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Overview of the Lectures
 Fundamental techniques for fast matrix multiplication

 Basics of bilinear complexity theory: exponent of matrix multiplication, 
Strassen’s algorithm, bilinear algorithms

 First technique: tensor rank and recursion
 Second technique: border rank
 Third technique: the asymptotic sum inequality
 Fourth technique: the laser method

 Recent progress on matrix multiplication

 Applications of matrix multiplications, open problems

Lecture 2

Lecture 1

Lecture 3

(1969~1987)

(1987~)

 Laser method on powers of tensors
 Other approaches
 Lower bounds
 Rectangular matrix multiplication
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Lower Bounds for Matrix Multiplication

𝑅𝑅 2,2,2 ≥ 7 [Landsberg 2005] 

𝑅𝑅 𝑛𝑛,𝑛𝑛,𝑛𝑛 ≥ 3
2
𝑛𝑛2 + 1

2
n − 1 [Lickteig 1984]

𝑅𝑅 𝑛𝑛,𝑛𝑛,𝑛𝑛 ≥ 3
2
𝑛𝑛2 [Strassen 1983]

𝑅𝑅 𝑛𝑛,𝑛𝑛,𝑛𝑛 ≥ 2𝑛𝑛2 − 𝑛𝑛 [Landsberg, Ottaviani 2011]

𝑅𝑅 𝑛𝑛,𝑛𝑛,𝑛𝑛 ≥ 3
2
𝑛𝑛2 − 2 [Bürgisser, Ikenmeyer 2011]

𝑅𝑅 2,2,2 ≥ 7 [Hopcroft and Kerr 1971] [Winograd 1971]

𝑅𝑅 𝑛𝑛,𝑛𝑛,𝑛𝑛 ≥ 5
2
𝑛𝑛2 − 3𝑛𝑛 [Bläser 1999] 

𝑅𝑅 𝑛𝑛,𝑛𝑛,𝑛𝑛 ≥ 3𝑛𝑛2 − 4𝑛𝑛2/3 − 𝑛𝑛 [Landsberg 2012] 
𝑅𝑅 𝑛𝑛,𝑛𝑛,𝑛𝑛 ≥ 3𝑛𝑛2 − 2 2𝑛𝑛2/3 − 3𝑛𝑛 [Massaranti, Raviolo 2012] 

using geometric complexity theory



Lower Bounds for Matrix Multiplication
Theorem ([Raz 2002]) 

Any arithmetic circuit that computes the product of two n x n real 
matrices has size Ω(n2 log n), as long as the circuit does not use 
products with field elements of absolute value larger than 1.

Space-Time tradeoff (see, e.g., [Abrahamson 1991])

For any algebraic algorithm computing the product of two                    
n x n matrices using S space and T time we have ST = Ω(n3).

Any subcubic-time algorithm for matrix multiplication 
has superlogarithmic space complexity.

Trivial algorithm: T = O(n3)  S = O(log n)

Strassen algorithm: T = O(n2.81)  S = O(n2)

same quadratic space complexity for all the other fast algorithms we studied
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Rectangular Matrix Multiplication

× =n

m

m

n

n

n

m multiplications and (m-1) additions

Trivial algorithm: n2(2m-1)=O(mn2) arithmetic operations

cij = �
𝑘𝑘=1

𝑚𝑚

aikbkj for all 1 ≤ i ≤ n and 1 ≤ j ≤ n

Compute the product of an n x m matrix A and an m x n matrix B

aij bij cij



Rectangular Matrix Multiplication

Compute the product of an n x m matrix A and an m x n matrix B

Compute the product of an m x n matrix A and an n x n matrix B

Compute the product of an n x n matrix A and an n x m matrix B

same algebraic complexity (as seen yesterday) 

 linear algebra problems
 all-pairs shortest path problems
 dynamic computation of the transitive closure of a graph
 detecting directed cycles in a graph
 computational geometry (colored intersection searching)
 computational complexity (circuit lower bounds)

 The problem (with m ≠ n) appears as the bottleneck in many applications:



Exponent of Rectangular Matrix Multiplication

Compute the product of an n x nk matrix A and an nk x n matrix B

Exponent of rectangular matrix multiplication

= inf 𝜏𝜏 𝑂𝑂 𝑛𝑛𝜏𝜏ω(1,1,k) this product can be computed using              arithmetic operations

for any fixed k≥0

Exponent of rectangular matrix multiplication

= inf 𝜏𝜏 𝑅𝑅 𝑛𝑛,𝑛𝑛,𝑛𝑛𝑛𝑛 = 𝑂𝑂 𝑛𝑛𝜏𝜏ω(1,1,k)

trivial algorithm: O(n2+k) arithmetic operations

ω(1,1,k) ≤ 2 + k

trivial lower bounds: ω(1,1,k) ≥ 2
ω(1,1,k) ≥ 1+ k

square matrices: ω(1,1,1) = ω ≤ 2.38



Exponent of Rectangular Matrix Multiplication
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trivial algorithm: O(n2+k) arithmetic operations

ω(1,1,k) ≤ 2 + k

trivial lower bounds: ω(1,1,k) ≥ 2
ω(1,1,k) ≥ 1+ k

square matrices: ω(1,1,1) = ω ≤ 2.38

Property [Lotti 83]

ω(1,1,k) is a convex functionupper bounds on ω(1,1,k)
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Exponent of Rectangular Matrix Multiplication
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[Coppersmith 1982]: ω(1,1,0.172) = 2

Property [Lotti 83]

ω(1,1,k) is a convex functionupper bounds on ω(1,1,k)

0.172

[Coppersmith 1997]: ω(1,1,0.294) = 2

0.294

The product of an n x n0.172 matrix by an n0.172 x n matrix can be 
computed using O(n2+ε) arithmetic operations for any ε>0 

k



Exponent of Rectangular Matrix Multiplication
[Coppersmith 1982]: ω(1,1,0.172) = 2

Proof outline

Remember tuesday’s exercise

Taking power N of this tensor and combining it with power N of the 
same tensor with permuted variables we can show:

𝑅𝑅 𝑀𝑀, 4𝑁𝑁∕5,𝑀𝑀 ≤ 52𝑁𝑁 with 𝑀𝑀 ≈ 5𝑁𝑁

The product of an n x n0.172 matrix by an n0.172 x n matrix can be 
computed using O(n2+ε) arithmetic operations for any ε>0 

4𝑁𝑁∕5 = 𝑀𝑀𝛼𝛼 with 𝛼𝛼 = 1
5

log5 4 = 0.1722 …



Exponent of Rectangular Matrix Multiplication

Idea: Analyze the first power of the CW tensor in an asymmetric way

[Coppersmith 1997]: ω(1,1,0.294) = 2

Tool: Rectangular version of the asymptotic sum inequality

As in the square case, it is enough to create a direct sum of 
matrix products of the desired format



Exponent of Rectangular Matrix Multiplication

Idea: Analyze the first power of the CW tensor in an asymmetric way

[Coppersmith 1997]: ω(1,1,0.294) = 2

square 
case

𝑞𝑞𝛼𝛼𝛼𝛼, 𝑞𝑞𝛼𝛼𝛼𝛼, 𝑞𝑞𝛼𝛼′𝑁𝑁

rectangular 
case

α’N αN αN adjustadjustadjust

more variables

recalculate



Exponent of Rectangular Matrix Multiplication

0 1
2

2.38

Property [Lotti 83]

ω(1,1,k) is a convex functionupper bounds on ω(1,1,k)

[Coppersmith 1997]: ω(1,1,0.294) = 2

0.294

this curve has been used in most 
applications of rectangular matrix 
multiplication

[Ke, Zeng, Han, Pan 2008]: ω(1,1,0.5356) < 2.0712
ω(1,1,0.8) < 2.2356

ω(1,1,2) < 3.2699 
(slightly improving a bound from [Huang, pan 1998])

curve obtained by doing the 
same analysis for any value of k

obtained by a 
similar asymmetric 
analysis of the first 
power of the CW 

tensor

[Coppersmith 1982]: ω(1,1,0.172) = 2
0.172

k



Exponent of Rectangular Matrix Multiplication

[Coppersmith 1997]: ω(1,1,0.294) = 2

Dual exponent of matrix multiplication
α = sup 𝑘𝑘 𝜔𝜔 1,1, 𝑘𝑘 = 2

α > 0.294

proving that α=1 is equivalent 
to proving that ω=2  

(obtained from the analysis of the first power of the CW tensor)

[LG 2012]: ω(1,1,0.302) = 2 α > 0.302
from the analysis of the second power of the CW tensor

0 1
2

2.38
upper bounds on ω(1,1,k)

0.294

this curve has been used in most 
applications of rectangular matrix 
multiplication

curve obtained by doing the 
same analysis for any value of k

0.172
k



Exponent of Rectangular Matrix Multiplication

[LG 2012]: ω(1,1,0.302) = 2 α > 0.302
from the analysis of the second power of the CW tensor

from [LG 2012]

exactly the same bound as the one 
obtained by Coppersmith and Winograd
for square matrix multiplication

better than all previous bounds for k≠1 

curve of the same shape, but slightly 
below the previous curve 



Exponent of Rectangular Matrix Multiplication

first power of the CW tensor:
ω < 2.3872 [CW 1987]

fourth power of the CW tensor:

eight power of the CW tensor:

ω < 2.3730 [Stothers 2010]

ω < 2.3729 [Williams 2012]

α > 0.294 [Coppersmith 1997]

Dual exponent of matrix multiplication
α = sup 𝑘𝑘 𝜔𝜔 1,1, 𝑘𝑘 = 2

second power of the CW tensor:

ω < 2.3755 [CW 1987] α > 0.302 [LG 2012]

α > 0.313 [LG, Urrutia 2017]

???

the gap increases

What will happen with higher 
powers?
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