages that 

computes F uses Ω(n log2 n) energy.

– There is a circuit with heterogeneous supply voltages  
that computes F using O(s log s) energy 

• Note: Ω(log n) energy savings if s=Θ(n)

• Proof: First statement is trivial



Proof: Heterogeneous Circuit Using O(s log s) Energy

• Each of s gates g in error-free circuit is replaced by a gadget:

• ε = constant for these gadgets, so energy Θ(s log s)

• If most of the inputs into the gadget are correct, then most of the 
outputs are correct

• Final majority circuit of size log n with ε = 1/s2, so energy Θ(log3 s)

g
g g g Log s copies 

of g

M M M Majority

…

…



O(log n) Limit on Energy Savings for 
Functions when δ=1/n

Theorem: For any function F whose output depends 
on all n inputs, every heterogeneous circuit that 
computes F  requires Ω(n log n) energy

Proof Idea:  log n copies with constant error per 
copy is the most energy efficient way to get 
aggregate error 1/n

g g

𝛾 𝛾 𝛾

εg
ε’g



Ω(log2 n) Energy Savings For 
Supermajority Relation when δ = 1/n

• Supermajority Relation: Only needs to be correct 
if ¾ majority.

• Theorem: For δ = 1/n,
– Every circuit with homogeneous supply voltages that 

computes the supermajority relation and that uses 
Ω(n log2 n) energy.

– There is a circuit with heterogeneous supply voltages  
that computes the supermajority relation and uses 
O(n) energy 

• Proof: First statement is trivial



Proof: Low Energy Heterogeneous Circuit



Intuition

High
“Sensitivity”

Low
“Sensitivity”



Proof: Low Energy Heterogeneous Circuit

• Module on level k = k copies of FA. Size k2

• ε is small constant

• Number of gates = energy = Σ k=1 … log n  (n/2k) (k2) log 1/εk

• Final level, high energy 

module



Future

• Establish a more complete understanding of 
the power of heterogeneous supply voltages

• Find good algorithmic problems involving 
tradeoffs between energy and fault-tolerance 
in other settings.
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Thanks for listening!


