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Algebraic Complexity Theory

v’ Algebraic complexity theory: study of computation using
algebraic models

v Main Achievements:

> lower bounds on the complexity (in algebraic models of
computation) of concrete problems

> powerful techniqgues to construct fast algorithms for
computational problems with an algebraic structure

v’ Several subareas:

> high degree algebraic complexity: study of high-degree polynomials
> low degree algebraic complexity: linear forms, bilinear forms,...
In particular matrix multiplication

the main concepts in low degree algebraic complexity theory have been
Introduced for the study of the complexity of matrix multiplication
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Matrix Multiplication

v’ This is one of the most fundamental problems in mathematics
and computer science

v Many problems in linear algebra have the same complexity as
matrix multiplication:

» inverting a matrix

solving a system of linear equations
computing a system of linear equations
computing the determinant

YV V V V

v’ In several areas of theoretical computer science, the best
known algorithms use matrix multiplication:

» computing the transitivity closure of a graph
computing the all-pairs shortest paths in graphs
detecting directed cycles in a graph

exact algorithms for MAX-2SAT

YV V V V



Matrix Multiplication: Trivial Algorithm

[Compute the product of two n x n matrices A and B over a field _H‘]

- _ _ -1 _ _
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n multiplications and (n-1) additions
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\_ k=1 )

Trivial algorithm: n%(2n-1)=0(n3) arithmetic operations
We can do better



Overview of the Lectures

v’ | Fundamental techniques for fast matrix multiplication (1969~1987)

» Basics of bilinear complexity theory: exponent of matrix multiplication,
Strassen’s algorithm, bilinear algorithms

» First technique: tensor rank and recursion

» Second technique: border rank

» Third technique: the asymptotic sum inequality

> Fourth technique: the laser method Lecture 1

v’ | Recent progress on matrix multiplication (1987-~)

currently fastest
> Laser method on powers of tensors s known aigorithm for| -SCUTE 2

» Other approaches matrix multiplication
» Lower bounds
» Rectangular matrix multiplication

v" | Applications of matrix multiplications, open problems |Lecture 3




Handout for the First Part

Fundamental technigues for fast matrix multiplication (1969~1987)

» Basics of bilinear complexity theory: exponent of matrix multiplication,

Strassen’s algorithm, bilinear algorithms

» First technique: tensor rank and recursic

» Second technigue: border rank

[Handout for the first two lectures|
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4.2 Schonhage’s asymptotic sum inequality

Schonhage [9] considered the following tensor:
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We show how the techniques developed so
method, can be applied to obtain the upper
Coppersmith and Winograd [3].

5.1 The first construction by Coppe|

We start with the first construction from Co

Let ¢ be a positive integer, and conside
the field F. Take a basis {xg.....: rq} of U
Consider the tensor

I;aasy 3

5.3 Taking powers of the second construction by Coppersmith and Winograd

Consider the tensor
Ty = Tew @ Tew.

We can write

.J.C\.-;T:' — 400 4 040 | 7004 4 310 | 301 4 p103 | p130 4 p013 | 031 4 220 L 202 | 022
LM it 2
where
400 200 ~ 200
™ =Tcw @ Tew:
7310 _ 7200 o PO | 110 o 200
=Téw @ Tew +Tew @ Tews
220 200 -~ 020 020 - 200 7110 . 110
=" =Tcw @Tcw +Tcw @ Tew + Tew @ Tew.-
7211 _ 200 7011 7011 7200 110 7101 7101 110
" =Tew @ Taw +Tew @ Tew + Taw @ Tew + Tew © Tew:

= . . gL 040 7020 020
and the other 11 terms are obtained by permuting the variables (e.g.. T™" = T&Y @ T&X).
Coppersmith and Winograd [3] showed how to generalize the approach of Section 5.2 to analyze
w50 3
I'é\y- and obtained the upper bound

w < 2.3754770

by solving an optimization problem of 3 variables (remember that in Section 5.2 the optimization problem
had only one variable «).

Since '!'d'\“: gives better upper bounds on w than Tew, a natural question was to consider higher
powers of Tcw. i.e.. study the tensor Ty’ for m > 3. Investigating the third power (i.e., m = 3) was
indeed explicitly mentioned as an open problem in [3]. More that twenty vears later, Stothers showed
that, while the third power does not seem to lead to any improvement, the fourth power does give an
improvement [10]. The cases m = 8, m = 16 and m = 32 have then been analyzed, giving the upper
bounds on w summarized in Table 2.
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Overview of the Lectures

v’ | Fundamental techniques for fast matrix multiplication (1969~1987)

» Basics of bilinear complexity theory: exponent of matrix multiplication,
Strassen’s algorithm, bilinear algorithms

» First technique: tensor rank and recursion

» Second technique: border rank

» Third technique: the asymptotic sum inequality

> Fourth technique: the laser method Lecture 1

v’ | Recent progress on matrix multiplication (1987-~)

» Laser method on powers of tensors Lecture 2

» Other approaches
» Lower bounds
» Rectangular matrix multiplication

v" | Applications of matrix multiplications, open problems |Lecture 3




Algebraic Model of Computation

[Compute the product of two n x n matrices A and B over a field _FJ

Model #1: algebraic circuits
v gates: +, —,X,+ (operations on two elements of the field)

v'inputs: g;, b; (2n® inputs)
v’ output: ¢; = Xj—q ayby

Model #2: straight-line programs (sequence of instructions)

[ C(n) = size of the shortest straight-line program computing the product ]

Informally: minimal number of arithmetic operations needed to compute the product
)

/Straiqhtforward algorithm:

C(n) < n*(2n — 1) using the formulas ¢;= X3_; ayby;
N

for instance C(2) < 12 (8 multiplications and 4 additions)



The Exponent of Matrix Multiplication

.
Compute the product of two n x n matrices A and B over a field _FJ
\.

C(n) = size of the shortest straight-line program computing the product J

N entries need to be computed

Exponent of matrix multiplication

OW=inf{a|C(n) =0n*)} Obviously,2<w <3

equivalently:
M =inf{a | C(n) < n“%forall large enough n}

/Straiqhtforward algorithm: h

C(n) < n*(2n — 1) using the formulas ¢;= X3_; ayby;

C(n) =013

.




The Exponent of Matrix Multiplication

Compute the product of two n x n matrices A and B over a field _FJ

C(n) = size of the shortest straight-line program computing the product J

Exponent of matrix multiplication

OW=inf{a|C(n) =0n*)} Obviously,2<w <3

equivalently:
M =inf{a | C(n) < n“%forall large enough n}

Two remarks:

v this is an inf and not a min since the exponent may be achieved by
an algorithm with complexity of the form “O(n®*¢) for any €>0"

v @ may depend on the field (but can depend only on its characteristic)



History of the main improvements on the

exponent of square matrix multiplication

Upper bound Year | Authors

w=<3

w <281 1969 Strassen

w<2.79 1979 Pan

w <278 1979 | Bini, Capovani, Romani and Lotti
w < 2.55 1981 | Schonhage

w < 2.53 1981 Pan

w < 2.52 1982 Romani

w < 2.50 1982 | Coppersmith and Winograd
w < 2.48 1986 Strassen

w < 2.376 1987 | Coppersmith and Winograd
w < 2.374 2010 | Stothers

w < 2.3729 2012 | Vassilevska Williams

w< 23728639 |2014 LG

Whati1s w? w = 27?



History of the main improvements on the

exponent of square matrix multiplication

Upper bound Year | Authors

w=<3

w < 2.81 1969 Strassen | Rank of a tensor

w<2.79 1979 Pan Border rank of a tensor
w<2.78 1979 Bini, Capovani, Romani and Lotti

w < 2.55 1981 | Schonhage |
w < 2.53 1981 | Pan Asymptotic
w < 2.52 1982 | Romani _sum
w < 2.50 1982 | Coppersmith and Winograd | '"eauality
w < 2.48 1986 Strassen

w < 2.376 1987 | Coppersmith and Winograd

w < 2.374 2010 | Stothers Laser

w < 2.3729 2012 | Vassilevska Williams method
w<2.3728639 |2014 | LG




History of the main improvements on the

exponent of square matrix multiplication

Remark: the recent algorithms are not practical

Upper
PP b{O(n2-55), but with a large constant in the big-O notation J*

1969 Strassen

1979 | Pan
1979 | Bini, Capovani, Romani and Lotti

1981 | Schonhage |
1981 Pan Asymptotic

1982 Romani - sum
1982 | Coppersmith and Winograd | '"eauality
1986 Strassen
1987 | Coppersmith and Winograd
2010 | Stothers Laser
w < 2.3729 2012 | Vassilevska Williams method
w < 2.3728639 |[2014 | LG




The Exponent of Matrix Multiplication

Compute the product of two n x n matrices A and B over a field FJ

C(n) = size of the shortest straight-line program computing the product J

Exponent of matrix multiplication

®W=inf{a|C(n) =0(n%) }

In 1969, Strassen gave the first sub-cubic time algorithm for matrix
multiplication

Complexity: O(n%8%) arithmetic operations
C(n) = O(n=8Y)

mp O <23]



Strasseﬂ’s alg()rithm (for the product of two 2x2 matrices)

4 )
a,« ad
Goal: compute the product of A = ( 11 12) by B= (bll blz)
S (21 422 byy byy/
1. Compute: m1 = a11 * (bi2 — ba2),

mo = (a11 + a12) * baa,

m3 = (a21 + a22) * b11,
mg4 = ag2 * (ba1 — b11),
ms = (a11 + a22) * (b11 + b22),
me = (a12 — a22) * (b21 + ba2),

m7 = (a11 — a21) * (b11 + b12) __entries of the output matrix

2. Output: —ma + m4 + ms + me =/c11,

mi + mo

ms3 + my

m1 — M3 + ms — My =\C22.

7 multiplications C(2) <25

18 additions/substractions . .
worse than the trivial algorithm

(8 multiplications and 4 additions)



Strassen’s a |go rithm  (for the product of two 2kx2k matrices)

4 )

Goal: compute the product of A= (All Alz) by B = (311 B12)
A21 AZZ

\_

Aij! Bij: matrices of size 2k1x 2k1

1. Compute: M; = A1 * (B2 — Ba2),

M7 = (A11 — A21) * (B11 + Bi2).

2. Output: —Ms + My + Ms + Mg = Ch1,

My — M3 + Ms — M7 = Caa.

7 multiplications of two 2% x 2k1 matrices
» done recursively using Strassen’s algorithm

18 additions/substractions of two 21 x 2k1 matrices
» 22(-1) scalar operations for each



Strassen’s a |g0 rithm  (for the product of two 2kx2k matrices)

4 )

Goal: compute the product of A= (All Alz) by B = (311 312)
A21 AZZ

.

Observation: the complexity of Strassen’s algorithm is dominated by
the number of (scalar) multiplications

Complexity of this algorithm

T(2K) =7 x T(2%1) + 18 x 22(~1)

= 0(7%)
. K log,7
\ =0((2)™") )
Conclusion: C(25) = O((2K)'°%" ) =) | o <log,7 =2.807...
_ [Strassen 69
Remember:

7 multgs NPT
} Exponent of matrix multiplication

18ad| ®=inf{a|Cn)=0(n?*)} fices
» 221 scalar operations for each




Bilinear Algorithms

A bilinear algorithm for matrix multiplication is an algebraic algorithm of the form:

tis the bilinear complexity of the algorithm

1. Compute m; = (linear combination of the a;;’s) * (linear combination of the b;;’s)

m; = (linear combination of the a;;’s) * (linear combination of the b;;’s)

2. Each entry ¢;; is computed by taking a linear combination of mq, ..., my

i.e., we do not allow products of the form a;; * a;/; or b;; * b;/

[

CPl(n) = bilinear complexity of the best bilinear algorithm
computing the product of two n x n matrices




Bilinear Algorithms

By generalizing Strassen’s recursive argument we obtain:

Proposition 1

Let m and ¢ be any positive integers. Suppose that there exists a bilinear
algorithm that computes the product of two m X m matrices with bilinear

complexity t. Then

w < log,, (t).

\_

In short: C*(m) <t = w < log, (¢)

Example (Strassen’s bound): C**(2) < 7 = w < log,(7)

Proof: CP(m) <t = C*"(mP) < tF forany k > 1
and tF = (mF)losm(®)

= C(mk) = 0 (tk) “‘complexity dominated by the
number of multiplications”

“recursion”

Exponent of matrix multiplication

O=inf{a|Cn)=0n%} |MP| ©=inf{a|C(n)=0n))




Overview of the Lectures

v’ | Fundamental techniques for fast matrix multiplication (1969~1987)

» Basics of bilinear complexity theory: exponent of matrix multiplication,
Strassen’s algorithm, bilinear algorithms

» First technique: tensor rank and recursion

» Second technique: border rank

» Third technique: the asymptotic sum inequality

> Fourth technique: the laser method Lecture 1

v’ | Recent progress on matrix multiplication (1987-~)

» Laser method on powers of tensors Lecture 2

» Other approaches
» Lower bounds
» Rectangular matrix multiplication

v" | Applications of matrix multiplications, open problems |Lecture 3




The tensor of matrix multiplication

The tensor corresponding to the multiplication of an m x n matrix by

an n X p matrix Is w0 m
>4>4>4az’k®bkj®cij-

i=1 j=1 k=1




The tensor of matrix multiplication

The tensor corresponding to the muItipIication of an m X n matrix by
an n X p matrix Is

(m,n, p) > > >jazk®bk3®cw

1=1 7=1 k=1




The tensor of matrix multiplication

The tensor corresponding to the muItipIication of an m X n matrix by
an n X p matrix Is

(m,n, p) > > >jazk®b/@®cw

1=1 7=1 k=1

intuitive interpretation: * this is a formal sum



The tensor of matrix multiplication

The tensor corresponding to the muItipIication of an m X n matrix by
an n X p matrix Is

(m,n, p) > > >jazk®b/@®cw

1=1 7=1 k=1

intuitive interpretation: * this is a formal sum

> when the a;r and the by are replaced by the
corresponding entries of matrices, the

- n b
coefficient of ¢;; becomes D k—1 Qikbr;



The tensor of matrix multiplication

The tensor corresponding to the muItipIication of an m X n matrix by
an n X p matrix Is

(m,n, p) > > >jazk®b/@®cw

1=1 7=1 k=1

intuitive interpretation: * this is a formal sum

> when the a;r and the by are replaced by the
corresponding entries of matrices, the

- n b
coefficient of ¢;; becomes D k—1 Qikbr;

why this is useful: * one object instead of mp objects



The tensor of matrix multiplication

The tensor corresponding to the multiplication of an m X n matrix by
an n X p matrix Is

() = 3233 an © by ®es

1=1 7=1 k=1

intuitive interpretation: * this is a formal sum

> when the a;r and the by are replaced by the
corresponding entries of matrices, the

- n b
coefficient of ¢;; becomes D k—1 Qikbr;

why this is useful: * one object instead of mp objects

> shows the symmetries between the two input matrices
and the output matrix (see later)



The tensor of matrix multiplication

The tensor corresponding to the muItipIication of an m X n matrix by
an n X p matrix Is

(m,n, p) > > >jazk®bk3®cw

1=1 7=1 k=1




The tensor of matrix multiplication

The tensor corresponding to the multiplication of an m X n matrix by
an n X p matrix Is

() = 3233 an © by ®es

1=1 7=1 k=1
g J

Rank (slightly informal definition):

a
R({m,n,p)) = minimal t such that (m,n,p) can be written
as the sum of ¢ terms of the form

(lin. comb. of a;;) ® (lin. comb. of b;;) @ (lin. comb. of ¢;;).




The tensor of matrix multiplication

The tensor corresponding to the multiplication of an m X n matrix by
an n X p matrix Is

mnp > > >1aik®bk]‘®ci]‘.

1=1 7=1 k=1 one term
\_ /

Rank (slightly informal definition): R({m,n,p)) < mnp

~

a
R({m,n,p)) = minimal t such that (m,n,p) can be written
as the sum of ¢ terms of the form

(lin. comb. of a;;) ® (lin. comb. of b;;) @ (lin. comb. of ¢;;).




The tensor of matrix multiplication

\_

The tensor corresponding to the multiplication of an m X n matrix by
an n X p matrix Is

) =33y

i=1 j=1 k=1

aik & bij & cyj

one term
J

Rank (slightly informal definition):

R((m,n,p)) < mnp

\_

e
R({m,n,p)) = minimal t such that (m,n,p) can be written

as the sum of ¢ terms of the form

(lin. comb. of a;;) ® (lin. comb. of b;;) @ (lin. comb. of ¢;;).

~

(2,2,2) =a11 ® (bi2 — b22) ® (c12 + c22)
+ (@11 + a12) ® b ® (—c11 + c12)
+ (@21 + a22) ® b11 ® (c21 — c22)
+ a2 ® (b21 — b11) ® (c11 + c21)
+ (@11 + a22) ® (b1 + b22) ® (c11 + c22)
+ (a12 — a22) ® (b21 + b2z) ® c11
+ (@11 — a21) ® (b11 + b12) ® (—c22)

Strassen’s algorithm gives
R((2,2,2)) <7



The tensor of matrix multiplication

1. Compute: m1 = a11 * (bi2 — b22),
mo = (a11 + a12) * baa,
m3 = (a21 + a22) * b11,
m4 = a22 * (ba1 — b11),
ms = (a11 + a22) * (b11 + b22),
me = (a12 — a22) * (b21 + b22),

mr7 = (a11 — a21) * (b11 + b12).

2. Output: —mgo + my + ms + me = c11,
m1 + ma = C12,
m3 4 M4 = C21,

mi1 — M3 + ms — My = C22.

of an m X n matrix by

lik @ bij & cij.

one term
J
R((m,n,p)) < mnp
e written )

bij) &) (|In comb. of Cij)-)

.

(2,2,2) =a11 ® (bi2 — b22) ® (c12 + c22)
+ (@11 + a12) ® b ® (—c11 + c12)
+ (@21 + a22) ® b11 ® (c21 — c22)
+ a2 ® (b21 — b11) ® (c11 + c21)
+ (@11 + a22) ® (b1 + b22) ® (c11 + c22)
+ (a12 — a22) ® (b21 + b2z) ® c11
+ (@11 — a21) ® (b11 + b12) ® (—c22)

Strassen’s algorithm gives
R((2,2,2)) <7



The tensor of matrix multiplication

1. Compute: m1 = ai1 * (bi2 — ba2),
mo = (a11 + a12) * baa,

of an m X n matrix by

m3 = (a21 + a22) * b11,

mg = agg * (b21 — b11),
ms = (a11 + a22) * (b11 + baz), ik @ brj & ¢yl

me = (a12 — a22) * (ba1 + b22), one term

J

R((m,n,p)) < mnp

mr7 = (a11 — a21) * (b11 + b12).

2. Output: —mgo + my + ms + me = c11,

(m1+m2 =c12) he written
ms3 + mg4 = C21,

mi1 —m3 4+ ms — My = C22. bij) R (Iin. comb. of Cz'j)-)

(2,2,2) =a11 ® (bi2 — baz) ® (C12)t c22)

~

.

+ (a11 + a12) @ by ® (—cna + Strassen’s algorithm gives
+ (a1 + a22) ® b1y ® (co1 — €22) R((2,2,2)) <7

+ a2 ® (b21 — b11) ® (c11 + c21)

+ (@11 + a22) ® (b1 + b22) ® (c11 + c22)
+ (a12 — a22) ® (b21 + b2z) ® c11

+ (@11 — a21) ® (b11 + b12) ® (—c22)




The tensor of matrix multiplication

1. Compute: m1 = ai1 * (bi2 — ba2),
mo = (a11 + a12) * baa,

m3 = (a21 + a22) * b11,
m4 = a22 * (ba1 — b11),
ms = (a11 + a22) * (b11 + b22),
me = (a12 — a22) * (b21 + b22),

mr7 = (a11 — a21) * (b11 + b12).

2. Output: —mgo + my + ms + me = c11,
(’ml + M2 = C12,

ms3 + m4 = C21,

mi1 — M3 + ms — My = C22.

of an m X n matrix by

lik @ bij & cij.

one term
J
R((m,n,p)) < mnp
e written )

bij) &) (|In comb. of Cij)-)

.

(2,2,2) =a11 ® (bi2 — baz) ® (C12)t c22)
+ (@11 + a12) @ bas ® (—c11 +€12)
+ (@21 + a22) ® b11 ® (c21 — c22)
+ a2 ® (b21 — b11) ® (c11 + c21)
+ (@11 + a22) ® (b1 + b22) ® (c11 + c22)
+ (a12 — a22) ® (ba1 + b22) ® c11
+ (@11 — a21) ® (b11 + b12) ® (—c22)

Strassen’s algorithm gives
R((2,2,2)) <7
rank = bilinear complexity



The tensor of matrix multiplication

\_

The tensor corresponding to the multiplication of an m X n matrix by
an n X p matrix Is

) =33y

i=1 j=1 k=1

aik & bij & cyj

one term

J

Rank (slightly informal definition):

R((m,n,p)) < mnp

\_

e
R({m,n,p)) = minimal t such that (m,n,p) can be written

as the sum of ¢ terms of the form

(lin. comb. of a;;) ® (lin. comb. of b;;) @ (lin. comb. of ¢;;).

~

(2,2,2) =a11 ® (bi2 — b22) ® (c12 + c22)
+ (@11 + a12) ® b ® (—c11 + c12)
+ (@21 + a22) ® b11 ® (c21 — c22)
+ a2 ® (b21 — b11) ® (c11 + c21)
+ (@11 + a22) ® (b1 + b22) ® (c11 + c22)
+ (a12 — a22) ® (b21 + b2z) ® c11
+ (@11 — a21) ® (b11 + b12) ® (—c22)

Strassen’s algorithm gives
R((2,2,2)) <7
rank = bilinear complexity



The tensor of matrix multiplication

\_

an n X p matrix Is

) =33y

Definition 1

The tensor corresponding to the multiplication of an m X n matrix by

aik & bij & cyj

1=1 7=1 k=1 one term
J
Rank (slightly informal definition): R((m,n,p)) < mnp
4 )
R({m,n,p)) = minimal t such that (m,n,p) can be written

\_

as the sum of ¢ terms of the form

(lin. comb. of a;;) ® (lin. comb. of b;;) @ (lin. comb. of ¢;;).

(2,2,2) =a11 ® (b12 — b22) ® (c12 + c22)
+ (@11 + a12) ® b ® (—c11 + c12)
+ (@21 + a22) ® b11 ® (c21 — c22)
+ a22 @ (ba1 — b11) ® (€11 + c21)
(g1 -+ Go0) R (b1 + boo) R (11 4 oo

w = inf {@ R((n,n,n)) = O(no‘)}

LB g i ZT ) = oIl T o IZ)] =\ ~ZzZ)

Strassen’s algorithm gives
R((2,2,2)) <7
rank = bilinear complexity



Properties of this tensor

The tensor corresponding to the muItipIication of an m X n matrix by
an n X p matrix Is

(m,n, p) > > >jazk®b/@®cw

1=1 7=1 k=1

Property (Equation (3.2))

(m,n,p) ® (m',n’,p') = (mm’,nn’, pp’)




Properties of this tensor

The tensor corresponding to the multiplication of an m X n matrix by
an n X p matrix Is

() = 3233 an © by ®es

1=1 7=1 k=1

Property (Equation (3.2))




Properties of this tensor

The tensor corresponding to the multiplication of an m X n matrix by
an n X p matrix Is

() = 3233 an © by ®es

1=1 7=1 k=1

Property (Equation (3.2))




Properties of this tensor

Definition 1
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The first Inequality: applications

R((m,n,p)) <t = (mnp)“’/8 <t

Strassen 1969: R((2,2,2)) < 7= w < 2.81
R((2,3,3)) < 15 —> w < 2.82

({
({
Laderman 1976: R((3,3,3)) <23 = w < 2.86
Pan 1978: R((70,70,70)) < 143640 —= w < 2.795...
u
(

sing “trilinear aggregation”
Pan 1979: R((7,7,7)) <7 = w < 2.781...



History of the main improvements on the

exponent of square matrix multiplication

Upper bound Year | Authors

w <3

w < 2.81 1969 | Strassen

W< 2.79 1979 | Pan rank and Theorem 1
w < 2.78 1979 | Bini, Capovani, Romani and Lotti
w < 2.55 1981 | Schonhage

w < 2.53 1981 | Pan

w < 2.52 1982 | Romani

w < 2.50 1982 | Coppersmith and Winograd
w < 2.48 1986 | Strassen

w < 2.376 1987 | Coppersmith and Winograd
w < 2.373 2010 | Stothers

w < 2.3729 2012 | Vassilevska Williams

w < 2.3728639 | 2014 | LG
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Definition 2

Let T" be a tensor over (U, V,W). The rank of T', denoted R(T"), is the
minimal integer t for which 1" can be written as

/dim(U) dim (V) dim (W) I
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tensor of rank 1



Overview of the Lectures

v’ | Fundamental techniques for fast matrix multiplication (1969~1987)

» Basics of bilinear complexity theory: exponent of matrix multiplication,
Strassen’s algorithm, bilinear algorithms

» First technique: tensor rank and recursion

» Second technique: border rank

» Third technique: the asymptotic sum inequality

> Fourth technique: the laser method Lecture 1

v’ | Recent progress on matrix multiplication (1987-~)

» Laser method on powers of tensors Lecture 2

» Other approaches
» Lower bounds
» Rectangular matrix multiplication

v" | Applications of matrix multiplications, open problems |Lecture 3




The border rank of a tensor (Section 4.1)

Let A be an indeterminate
F{A] denotes the ring of polynomials in A with coefficients in ¥

Let T be a tensor over (U, V,W). The border rank of T', denoted R(T"),
is the minimal integer ¢ for which there exist an integer ¢ > 0 and

a tensor 17" such that 17" can be written as
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AT = Z Z Agy Ly X Z styv 2y Z Ysw Rw + )\C+1T,/7
s=1 v=1 w=1

for some constants gy, Bsv, Vsw IN F[A].
\_ J




The border rank of a tensor (Section 4.1)

Let A be an indeterminate
F{A] denotes the ring of polynomials in A with coefficients in ¥

Definition 3

Let T be a tensor over (U, V,W). The border rank of T', denoted R(T"),
is the minimal integer ¢ for which there exist an integer ¢ > 0 and

a tensor 17" such that 17" can be written as

¢ [l /dim(U) dim (V) dim (W) I
T = Z ( Z asuxu) X ( Z styv) X ( Z %wzw) +)\C+1T//,
s=1

for som?éants sy s Bsvs Vsw 1N FIAL
\_ J
v

lin. comb. of the z,'s lin. comb. of the y,'s lin. comb. of the z,,’s




The border rank of a tensor (Section 4.1)

Let A be an indeterminate
F{A] denotes the ring of polynomials in A with coefficients in ¥

Let T be a tensor over (U, V,W). The border rank of T', denoted R(T"),
is the minimal integer ¢ for which there exist an integer ¢ > 0 and

a tensor 17" such that 17" can be written as

¢ [ /dim(U) dim (V) dim (W) |
S| DS EY i SIS Y 1 Sieae | B Grie
s=1 | v=1 w=1 |
for some constants oy, Bsv, Ysw in

-




The border rank of a tensor (Section 4.1)

Let A be an indeterminate
F{A] denotes the ring of polynomials in A with coefficients in ¥

Let T be a tensor over (U, V,W). The border rank of T', denoted R(T"),
is the minimal integer ¢ for which there exist an integer ¢ > 0 and

a tensor 17" such that 17" can be written as

¢ [ /dim(U) dim (V) dim (W) |
S| DS EY i SIS Y 1 Sieae | B Grie
s=1 | v=1 w=1 |
for some constants oy, Bsv, Ysw in

-

Obviously, R(T) < R(T') for any tensor T
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IBini = a11 ®b11 ®c11 4+ a12 ® ba1 ® c11 + a11 @ b2 D c12
+ @12 @ byo ® c12 + a21 ® b11 ® ca1 + a91 ® b1a @ co99o
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where T' =(a12 + Aa11) @ (bra + Abaz) @ c12
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and T" = 11 & b22 X Cc19 + a11 X bll X Co1 + (CL12 + a21) X b21 X C29.
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Construction by Bini, Capovani, Romani and Lotti (1979): R(7Tgin) < 5

IBini = a11 ®b11 ®c11 4+ a12 ® ba1 ® c11 + a11 @ b2 D c12
+ @12 @ byo ® c12 + a21 ® b11 ® ca1 + a91 ® b1a @ co99o

AN gy = T + \°T" c=1 =5

Let T be a tensor over (U, V,W). The border rank of T', denoted R(T"),
is the minimal integer ¢ for which there exist an integer ¢ > 0 and

a tensor 17" such that 1" can be written as
¢ [ /dim(U) dim (V) dim (W) |

AT = Z Z Agy Ly X Z styv 2y Z Ysw Rw + )\C+1T,/7
s=1 v=1 w=1

for some constants gy, Bsv, Vsw IN F[A].
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Construc

tion by Bini, Capovani, Romani and Lotti (1979): R(7gi,i) < 5

IBini =

a11 Qb1 @ c11 +a12 Qb2 @ c11 + a11 Q b2 @ c12
+ @12 @ byo ® c12 + a21 ® b11 ® ca1 + a91 ® b1a @ co99o

AN gy = T + \°T" c=1 =5

Definition 3

Let T be
Is the m

a tensor 17" such that 1" can be written as

a tensor over (U, V,W). The border rank of T', denoted R(T),
inimal integer ¢ for which there exist an integer ¢ > 0 and

S—=

¢ [ /dim(U) dim (V) dim (W) |
)\CT:Z ( Z asuxu) %Y ( 2_:1 styv) X ( 2_:1 %wzw) +)\C+1T//,

1

T/

-

for some constants gy, Bsv, Vsw IN F[A].

that can be computed with ¢ multiplications over [F| )]
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T/ — \¢T — )\c—l—lT//

we get T' be computing 17" and keeping the terms
with the lowest degree in A

one can think of numerically (e.g., for F = R) taking A\ very small and
computing \=T" =T — \NT" =T

“porder rank = complexity of approximate bilinear algorithms”
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Border rank v.s. rank

Obviously, R(T') < R(T') for any tensor T

Proposition 2
There exists a constant a such that R(7T) < a x R(T) for any tensor T

Remark: the constant a actually depends on the ¢ in the definition of R(T)
(for instance: a = 3 for ¢ = 1)

Consequence: an approximate bilinear algorithm can be converted into
an (usual) bilinear algorithm of “similar” complexity



Border rank v.s. rank

Proposition 2
There exists a constant a such that R(T") < a x R(T) for any tensor T.

Proof outline (for ¢ = 1):




Border rank v.s. rank

Proposition 2
There exists a constant a such that R(T") < a x R(T) for any tensor T.

Proof outline (for ¢ = 1):

assume that

t dim(U) dim(V) dim (W)
AT = Z Z Qgy Loy | & Z ﬁsvyv & Z Ysw Fw - )\2T”
s=1 u=1 v=1 w=1

for some tensor 17" and some constants gy, Bsu, Vsw iN FA]



Border rank v.s. rank

Proposition 2
There exists a constant a such that R(T") < a x R(T) for any tensor T.

Proof outline (for ¢ = 1):

assume that

t dim(U) dim(V) dim (W)
AT = Z Z Qgy Loy | & Z ﬁsvyv & Z Ysw Fw - )\2T”
s=1 u=1 v=1 w=1

for some tensor 17" and some constants gy, Bsu, Vsw iN FA]

e, R(T) <t



Border rank v.s. rank

Proposition 2
There exists a constant a such that R(T") < a x R(T) for any tensor T.

Proof outline (for ¢ = 1):

we get 1" be computing the coefficient of X\ in T

T' = \T — \*T"

assume that
¢t | /dim(U) dim(V) dim(W) |

AN = Z Z Qg Ly | & Z ﬁsvyv =Y Z Ysw cw _|_)\2T”
s=1 u=1 v=1 w=1

for some tensor 17" and some constants gy, Bsu, Vsw iN FA]

e, R(T) <t



Border rank v.s. rank

Proposition 2
There exists a constant a such that R(T") < a x R(T) for any tensor T.

Proof outline (for ¢ = 1):

we get 1" be computing the coefficient of X\ in T

T' = \T — \*T"

assume that
¢t | /dim(U) dim(V) dim(W) |

AN = Z Z Qg Ly | & Z ﬁsvyv =Y Z Ysw cw _|_)\2T”
s=1 u=1 v=1 w=1

for some tensor 17" and some constants gy, Bsu, Vsw iN FA]
. asu:a[o] +(X[1])\+()é[2])\2—|—
e, R(T) <t

SU SU SU



Border rank v.s. rank

Proposition 2
There exists a constant a such that R(T") < a x R(T) for any tensor T.

Proof outline (for ¢ = 1):

we get 1" be computing the coefficient of X\ in T

T' = \T — \*T"

assume that
¢t | /dim(U) dim(V) dim(W) |
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Border rank v.s. rank

Proposition 2

There exists a constant a such that R(T") < a x R(T) for any tensor T.

Proof outline (for ¢ = 1):

T' = \T — \*T"

assume that

¢
AT = Z Z Aoy Loy
s=1

we get 1" be computing the coefficient of X\ in T

¢ dim (U) dim (V) dim (W) i
T=> ( Z ozw) ® ( > 652}%) ® ( > vL?lzw>
s=1 v=1 w=1
¢ dim(U) dim (V) dim (W) i
+ ( > aL?lxu) ® ( > ﬁLﬂm) ® ( > v!ilzw)
s=1 u=1 v=1 w=1

M@

dim (U) dim (V) dim (W) i
Z anzy | @ DY Bw o D Y
= v=1 w=1

(dlm(V) dim(W) |

Y Bavo | @ D vewzw | | +XT”
1 w=1

for some tensor 17" and some constants gy, Bsu, Vsw iN FA]

e, R(T) <t

oy = 0 + I\ + a2IN2 +

SU SU SU
similarly for B4, and g



Border rank v.s. rank

Proposition 2
There exists a constant a such that R(T") < a x R(T) for any tensor T.

Proof outline (for ¢ = 1):

we get 1" be computing the coefficient of X\ in T

/! N2 t [ [dim(U) dim(V) dim (W) ]
17 = AL = AT r-y (z agﬂxu)®(z /syy@)®< > ,ygg;,%>
s=1 u=1 v=1 w=1
¢ [ /dim(U) dim (V) dim (W) i
R(T) <3xt || ;¥ (z a[;zixu) : ( S ﬁLﬂ%) ®( 3 vﬁ%zw)
s=1 u=1 v=1 w=1
¢ [ /dim(U) dim (V) dim (W) i
+Y 1Y ez e D B e D Az
assuine that s=1 |\ w=l v=1 w=1 |
¢t | /dim(U) dim(V) dim(W) |
2
AT = Z Z Qgy Ly | &S Z ﬁsvyv 0 Z Y sw <w + A T"
s=1 u=1 v=1 w=1

for some tensor 17" and some constants gy, Bsu, Vsw iN FA]
Mgy = a[O] + Oé[l])\ + a[Q])\Q € ...

SU SU SU

e, R(T) <t

1 similarly for B4, and g
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Construction by Bini, Capovani, Romani and Lotti (1979):

IBini = a11 ®b11 ®c11 4+ a12 ® ba1 ® c11 + a11 @ b2 D c12
+ @12 @ byo ® c12 + a21 ® b11 ® ca1 + a91 ® b1a @ co99o
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Two copies of TBini X + X = X
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Construction by Bini, Capovani, Romani and Lotti (1979):

IBini = a11 ®b11 ®c11 4+ a12 ® ba1 ® c11 + a11 @ b2 D c12
+ @12 @ byo ® c12 + a21 ® b11 ® ca1 + a91 ® b1a @ co99o

R(Tgini) <5
ail a2 b11 D1
I Rgini represents X
Bini TEPFESEN <a21 O) (bz1 b22) .
Two copies of Tgin; % + % — >
(3,2,2)

Consequence: R((3,2,2)) < 10
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Proposition 2
There exists a constant a such that R(7T") < a x R(T) for any tensor T

R((m,n,p)) <t = (mnp)“/* <t

Consequence: R((3,2,2)) < 10 = R((3,2,2)) <a x 10

Th1

— 12¥/3 < g x 10

— w < 4.106... (with a = 3)

R((3,2,2)) <10 —> R (<3, 2, 2)EN

L1 LER
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) < 10Y (submultiplicativity of the border rank)

R((3%, 2V 2V)) < a x 10V
12N/3 < g x 10N
12¢/3 < a'/N x 10 (for any N > 1)

12¢/3 < 10

(take N — 00)

w < 2.779...

[Bini et al. 79]




Proposition 2

There exists a constant a such that R(7T") < a x R(T) for any tensor T

The constant a can be “taken
R({m,n,p)) <t = (mnp)“/3 <t || asone”when deriving an upper

bound on w using Theorem 1
Prop 2
Consequence: R((3,2,2)) <10 — R{torzzrr—~wr—o

Th1

— 129/3 < g x 10
— w < 4.106... (with a = 3)

R((3,2,2)) <10 = R (\(3, 2, 2>®N.) < 10N (submultiplicativity of the border rank)
(3N, 2N 2N

R((3%, 2V 2V)) < a x 10V

12N«/3 < g x 10N

12¢/3 < a'/N x 10 (for any N > 1)

12¢/3 <10 (take N — o0)

w < 2.779...| [Binietal 79]
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Proposition 2

There exists a constant a such that R(7T") < a x R(T) for any tensor T

The constant a can be “taken
R({m,n,p)) <t = (mnp)“/3 <t || asone”when deriving an upper

bound on w using Theorem 1

R((m,n,p)) <t = (frrmp)“’/3 <t

R((3,2,2)) <10 = R ((3,2,2>®N) < 10N (submultiplicativity of the border rank)
(3N, 2N 2N
R((3%, 2V 2V)) < a x 10V

12Nw/3 < g x 10V
199/3 < g1/N % 10

12¢/3 <10 (take N — o0)
w < 2.779...| [Binietal 79]
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Proposition 2
There exists a constant a such that R(7T") < a x R(T) for any tensor T

The constant a can be “taken
R({m,n,p)) <t = (mnp)*/® <t || asone”when deriving an upper
bound on w using Theorem 1

R((m,n,p)) <t == (mnp)*/> <t

ﬁ(<3,2,2(here we used a'/V — 1

\_

der rank)

= R((3N |V, 2M)) < a x 10V

12Nw/3 1k g x 108
12¢/3 Qlal/N x 10

12¢/3 §“10 (take N — 00)
w < 2.779...| [Binietal 79]
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Proposition 2
There exists a constant a such that R(7T") < a x R(T) for any tensor T

R({m,n,p)) <t = (mnp)“/3 <t || asone”when deriving an upper

The constant a can be “taken

bound on w using Theorem 1

R((m,n,p)) <t == (mnp)*/> <t

((3,2,2

=
here we used a!/
\this Is the major source of inefficiency in Theorem 2

N

— 1 Jer rank)

J

Prop 2

—

Th 1

Ll

R((3",
:_2Nw/3

:_2w/3 <

V2N <a x 10V

Ca x 10N

:_2w/3 <

al/N % 10

“10 (take N — o0)

w < 2.779...| [Binietal 79]




History of the main improvements on the

exponent of square matrix multiplication

Upper bound Year | Authors

w <3

w < 2.81 1969 | Strassen

w < 2.79 1979 | Pan Border rank and Theorem 2
w < 2.78 1979 | Bini, Capovani, Romani and Lotti
w < 2.55 1981 | Schonhage

w < 2.53 1981 | Pan

w < 2.52 1982 | Romani

w < 2.50 1982 | Coppersmith and Winograd

w < 2.48 1986 | Strassen

w < 2.376 1987 | Coppersmith and Winograd

w < 2.373 2010 | Stothers

w < 2.3729 2012 | Vassilevska Williams

w < 2.3728639 | 2014 | LG




Overview of the Lectures

v’ | Fundamental techniques for fast matrix multiplication (1969~1987)

» Basics of bilinear complexity theory: exponent of matrix multiplication,
Strassen’s algorithm, bilinear algorithms

» First technique: tensor rank and recursion

» Second technique: border rank

» Third technigue: the asymptotic sum inequality

> Fourth technique: the laser method Lecture 1

v’ | Recent progress on matrix multiplication (1987-~)

» Laser method on powers of tensors Lecture 2

» Other approaches
» Lower bounds
» Rectangular matrix multiplication

v" | Applications of matrix multiplications, open problems |Lecture 3




The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3

4
15chon = Z az-@bj X Cij +Zuk®vk®w
i =1 k=1




The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
TSchon: Z ai®bj®cij+2uk®vk®w
1,7=1 k=1

3 3
Z a; X bj ® c;j = <3, 1, 3> 3x1 matrix by 1x3 matrix Z a;1 @ b1 @ ¢4

i,j=1 ,=1

4 4
Z ur @ Ui @w =2 (1,4,1)  1x4 matrix by 4x1 matrix Z Utk & Vg1 & W1
k=1 k=1



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

TSchon —

3

2

2,J=1

4
a; ®bj @ cij + Y Uk @V @ W
k=1

3

1,7=1

k=1

4
Z ur @ v @ w = (1,4,1)  1x4 matrix by 4x1 matrix

3
Z a; X bj ® c;j = <3, 1, 3> 3x1 matrix by 1x3 matrix Z a;1 @ b1 @ ¢4

1,7=1

4
E Uk @ Vg1 @ W1y
k=1



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
TSchon: Z ai®bj®cij+2uk®vk®w
1,7=1 k=1

3 3
Z a; X bj ® c;j = <3, 1, 3> 3x1 matrix by 1x3 matrix Z a;1 @ b1 @ ¢4

i,j=1 ,=1

4 4
Z ur @ v @ w = (1,4,1)  1x4 matrix by 4x1 matrix Z Uik @ Vg1 & Wiy
k=1

k=1

— E(TSchon) < 13



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3

1,7=1

4
TSchon: Z ai®bj®cij+2uk®vk®w

k=1

3

1,7=1

3
Z a; X bj ® c;j = <3, 1, 3> 3x1 matrix by 1x3 matrix Z a;1 @ b1 @ ¢4

1,7=1

4 4
Z ur @ v @ w = (1,4,1)  1x4 matrix by 4x1 matrix Zulk & Vg1 & Wi

k=1

k=1

— E(TSchon) < 13

Schénhage showed that R(Tschon) < 10



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3

4
1Schon = Z a; @b; @ ci; + Z U X Vi QW R(Tschon) < 10
i,7=1 k=1




The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; @b; @ ci; + Z U ® Vi @ W R(Tschon) < 10
i,7=1 k=1

N Tschon = T 4+ AN°T"




The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; @b; @ ci; + Z U ® Vi @ W R(Tschon) < 10
i,7=1 k=1

N Tschon = T 4+ AN°T"

where T’ =(a; + Muy) @ (by + Mv1) @ (w + Aeqy)
(a1 + Aug) @ (ba + Av2) ® (w + A’cr2)
(ag + Muz) @ (by + Avz) ® (w + Ncaq)
(ag + Auyg) ® (by + Avy) @ (w + Acao)
(a3 — Auy — Aug) @ by @ (w + Ne31)
+ (ag — Aus — Aua) @ by ® (w + N2es0) 10 multiplications
+ a1 ® (bg — Avp — Avg) ® (w + )\2613)
+ as ® (bs — Az — Mvg) @ (w + Aco3)
+ a3 ® bz @ (w+ Ac33)

— (a1 +as+az) ® (by + by + b3) @ w

) ®
) ®

and 7" is some tensor



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; & bj X Cij _A_ Z U @ Vi QW E(TSchon) < 10
i =1 k=1

the sum is direct (the two terms do not share variables)



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3
1Schon = Z a; & bj X Cij N Z Uk & Vg QW E(TSchon) < 10
ij=1 k=1

the sum is direct (the two terms do not share variables)

formally:
3

Y a;®b;®cij is a tensor over (Uy, Vi, W1)

1,7=1
Ui = spanf{ai,as,a3} Vi = span{by,bs, b3} Wi = span{cii,...,c33}

Zuk Ruvp ®w is a tensor over (Us, Vo, Ws)
k=1 Uy = spanfuq, ..., ugy Vo =span{vy,...,va} Woy = span{w}

Tschon 1S a tensor over (U @ Uy, Vi @ Vo, W1 & Wo)



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; & bj X Cij _A_ Z U @ Vi QW E(TSchon) < 10
i =1 k=1

the sum is direct (the two terms do not share variables)
3

4
Zai®bj®cij§<3,1,3> Zuk®vk®w%<l,4,1>
ij=1 k=1



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; & bj X Cij _A_ Z U @ Vi QW E(TSchon) < 10
i =1 k=1

the sum is direct (the two terms do not share variables)
3

4
Zai®bj®cij§<3,1,3> Zuk®vk®w%<l,4,l>
ij=1 k=1

TSchon = <37 17 3> D <1747 1>



The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; & bj X Cij —A_ Z U @ Vi QW E(TSchon) < 10
ij=1 k=1

the sum is direct (the two terms do not share variables)
3

4
Zai®bj®cz-j%<3,1,3> Zuk®vk®w§<l,4,l>
ij=1 k=1

TSchon = <37 17 3> D <1747 1>

Theorem (the asymptotic sum inequality, special case) [Schénhage 1981]




The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; & bj X Cij —A_ Z U @ Vi QW E(TSchon) < 10
ij=1 k=1

the sum is direct (the two terms do not share variables)
3

4
Zai®bj®cz-j%<3,1,3> Zuk®vk®w§<l,4,l>
ij=1 k=1

TSchon = <37 17 3> D <1747 1>

Theorem (the asymptotic sum inequality, special case) [Schénhage 1981]

Consequence: 9¥/3 4 4w/3 < 1()




The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; & bj X Cij —A_ Z U @ Vi QW E(TSchon) < 10
ij=1 k=1

the sum is direct (the two terms do not share variables)
3

4
Zai®bj®cz-j%<3,1,3> Zuk®vk®w§<l,4,l>
ij=1 k=1

TSchon = <37 17 3> D <1747 1>

Theorem (the asymptotic sum inequality, special case) [Schénhage 1981]

R({m1,n1,p1) ® (m2,na, p2)) <t => (minip1)*/3 + (mangp2)“/3 <t

Consequence: 9¢/3 4 4¥/3 < 10 = w < 2.59...




The asymptotic sum inequality (Section 4.2)

Schoénhage’s construction (1981):

3 4
Tschon = Z a; & bj X Cij —A_ Z U @ Vi QW E(TSchon) < 10
ij=1 k=1

the sum is direct (the two terms do not share variables)
3

4
Zai®bj®cz-j%<3,1,3> Zuk®vk®w§<l,4,l>
ij=1 k=1

TSchon = <37 17 3> D <1747 1>

Theorem (the asymptotic sum inequality, special case) [Schénhage 1981]

R({m1,n1,p1) ® (m2,na, p2)) <t => (minip1)*/3 + (mangp2)“/3 <t

Consequence: 9¢/3 4 4¥/3 < 10 = w < 2.59...

Using a variant of this construction, Schénhage finally obtained | w < 2.54...




History of the main improvements on the

exponent of square matrix multiplication

Upper bound Year | Authors

w <3

w < 2.81 1969 | Strassen

w < 2.79 1979 | Pan

w < 2.78 1979 | Bini, Capovani, Romani and Lotti
w < 2.5 1981 | Schonhage | Asymptotic sum inequality
w < 2.53 1981 | Pan

w < 2.92 1982 | Romani

w < 2.50 1982 | Coppersmith and Winograd

w < 2.48 1986 | Strassen

w < 2.376 1987 | Coppersmith and Winograd

w < 2.373 2010 | Stothers

w < 2.3729 2012 | Vassilevska Williams

w < 2.3728639 | 2014 | LG



The asymptotic sum inequality

Theorem 3 (the asymptotic sum inequality, general form) [Schonhage 1981]

k k
R @ (M, ni,pi) | <t = Z(mm@pi)w/g <t

1=1 1=1

Theorem (the asymptotic sum inequality, special case) [Schénhage 1981]

R({m1,n1,p1) ® (ma,n2,pa2)) <t = (minip1)*/® + (mangps)*/3 <t

Consequence: 9¢/3 4 4¥/3 < 10 = w < 2.59...

Using a variant of this construction, Schénhage finally obtained | w < 2.54...




The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline




The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:

tY > R (((m1,n1,p1) ® (mg,na, pa))®™)



The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:

t" >R (((m1,n1,p1) @ <m27n2’p2>)®N)

~ (N
- = (Z <a> <m1,n1,p1>®a & <m2,n27p2>®(Na)>

a=0



The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:

tY > R (((m1,n1,p1) ® (mg,na, pa))®™)

N
ki (Z @ (my,n1,p1)%" @ (mo, n2,p2>®(Na)>
a=0

direct sum of (]C\[) copies of <m1,n1,p1>®a ® (ma, o, P2)



The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:

t" >R (((m1,n1,p1) @ <m27n2’p2>)®N)

N
—E( <m1,n1,101>®a® <m2,n27p2>®(Na)>
a=0

direct sum of (‘2[) copies of <m1,n1,p1>®a ® (ma, o, P2)

N
N a N —a a N —a a N—a
(35 (%) (===

a=0



The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:

t" >R (((m1,n1,p1) @ <m27n2’p2>)®N)

N
—E( <m1,n1,101>®a® <m2,n27p2>®(Na)>
a=0

direct sum of (‘2[) copies of <m1,n1,p1>®a ® (ma, o, P2)

N
N a N —a a N —a a N—a
O )
4

Ty




The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:

t" >R (((m1,n1,p1) @ <m27n2’p2>)®N)

N
—E( <m1,n1,101>®a® <m2,n27p2>®(Na)>
a=0

direct sum of (‘2[) copies of <m1,n1,p1>®a ® (ma, o, P2)

N
N a N —a a N —a a N—a
O )

a=0\ _/
Ta

By definition of w we have (V) > & ({ ()", ()", (1))

a a a




The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:

t" >R (((m1,n1,p1) @ <m27n2’p2>)®N)

N
=R ( (m1,m1,p1)%" ® (ma, n2,p2>®(Na)>

a=0

i-(use k¥ > R((k, k, k)) )

N
=R (Z <]Z> <m%m§N_a), n;Na),p(fpgNa)>)

a=0\ _/

T,

By definition of w we have () Ly ({20077

a a a



The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:
t" > R (((m1,n1,p1) @ (ma,na, p2))®)
N
=R ( (m1,n1,p1)%" ® (ma, n2,p2>®(Na)>

N dire{use Jowte > E(<k7 k’ k’>) for a small >@
- (3 () =) )

a=0\ _/
Ta

By definition of w we have () Ly ({20077

a a a



The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

Proof outline

Take the N-th power, for some large N:
t" > R (((m1,n1,p1) @ (ma,na, p2))®)
N
=R ( (m1,n1,p1)%" ® (ma, n2,p2>®(Na)>

N dire{use Jowte > E(<k7 k’ k’>) for a small >@
- (3 () =) )

a=0\ _/
Ta

By definition of w we have () Ly ({20077

a a a

N 1/w . N 1/w . N 1/w .
E(Ta)>E<<(a> mgm () a0 (V) g



a a

(]C\[) multiplications “give” <(]§)1/w7 (N)l/w, (N)l/w>

Take the N—t' power, for some large N:

tN > | (((m1,n1,p1) @ <m27n2’p2>)®N)

— | KZ <m1,n1,p1>®a 2 (mQ,ng,m}@(N“))
dire{use kw+€ > E(Ufg, k’, k’>) for a small >@

N
0 (N—a N—a) 4 (N—a
——ﬁ% ( g <a> <m1m§ ), ng ),plp; )>)

a=0\ _/
Ta

) of w we have (V) Ly ({20077

By definitio

a a a

N 1/w . N 1/w . N 1/w .
E(Ta)>E<<<a> mgm () a0 (V) g




(]C\[) multiplications “give” <(];[)1/w, (

a (N—a)
, TV T

)

(]C\Z) copies of <m§‘m Y

()7

N

a

, P1D

)o (o

Take the N—t'
tN >

=1

By definitio

R(T.) > R

bower, for some large N-:

((<m17 n17p1> D <m2, n27p2>)
N

KZ <m1’n1’p1>®a ) <m2an27p2>®(Na)>
a=0

dire{use k,w—l—E Z E(<k’ k’ ]{j>) for a small ¢ >@

N_
m%mé @)

>

) A

>1/w

Ta

1 of w we have (]Z) i

({(

)0
> “give”

(N—a) | pclbpéN—a)

(N—a)

(N—a)

®N)

a (N—a)

R ({70707



(]C\[) multiplications “give” <(];[)1/w, (

N

a

(N—a)

N - a N a
(") copies of <m1m , niNs

N_
 pipSN

()70

o (o

Take the N—t'
tN >

=1

-

By definitio

R(T) >R

bower, for some large N-:

((<m17 n17p1> D <m2, n27p2>)
N

KZ <m1’n1’p1>®a ) <m2an27p2>®(Na)>
a=0

dire{use k,w—l—E Z E(<k’ k’ ]{j>) for a small ¢ >@

N —a
m%mg )

>

) A

>1/w

Ta

1 of w we have (]Z) i

({(

)0

Hgive”

(N—a) (N=a) a (N—a)

7p1p2

®N)

a (N—a)

R ({70707



() multiplications “give” { ()", (¥)", (¥

a

a

)1

)

T4
(]C\Z) copies of <mcfmgN_a),n‘fngN_a),pCfpéN_a)> “give”
<(]C\L,)1/w7 (]Z)l/wa (];f)l/w> 2 <m‘fm§N_a),n‘fngN_a),p‘fpgN_a)>

Take the N—t' power, for some large N:

tN > | (((m1,n1,p1) @ <m27n2’p2>)®N)

By definitio

R(T) >R

(

A3 ()¢

a=0\

N_
m%mg @)

N
=1 KZ (my1,n1,p1)°" @ (mo, n27p2>®(Na)>
a=0

dire{use k.w+€ Z E(<k’ k’ ]{j>) for a small ¢ >@

Y

(N—a)

_TL2 y

P1

apgN_a) >)

J/

1 of w we have (]Z) i

Ta

B (((

N
a

a

)




() multiplications “give” { ()", (¥)", (¥

a

a

)1

)

T4
(]C\Z) copies of <mcfmgN_a),n‘fngN_a),pCfpéN_a)> “give”
<(]C\L,)1/w7 (]Z)l/wa (];f)l/w> 2 <m‘fm§N_a),n‘fngN_a),p‘fpgN_a)>

Take the N—t' power, for some large N:

tN > | (((m1,n1,p1) @ <m27n2’p2>)®N)

By definitio

tN > R(T,) > R

(

A3 ()¢

a=0\

N_
m%mg @)

N
=1 KZ (my1,n1,p1)°" @ (mo, n27p2>®(Na)>
a=0

dire{use k.w+€ Z E(<k’ k’ ]{j>) for a small ¢ >@

Y

(N—a)

_TL2 y

P1

apgN_a) >)

J/

1 of w we have (]Z) i
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a
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The asymptotic sum inequality

Theorem (the asymptotic sum inequality, special case)




The asymptotic sum inequality

Theorem (the asymptotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangpe)*/3 <t

R((m,n,p)) <t = (mnp)*/* <t

1a

MY v (N L vmay (N (vea)
a mymsy ) a ning ) a P1Po

Th1 N 3/
— N > (( ) (mlnlpl)a(mZnQPZ)Na>

a

|

For any a: tV > R(T.) >



The asymptotic sum inequality

Theorem (the asymptotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangpe)*/3 <t

a (N—a)

R((m,n,p)) <t = (mnp)“/3 <t e 2)

1a

Iny
N\
—

N\
2 =
N
=
&

3

—Q

1\33/\

i

S
N
e =
N
=
&

S

—Q

S

N —

i
N
=
N
Z
&

i

—Q

S

i

S
\/
N~

For any a: tV > R(T.) >

Thi N2/ 3
— - << ) (m1nlpl)a(m2n2p2)NG> N (]C\L[) (<m1”1p1)a(m2n2p2)N_a)W/

a



The asymptotic sum inequality

Theorem (the asymptotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

N 1/w . N 1/w . N 1/w »
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w/3

Thi N\ 2/ 3
— - <( ) (’m1n1pl)a(m2n2p2)NG> N (JC\L[) ((mlnlpl)a(m2n2p2)N_a)W/

a

Summingoverall a € {0,..., N} :

N
(N +1) xtY > ((mlnlpl)w/g T (m2n2p2)w/3)



The asymptotic sum inequality

Theorem (the asymptotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t
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Summingoverall a € {0,..., N} :



The asymptotic sum inequality

Theorem (the asymptotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

f 1/N N
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Summing over all a €[{0,..., N} :

(N +1) x tV >

Taking power 1/N:  t > (mlnlpl)w/S + (mzngpz)w/?’ QED



The asymptotic sum inequality

Theorem (the asymptotic sum inequality, special case)

R({m1,n1,p1) ® (ma,n2,pa)) <t => (minip1)*/® + (mangps)*/3 <t

s N
here we used (N + 1)1/Y — 1

this is the major source of inefficiency in the asymptotic sum inequality

~ ) w7 /
N 1/w . N 1/w . N 1/w »
For any a: t > R(T.) R<<<a) mimg ), (a) ning" ), (a) pip N =)
w/3
Th1 N 3/w ) » v )
=t > ( a) (mlnlpl) (m2n2p2)N > = (a) ((m1n1p1)a(m2n2p2)N_“) /3

Summing over all a €[{0,..., N} :

(N +1) x tV >

Taking power 1/N:  t > (mlnlpl)w/S + (mgngpg)w/?’ QED



History of the main improvements on the

exponent of square matrix multiplication

Upper bound Year | Authors

w <3

w < 2.81 1969 | Strassen

w < 2.79 1979 | Pan

w < 2.78 1979 | Bini, Capovani, Romani and Lotti
w < 2.55 1981 | Schonhage Asymptotic sum inequality
w < 2.53 1981 | Pan

w < 2.92 1982 | Romani

w < 2.50 1982 | Coppersmith and Winograd

w < 2.48 1986 | Strassen

w < 2.376 1987 | Coppersmith and Winograd

w < 2.373 2010 | Stothers

w < 2.3729 2012 | Vassilevska Williams

w < 2.3728639 | 2014 | LG




Overview of the Lectures

v’ | Fundamental techniques for fast matrix multiplication (1969~1987)

» Basics of bilinear complexity theory: exponent of matrix multiplication,
Strassen’s algorithm, bilinear algorithms

» First technique: tensor rank and recursion

» Second technique: border rank

» Third technique: the asymptotic sum inequality

> Fourth technique: the laser method Lecture 1

v’ | Recent progress on matrix multiplication (1987-~)

» Laser method on powers of tensors Lecture 2

» Other approaches
» Lower bounds
» Rectangular matrix multiplication

v" | Applications of matrix multiplications, open problems |Lecture 3
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