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Motivation: Moore’s Gap

* Moore’s Law: Transistor density doubles every 18-24
months.

 Computer performance has not kept pace over the last 10
years due to the prohibitive cost of cooling such a high
density of switches. The result is “Moore’s Gap”.

Moore's Law ran smoothly unhil 2002, when the gap belween
perfarmance and gake count starled to appear.

.

* One possible partial solution: Near Threshold Computing



Transistors 101

High Voltage:

The building blocks of computers Low Voltage:

_ _ Voltage to turn “on”
Acts as a switch when supplied
with a high voltage

Threshold
Threshold Voltage: The lowest Voltage Uyt
voltage at which the switch works Gt
(ideally)

In reality, the probability that the 77

switch works depends on the
difference between the supply and
threshold voltages.



Traditional Approach to Setting the
Supply Voltage

* |Increase supply voltage so, by the union
bound over all transistors, no transistor fails.

e Benefits:
— Reliability
— Also speed




Near-Threshold Computing

e Set the supply voltage close
to the threshold voltage
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* Advantage: Save energy per
transistor
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* Disadvantage: Decrease
reliability per transistor.
Requires fault-tolerant
circuits.



Minimizing Energy is a Balancing Act
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 Traditional:
— Smaller number of

— ]

(a) Standard 6-trans

istor design.

transistors
 nonfault tolerant

— Higher energy per
transistor

circuit
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SRAM circuits

(b) A more fault-tolerant 10-transistor design from |[3].

Near-threshold:

— Larger number of
transistors in a fault
tolerant

— Lower energy per
transistor



Current State Of Theory of Energy as a
Computational Resource:
Energy vs. Performance Tradeoffs

Performance

Metric Energy

Sweet
Spot ?

Design Space



From Transistors to Gates

* Gates are composed of Ve

resistors and transistors, ) M)
T1
e.g.,

Transistor

— High Voltage: 1 Y @) L

— Low Voltage: 0 | ouT

B A|our Q-AB

)| O

0 R2
)| O

1

* For simplicity, consider
gates rather than
transistors

Two transistor AND gate



* |f you wanted to do algorithmic research on
near-threshold computing, what would you
have to do first?



Algorithmists’
View of Science/Theory

* Science research tries to model a complex
system by something simple, accurate,

amenable to math and predictive. muthu
Muthukrishnan’s blog

*Accuracy
*Realism Simplicity
Predictive Amenable to math
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Two Modeling Issues

* Relationship between energy and error at a
gate

 What happens when there is a error

inputs inputs inputs inputs

00 10 0 1 ' S

AND gate @ @ @ @
0 0 0 1

ocutput cutput output output



Voltage, Energy, and Error

Let v be the supply voltage

Power/Energy = v?
Error Probability e =2V
There, error to energy

function E(g) = log? 1/¢

* Not crucial
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Near-Threshold Computing:
Reclaiming Moore’s Law
Through Energy Efficient
Integrated Circuits

Future computer systerns promise to achieve an energy reduction of 100 or
more times with memory design, device structure, device fabrication techniques,

and clocking, all optimized for low-voltage operation.

Bitcell Failure Rate
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Modeling Errors

* Error type models:
— Toggle
— Stuck-at
— Generally not crucial

* Probability models
— Exact: probability of error is exactly €

— Bounded: probability of error is adversarially set
to be in the range [0, € |

— Generally not crucial



Example — 3 AND Gates

Each gate fails/toggles independently with

probability €
0
€ o
. 0
1 0 €
€
1




* Now what are some interesting research
guestions?



Natural Problem: Finding Minimum
Energy Circuit (MEC)

Input: SN

- : 2 FER=
— A function/relation F =00 ~\pg
— Desired error bound & @)
Output:

P

— Circuit C that computes F
— Setting of the supply voltage

|ﬁ

Constraint: On all inputs the circuit should be correct
with probability > 1-6

Objective: Minimize power }- ,
| P §’0 ‘
B

1OV




Unfortunately...

* This problem is too hard. We don’t have a clue
how to find small circuits. As hard as P vs. NP.




Natural Fallback Problem: Deciding the
Right Supply Voltage for a Circuit (MCE)

Input:
— Combinatorial circuit Y
— Desired error bound 6

Output:

— Setting of the supply voltage Q

Constraint: On all inputs the circuit should be correct

with probability > 1-6
. [ﬁ/“ y
B

Objective: Minimize power
11UV

P

|0




MCE Problem

Input: Following circuit and 6 =.75

€ = .OD\
)
e =.099
* Qutput: —

— £=.099
— Energy = 3 log? (1/.099) = 33.39




Obvious Natural Questions

* MEC

— General lower bounds on energy?
— General upper bounds on energy?
— Energy for a random function?

* MCE
— Complexity?
— Approximation ratio of traditional approach?
— Best possible approximation ratio?



Less Obvious Natural Questions

* Can you save energy by making supply
voltages heterogeneous?

— Does it matter whether you computing a function
or an injective relation (so you don’t care on some
inputs)?

— Does it matter the circuit error bound 0 is a
constant or if 6 goes to 0 as the circuit size
increases?



Roadmap

General bounds

Approximation for Minimum Circuit Energy
(MCE)

Minimum Energy Circuit (MEC) for random
functions

Energy savings from allowing heterogeneous
supply voltages



Previous Work: Fault Tolerant Circuits

Introduced by von Neumann in 1956: fixed probability
of error €

Upper bound of O(N log N) given a faultless circuit of
size N.

— Heuristically argued by von Neumann, formalized and
made more explicit by Dobrushin and Ortyukov (77),
Pippenger (85), and Gacs (05).

Lower bound of (s log s) for functions with sensitivity

S.

— Dobrushin and Ortyukov (77) published proof containing
errors, correctly proved by Gacs and Gal (94).



Warmup

— Recall 6 is given circuit error

— Recall € is gate error that needs to be determined
— Recall s = number of gates

— Energy E(e) = log? 1/«

Lemma: §/s<e<
Proof?

Corollary: Energy per gate is Q(1).
Proof?

Corollary: Energy per gate is O(log? 6/s ), which is O(log? s) if & is constant.
Proof?



General Energy Upper Bound

Theorem: Given a circuit C with n gates that
computes a relation f (with no failures), and a
constant , the optimal solution to MEC uses
energy O(n log n).

Proof idea:



General Energy Lower Bound

Theorem: Given 6 and a relation f with sensitivity s,
the optimal solution to MEC requires energy Q(s

log (s/d)).

* The sensitivity of on an input is the number of
bits of that, if flipped, change the output of .

* The sensitivity of is the maximum sensitivity of
over all inputs.

Proof idea:



Roadmap

General bounds

Approximation for Minimum Circuit Energy
(MCE)

Minimum Energy Circuit (MEC) for random
functions

Energy savings from allowing heterogeneous
supply voltages



MCE Problem

e Theorem: For constant §, the traditional
approach is an B(log? s) approximation.

— Proof:

— Traditional approach sets gate error € =
circuit error bound 6 / s

— So traditional approach E = s log?

1/(6/n)

— Optimal E>slog?21/6sincee<d



MCE Problem

* Theorem: For constant 0, it is NP-
hard to obtain an o(log? s)
approximation.

— Proof:

* Reduction for gapped version of 3SAT
* NP-hard Gapped 3SAT Problem:
— Input: Formula F

— If Fis satisfiable then the output has to be
1

— If no assignment can not not satisfy more
than 15/16 of the clauses of F then the
output hasto be 0




NP-hardness Hardness via Reduction

From 3SAT

Consider the natural circuit corresponding to
formula in conjunctive normal form

— If no assignment can not not satisfy more than
15/16 of the clauses then AND gates can
occasionally fault

e OKtosetexd

* and hence the power can be a factor of log? s
less than traditional amount

— If the formula is satisfiable,

* then the AND gates basically can’t fault on a
satisfying input,

 Soweneede<d/s
* and hence the power is the traditional amount

Input bits
WAL AV

Clause Gates

Tree of
AND Gates



MCE Problem

* Theorem: It is NP-hard to obtain
an o(log? n) approximation even
for a fixed input.

— Proof:

e Reduction for gapped version of 3SAT
 NP-hard Gapped 3SAT Problem:
— Input: Formula F

— If F is satisfiable then the output has to
be 1

— If no assignment can not not satisfy
more than 15/16 of the clauses of F
then the output has to be O




NP-hardness Hardness via Reduction

From 3SAT

Consider the natural circuit corresponding *

to formula in conjunctive normal form

— How do you randomize a bit using faulty
gates?

Input bits

Randomize bits

VTR

Clause Gates

Tree of
AND Gates



NP-hardness Hardness via Reduction

From 3SAT

Consider the natural circuit corresponding *

to formula in conjunctive normal form

— How do you randomize a bit using faulty
gates?

1 e D DD D P

Input bits

Randomize bits

ARNWATL > NN

Clause Gates

Tree of
AND Gates



NP-hardness Hardness via Reduction
From 3SAT

Consider the natural circuit corresponding p“—Y=—v—7——*
. _ _ Randomize bits
to formula in conjunctive normal form A AN

Input bits

Clause Gates

— If at most 15/16th of the clauses are
satisfiable

Tree of

* then many outputs of the clause gates are AND Gates

0
* OK if some of the AND gates fail
e OKtosetexd

* and hence the power can be a factor of
log? n less than traditional amount



NP-hardness Hardness via
From 3SAT

Consider the natural circuit corresponding *

to formula in conjunctive normal form

— If the formula is satisfiable,

* then the AND gates basically can’t fault on
the satisfying assignment,

e Soweneede<d/s

* and hence the power is the traditional
amount

Reduction

Input bits

Randomize bits
AL v

Clause Gates

Tree of
AND Gates




Take Away Point: Beating the
Traditional Approach is NP-hard

* Therefore, there is a complexity
theoretic barrier to
systematically achieving energy
savings with near-threshold
circuits.

CFRUGAL| NORMAL QIIE®

Sub-
treshoid  NTV  Standard operating range
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Positive Result MCE

* Optimal supply voltage can be computed if
the circuit is a tree (out-degree of all gates

is 1).
— Suggests tractability for nearly treelike
circuits

F

|0




Roadmap

General bounds

Approximation for Minimum Circuit Energy
(MCE)

Minimum Energy Circuit (MEC) for random
functions

Energy savings from allowing heterogeneous
supply voltages



* Theorem [Shannon 1949]: Almost all Boolean functions on
n bits require exponentially sized circuits:
* Proof:

— There are 222" Boolean functions on n bits
— There are only 2! circuits described by j bits
* Thus at most 2kl°8kcircuits of k gates

— Thus in order for 2klogk> 2A2n /9 then k needs to at least 2"/n

e Theorem: Almost all Boolean functions on n bits require
exponential energy circuits

* Proof: Why won’t the same proof work as we know you
need constant energy per gate?



Why Shannon’s Proof Does Not
Extend: Homogeneous Case

1
0 _

VA A

logn
Computes () (log log n) v

different functions




 Theorem: A circuit C with n inputs and s gates
can compute at most s 2" different functions.

— Proof: Sufficient to show that on each input | (of
the 2" inputs), C can only change its output s
times.

— Let p,(€) be the probability that C outputs a 1 on
input | when the gate erroriis €

— In order for the output to change p,(€) has to
transition from <6 to >(1-6), or visa versa.



Theorem: A circuit C with n inputs and s gates can compute
at most s 2" different functions.

Proof: Sufficient to show that on each input | (of the 2"
inputs), C can only change its output s times.

Let p,(€) be the probability that C outputs a 1 on input |
when the gate erroris €

In order for the output to change p,(€) has to transition
from <6 to >(1-6), or visa versa.
— kin [0, s] is number of gate failures

— G(k, 1) collections of k gates such that when exactly these gates
fail, the Con | outputs 1

How often can p,(g) transition?



* Theorem: Almost all Boolean functions on n
bits require exponential energy circuits

 Proof:
— There are 222" Boolean functions on n bits

— There are only 2! circuits described by j bits
* Thus at most 2kloekcircuits of k gates

 Thus there are at most k 2" different functions that
each circuit can compute

— Thus in order for 2klogk 2n > 2A2n /9 then k
needs to at least 2"/n



Roadmap

General bounds

Approximation for Minimum Circuit Energy
(MCE)

Minimum Energy Circuit (MEC) for random
functions

Energy savings from allowing heterogeneous
supply voltages



Homogeneous vs. Heterogeneous
Supply Voltages

* Homogeneous supply voltages: the error
probability €, is the same for each gate g

* Heterogeneous supply voltages: each game g may
have a different error probability €,

e Essentially all results so far would still hold if
heterogeneous voltages were allowed, although
sometimes the proof is harder.



MCE Problem: Homogeneous Supply
Voltages

Input: Following circuit and 6 =.75

€ = .OD\
)
e =.099
* Qutput: —

— £=.099
— Energy = 3 log? (1/.099) = 33.39




MCE Problem:
Heterogeneous Supply Voltages

Input: Following circuit and 6 =.75

@

r@/
Output: —

e g£’sas shown above

* Energy =2 log?(1/.096) + log? (1/.

@7

105) = 33.39

e Better by .1 % compared to optimal homogeneous



* Can you think of a circuit where heterogeneity
would help save significant energy, and a
circuit where it wouldn’t?

High
“Sensitivity”

High Energy

‘Sensitivity”

Low Energy




A Case Where
Heterogeneity Does Not Help

Theorem: For constant § € (O, %), the solutions to MEC and
HMEC for parity are within a constant.

e Parity has sensitivity n so the lower bound says that
(A(nlogn) energy is required.

s

* This circuit computes the parity ° ")
function: ]
0

* |t has size O(n) so the upper bound says O(nlogn) energy
sufficient (and it uses homogeneous failure rates).



A Case Where
Heterogeneity Does Help

e Relation: The logarithmic supermajority
relation, LSR(x) =
— 1 if > n—(log3 n)/2 of the input bits are 1
— 0 if >n—(log3 n)/2 of the input bits are 0
— Don’t care otherwise

* Circuit Computing This Relation: Ternary tree
of majority gates



Supermajority Circuit

Output




Supermajority Circuit

* Root is more “sensitive” to failures.

High
“Sensitivity”

Low
“Sensitivity”




Big Question

Are there functions/relations where there is an almost
minimum energy circuit that is homogeneous?

Are there functions/relations where there is ho almost
minimum energy circuit that is homogeneous?

‘Sensitivity”

Low Energy




Energy Savings From Heterogeneity

Functions

Injective Relations

©(1) for some * O(log n) for all

O(log? n) for all functions with linear sized
circuits

©(1) for some * ((log? n) for some

O(log? n) for all * O(log?n) for relations

with linear sized circuits

Energy savings for function/relation F = ratio

Minimum energy used by a homogeneous circuit for F

Minimum energy used by a heterogeneous circuit for F



Energy Savings From Heterogeneity

Functions

Injective Relations

Proofs?

©(1) for some  O(log n) for all

O(log? n) for all functions with linear sized
circuits

©(1) for some * ((log? n) for some

O(log? n) for all * O(log? n) for relations

with linear sized circuits



QQ(log n) Energy Savings For Functions
when 6 = 1/n

* Theorem: For 6 = 1/n, and for every function F on
n input bits with a s gate circuit:

— Every circuit with homogeneous supply voltages that
computes F uses Q(n log? n) energy.

— There is a circuit with heterogeneous supply voltages
that computes F using O(s log s) energy

* Note: Q(log n) energy savings if s=0(n)

* Proof: First statement is trivial



Proof: Heterogeneous Circuit Using O(s log s) Energy

* Each of s gates g in error-free circuit is replaced by a gadget:

e of g

& =constant for these gadgets, so energy O(s log s)

* If most of the inputs into the gadget are correct, then most of the
outputs are correct

* Final majority circuit of size log n with € = 1/s%, so energy O(log3 s)



O(log n) Limit on Energy Savings for
Functions when 6=1/n

Theorem: For any function F whose output depends
on all n inputs, every heterogeneous circuit that
computes F requires Q(n log n) energy

Proof Idea: log n copies with constant error per
copy is the most energy efficient way to get
aggregate error 1/n




Q(log? n) Energy Savings For
Supermajority Relation when 6 = 1/n

e Supermajority Relation: Only needs to be correct
if % majority.

* Theorem: For 6 =1/n,

— Every circuit with homogeneous supply voltages that
computes the supermajority relation and that uses
Q(n log? n) energy.

— There is a circuit with heterogeneous supply voltages
that computes the supermajority relation and uses
O(n) energy

* Proof: First statement is trivial



Proof: Low Energy Heterogeneous Circuit

X1 X2 X3 Xy Xy Xg X7 Xg




Intuition




Proof: Low Energy Heterogeneous Circuit

Approximate probability of failure:

€

module

L"‘Q‘“ .

SN

Module on level k = k copies of FA. Size k?

€ is small constant

Number of gates = energy =2 ,_; .., (n/2") (k?) log 1/&*

Final level, high energy



Future

e Establish a more complete understanding of
the power of heterogeneous supply voltages

* Find good algorithmic problems involving
tradeoffs between energy and fault-tolerance
in other settings.



Covered Papers:
Thanks to my collaborators

A. Antoniadis, N. Barcelo, M. Nugent, K. Pruhs, and M. Scquizzato. Energy-
efficient circuit design. 5th conference on Innovations in Theoretical
Computer Science (ITCS 2014).

A. Antoniadis, N. Barcelo, M. Nugent, K. Pruhs, and M. Scquizzato.
Complexity-theoretic obstacles to achieving energy savings with Near-
Threshold Computing. 5 International Green Computing Conference
(IGCC 2014).

N. Barcelo, M. Nugent, K. Pruhs, and M. Scquizzato. Almost all functions
require exponential-energy circuits. 40th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2015).

N. Barcelo, M. Nugent, K. Pruhs, and M. Scquizzato. The power of
heterogeneity in Near-Threshold Computing. 6% International Green and
Sustainable Computing Conference (IGSC 2015).



Thanks for listening!
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