Complexity of Matrix Multiplication and Bilinear Problems

François Le Gall

Graduate School of Informatics Kyoto University

ADFOCS17 - Lecture 3 24 August 2017

\checkmark	Fundamental techniques for fast matrix multiplica	ition (1969~1987)	
	Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms			
	First technique: tensor rank and recursion			
	Second technique: border rank			
	Third technique: the asymptotic sum inequality			
	Fourth technique: the laser method		Lecture 1	
\checkmark	Recent progress on matrix multiplication (1987~)	Lecture 2		
	Laser method on powers of tensors			
	Other approaches			
	Lower bounds	-		
	Rectangular matrix multiplication			
-			Lecture 3	
\checkmark	Applications of matrix multiplications, open proble	ems		

\checkmark	Fundamental techniques for fast matrix multiplica	tion (1	969~1987)	
	Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms			
	First technique: tensor rank and recursion			
	Second technique: border rank			
	Third technique: the asymptotic sum inequality			
	Fourth technique: the laser method		Lecture 1	
\checkmark	Recent progress on matrix multiplication (1987~)	Lecture 2		
	Laser method on powers of tensors			
	Other approaches			
	Lower bounds			
	Rectangular matrix multiplication			
			Lecture 3	
\checkmark	Applications of matrix multiplications, open proble	ems		

Lower Bounds for Matrix Multiplication

 $R(\langle 2,2,2 \rangle) \ge 7$ [Hopcroft and Kerr 1971] [Winograd 1971] <u> $R(\langle 2,2,2 \rangle) \ge 7$ [Landsberg 2005]</u>

 $\underline{R}(\langle n, n, n \rangle) \ge \frac{3}{2}n^2 \quad [Strassen 1983]$ $\underline{R}(\langle n, n, n \rangle) \ge \frac{3}{2}n^2 + \frac{1}{2}n - 1 \quad [Lickteig 1984]$ $\underline{R}(\langle n, n, n \rangle) \ge \frac{3}{2}n^2 - 2 \quad [Bürgisser, Ikenmeyer 2011] \qquad using geometric complexity theory$ $\underline{R}(\langle n, n, n \rangle) \ge 2n^2 - n \quad [Landsberg, Ottaviani 2011]$

$$\begin{split} R(\langle n,n,n\rangle) &\geq \frac{5}{2}n^2 - 3n \quad \text{[Bläser 1999]} \\ R(\langle n,n,n\rangle) &\geq 3n^2 - 4n^{2/3} - n \quad \text{[Landsberg 2012]} \\ R(\langle n,n,n\rangle) &\geq 3n^2 - 2\sqrt{2}n^{2/3} - 3n \quad \text{[Massaranti, Raviolo 2012]} \end{split}$$

Lower Bounds for Matrix Multiplication

Theorem ([Raz 2002])

Any arithmetic circuit that computes the product of two n x n real matrices has size $\Omega(n^2 \log n)$, as long as the circuit does not use products with field elements of absolute value larger than 1.

Space-Time tradeoff (see, e.g., [Abrahamson 1991])

For any algebraic algorithm computing the product of two n x n matrices using S space and T time we have $ST = \Omega(n^3)$.

Any subcubic-time algorithm for matrix multiplication has superlogarithmic space complexity.

Trivial algorithm: $T = O(n^3)$ $S = O(\log n)$

Strassen algorithm: $T = O(n^{2.81})$ $S = O(n^2)$

same quadratic space complexity for all the other fast algorithms we studied

\checkmark	Fundamental techniques for fast matrix multiplica	ation (1969~1987)	
	Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms			
	First technique: tensor rank and recursion			
	Second technique: border rank			
	Third technique: the asymptotic sum inequality			
	Fourth technique: the laser method]	Lecture 1	
\checkmark	Recent progress on matrix multiplication (1987~)	Lecture 2		
	Laser method on powers of tensors			
	Other approaches			
	Lower bounds	-]	
	Rectangular matrix multiplication			
			Lecture 3	
\checkmark	Applications of matrix multiplications, open proble	ems		

Rectangular Matrix Multiplication

Compute the product of an *n* x *m* matrix *A* and an *m* x *n* matrix *B*

m multiplications and (*m*-1) additions $c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} \quad \text{for all } 1 \le i \le n \text{ and } 1 \le j \le n$

Trivial algorithm: $n^2(2m-1)=O(mn^2)$ arithmetic operations

Rectangular Matrix Multiplication

Compute the product of an *n* x *m* matrix *A* and an *m* x *n* matrix *B*

Compute the product of an *m* x *n* matrix *A* and an *n* x *n* matrix *B*

Compute the product of an *n* x *n* matrix *A* and an *n* x *m* matrix *B*

same algebraic complexity (as seen yesterday)

✓ The problem (with m \neq n) appears as the bottleneck in many applications:

- > linear algebra problems
- all-pairs shortest path problems
- dynamic computation of the transitive closure of a graph
- detecting directed cycles in a graph
- computational geometry (colored intersection searching)
- computational complexity (circuit lower bounds)

Compute the product of an $n \ge n^k$ matrix A and an $n^k \ge n$ matrix B

for any fixed k≥0

Exponent of rectangular matrix multiplication

 $\omega(1,1,k) = \inf \{ \tau \mid \text{this product can be computed using } O(n^{\tau}) \text{ arithmetic operations } \}$

Exponent of rectangular matrix multiplication

$$\omega(1,1,k) = \inf \left\{ \tau \left| \underline{R}(\langle n,n,nk \rangle) = O(n^{\tau}) \right. \right\}$$

trivial algorithm: O(n^{2+k}) arithmetic operations

□ ω(1,1,k) ≤ 2 + k

square matrices: $\omega(1,1,1) = \omega \le 2.38$

trivial lower bounds: $\omega(1,1,k) \ge 2$ $\omega(1,1,k) \ge 1+k$

trivial algorithm: O(n^{2+k}) arithmetic operations

→ ω(1,1,k) ≤ 2 + k

square matrices: $\omega(1,1,1) = \omega \le 2.38$

trivial lower bounds: $\omega(1,1,k) \ge 2$ $\omega(1,1,k) \ge 1+k$

[Coppersmith 1982]: $\omega(1,1,0.172) = 2$

The product of an n x n^{0.172} matrix by an n^{0.172} x n matrix can be computed using O(n^{2+ ϵ}) arithmetic operations for any ϵ >0

[Coppersmith 1997]: $\omega(1,1,0.294) = 2$

[Coppersmith 1982]: $\omega(1,1,0.172) = 2$

The product of an n x n^{0.172} matrix by an n^{0.172} x n matrix can be computed using O(n^{2+ ϵ}) arithmetic operations for any ϵ >0

Proof outline

Remember tuesday's exercise

Consider the computation of the product of two matrices A and B of the following form: $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & 0 \\ b_{31} & 0 \end{pmatrix}.$ (i) Write the tensor corresponding to this computational task. (ii) Show that the border rank of this tensor is at most 5.

Taking power N of this tensor and combining it with power N of the same tensor with permuted variables we can show:

$$\underline{R}(\langle M, 4^{N/5}, M \rangle) \le 5^{2N} \text{ with } M \approx 5^N$$
$$4^{N/5} = M^{\alpha} \text{ with } \alpha = \frac{1}{5}\log_5 4 = 0.1722 \dots$$

[Coppersmith 1997]: $\omega(1,1,0.294) = 2$

Idea: Analyze the first power of the CW tensor in an asymmetric way

Tool: Rectangular version of the asymptotic sum inequality

Asymptotic sum inequality (square case)				
$\int e$		l		
$ \underline{R} \bigoplus \langle m_i, m_i \rangle$	$_{i},m_{i} angle ig \leq t$ =	$\Longrightarrow \sum m_i^{\omega} \le t$		
i=1)	$i{=}1$		

Asymptotic sum inequality (rectangular case)

$$\underline{R}\left(\bigoplus_{i=1}^{\ell} \left\langle m_i, m_i, m_i^k \right\rangle\right) \leq t \Longrightarrow \sum_{i=1}^{\ell} m_i^{\omega(1,1,k)} \leq t$$

As in the square case, it is enough to create a direct sum of matrix products of the desired format

[Coppersmith 1997]: $\omega(1,1,0.294) = 2$

Idea: Analyze the first power of the CW tensor in an asymmetric way

Property [Lotti 83]

upper bounds on $\omega(1,1,k)$

[Coppersmith 1997]: $\omega(1,1,0.294) = 2 \implies \alpha > 0.294$

(obtained from the analysis of the first power of the CW tensor)

Dual exponent of matrix multiplication $\alpha = \sup \{ k | \omega(1,1,k) = 2 \}$

proving that α =1 is equivalent to proving that ω =2

[LG 2012]: $\omega(1,1,0.302) = 2 \implies \alpha > 0.302$

from the analysis of the second power of the CW tensor

exactly the same bound as the one obtained by Coppersmith and Winograd for square matrix multiplication curve of the same shape, but slightly below the previous curve

better than all previous bounds for $k \neq 1$

[LG 2012]: $\omega(1,1,0.302) = 2 \implies \alpha > 0.302$

from the analysis of the second power of the CW tensor

Dual exponent of matrix multiplication $\alpha = \sup \{ k | \omega(1,1,k) = 2 \}$

first power of the CW tensor:

ω < 2.3872 [CW 1987]

second power of the CW tensor:

ω < 2.3755 [CW 1987]

fourth power of the CW tensor:

ω < 2.3730 [Stothers 2010]

eight power of the CW tensor:

ω < 2.3729 [Williams 2012]

α > 0.294 [Coppersmith 1997]

α > 0.302 [LG 2012]

the gap increases

α > 0.313 [LG, Urrutia 2017]

???

What will happen with higher powers?

\checkmark	Fundamental techniques for fast matrix multiplica	tion (1969~1987)		
	Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms				
	First technique: tensor rank and recursion				
	Second technique: border rank				
	Third technique: the asymptotic sum inequality				
	Fourth technique: the laser method		Lecture 1		
\checkmark	Recent progress on matrix multiplication (1987~)	Lecture 2			
	Laser method on powers of tensors				
	Other approaches				
	Lower bounds				
	Rectangular matrix multiplication				
			Lecture 3		
\checkmark	Applications of matrix multiplications, open proble	ems			