
Determinant versus permanent

Markus Bläser, Saarland University
Draft — August 24, 20:13

1

Chapter 1

Valiant’s framework

Throughout this lecture, F will denote some field, the underlying ground field. Let X1, X2, . . .
denote indeterminates over F. An algebraic circuit is a labeled acyclic graphs such that:

1. Every node has either indegree 0 or 2.

2. There is exactly one node of outdegree 0.

3. Every node of degree 0 is labeled with an indeterminant or an element from F.

4. Every other node is either labeled with + or ×.

The nodes of indegree 0 are called input nodes (or input gates). The node of outdegree 0
is called the output node. Occassionally, it will be covenient to consider circuits with multiple
output nodes. With every node we can associate the polynomial computed at the node. This
is done inductively. The polynomial at an input node is the label itself. And for every +-node
(×-node), the polynomial is the sum (product) of the polynomials computed at the two children.
The output of the circuit is the polynomial computed at the output node.

The size of a circuit is the number of nodes in it. the depth of a circuit is the length of a longest
path from an input node to the output node. For a polynomial f , the complexity L(f) is the size
of a smallest circuit computing f .

For further reading, the reader is referred to [Bür00, vzG87]

1.1 VP
Let X = X1, X2, . . . be an infinite family of indeterminates over some field F. A function p : N→ N
is p-bounded, if there is some polynomial q such that p(n) ≤ q(n) for all n.

1.1.1 Definition. A sequence of polynomials (fn) ∈ F[X] is called a p-family if for all n,

1. fn ∈ F[X1, . . . , Xp(n)] for some polynomially bounded function p and

2. deg fn ≤ q(n) for some polynomially bounded function q.

1.1.2 Definition. The class VP consists of all p-families (fn) such that L(fn) is polynomially
bounded.

1.1.3 Example. Let detn =
∑
π∈Sn

sgn(π)X1,π(1) . . . Xn,π(n). We will see soon that detn has
polynomial-sized arithmetic circuits. Therefore, (detn) ∈ VP.

2

CHAPTER 1. VALIANT’S FRAMEWORK 3

In the above example, the indeterminates have two indices instead of one. Of course we could
write detn as a polynomial in X1, X2, . . . by using a bijection between N2 and N. However, we
prefer the natural naming of the variables (and will do so with other polynomials).

Let f ∈ F[X] be a polynomial and s : X → F[X] be a mapping that maps indeterminates to
polynomials. s can be extended in a unique way to an algebra endomorphism F[X] → F[X]. We
call s a substitution. (Think of the variables replaced by polynomials.)

1.1.4 Definition. 1. Let f, g ∈ F[X]. f is called a projection of g if there is a substitution
r : X → X ∪ F such that f = r(g). We write f ≤p g in this case. (Since g is a polynomial,
it only depends on a finite number of indeterminates. Therefore, we only need to specify a
finite part of r.)

2. Let (fn) and (gn) be p-families. (fn) is a p-projection of (gn) if there is a polynomially
bounded function p : N→ N such that fn ≤p gp(n). We write (fn) ≤p (gn).

Projections are very simple reductions. Therefore, we can also use them to define hardness for
“small” complexity classes like VP. Projections fulfill the usual requirements of a reductions:

1.1.5 Lemma. 1. If (fn) ≤p (gn) and (gn) ∈ VP, then (fn) ∈ VP.

2. ≤p is a transitive relation.

Proof. 1. Let q be a polynomially bounded function and pn be a projection such that fn =
pn(gq(n)) for all n. Let Cm be a circuit computing gm. We get a circuit computing fn by
replacing every variable Xi in Cq(n) by pn(Xi). This circuit has the same size as Cn.

2. The composition a two polynomially bounded function is polynomially bounded and the
composition of two substitutions is a substitution again.

1.1.6 Definition. 1. A p-family (fn) is called VP-hard (under p-projections) if (gn) ≤p (fn)
for all (gn) ∈ VP.

2. It is called VP-complete if in addition (fn) ∈ VP.

1.1.7 Lemma. If (fn) is VP-hard and (fn) ≤p (gn), then (gn) is VP-hard, too.

Proof. Let (hn) ∈ VP be arbitrary. Since (fn) is VP-hard, (hn) ≤p (fn). By transitivity, (hn) ≤p
(gn). Since (hn) was arbitrary, the VP-hardness of (gn) follows.

Let X(`)
i,j , 1 ≤ i, j, ` ≤ n, be indeterminates and let M` = (X(`)

i,j)1≤i,j≤n for 1 ≤ ` ≤ n. The
polynomial immn is a polynomial in n3 variables and is the (1, 1) entry of the matrix product
M1 · · ·Mn. The p-family imm = (immn) is the called iterated matrix multiplication. By using the
trivial algorithm for matrix multiplication, it is easy to see that imm ∈ VP. We will see in the
next chapter that imm and det are equivalent under p-projections. We do not know whether the
determinant (or the iterated matrix multiplication polynomial) is VP-complete. However, there
are generic problems that are VP-complete. But also more natural complete problems are known,
see [DMM+14].

CHAPTER 1. VALIANT’S FRAMEWORK 4

1.1.8 Exercise. (**, but a little bit tedious) Let Sn,i,j, Pn,i,j, and Cn, n, i, j ∈ N, be indetermi-
nates. Let

gen1 = C1

genn =
n−1∑
i,j=1

Sn,i,j(geni + genj)

+
n−1∑
i,j=1

Pn,i,jgeni · genj

+ Cn

Prove that (genn) is VP-hard. (This family is not in VP, since it can simulate arbitrary circuits
of polynomial size. Such circuit can compute polynomials of exponential degree and therefore, the
degree of genn is exponential. One can modify this construction to get a family in VP, however,
we need to prove normal forms for circuits.)

1.1.9 Exercise. (*) Let sum = (sumi) be the p-family given by sumi = X1 + · · ·+Xi. Likewise,
let prod be given by prodi = X1 . . . Xi. Prove that prod is not a p-projection of sum and vice versa.

1.1.10 Question. Is det VP-complete?

When we replace polynomial upper bounds by quasipolynomial upper bounds (of the form
O(nlogc(n) for constant c) in the definition of VP and p-projections, then the determinant is com-
plete for this class usually called VQP, see [Bür00] and [Blä01] for more complete families. Here,
“QP” stands for “quasi-polynomial”.

1.2 VPe

We call an arithmetic circuit a formula if the underlying graph structure is a tree. In this case,
every computation gate has fanout one, that is, every intermediate result can only be used once.

1.2.1 Definition. A p-family (fn) is contained in the class VPe if there is a family of formulas
(Fn) such that Fn has polynomial size in n and computes fn.

The “e” in the subscript stands for expression, another word for formula. Since every formula
is a circuit, we have VPe ⊆ VP. It is not known that whether this inclusion is strict, but most
researchers believe it is.

1.2.2 Question. Is VPe a strict subset of VP?

1.2.3 Definition. 1. A p-family (fn) is in the class VNCi if there is a family of circuits (Cn)
that the size of Cn is polynomial in n and the depth of Cn is bounded by O(logi n).

2. VNC =
⋃
i∈N VNCi.

It turns out that VPe = VNC1, that is, every p-family that is computable by formulas of
polynomial size has efficient parallel algorithms. (We also know that VP = VNC2. This is in
contrast to the Boolean setting, where it is widely believed that not all problems in P have efficient
parallel algorithms. The reason is that when we compute a polynomial a degree d, we can always
modify the circuit such that the degree at every node is also bounded by d at a cost which is
polynomial in d. Since in Valiant’s model, the degree is polynomially bounded, which is the key
to get small depth circuits. On the other hand, if the degree in Valiant’s model was not bounded,
then VP could be easily separated from VNC by a degree argument. In the Boolean setting, we
are only computing functions, not polynomials. Therefore, using high degree intermediate results
can be helpful, but we do not know how to prove a separation of the classes.)

CHAPTER 1. VALIANT’S FRAMEWORK 5

um−1

um

F G

H
Y

G′1 G′0

H

G′0

−

∗

+

Figure 1.1: The formula F with the edge (um−1, um), the two formulas G and H, and the new formula
computing f

1.2.4 Lemma. Let T be a binary tree with n nodes. Then there is an edge e in T such that
removing e separates T into two trees both having between n/3 and 2n/3 nodes.

Proof. We construct a path u1, . . . , um starting from the root as follows: We set u1 to be the root
of the path. Let ui be the current end node of the path and let w and w′ be its children. If the
subtree with root w is larger than then subtree with root w′, then ui+1 := w, otherwise ui+1 := w′.
We stop when the size of the subtree with root ui is < 2/3n. The edge e is the edge (um−1, um).
The subtree with root um has size < 2/3n by construction. The subtree with root um−1 has size
≥ 2/3n. Since um is the root of the larger subtree, the subtree with root um has size at least n/3.
The size of the remaining tree is between n− 2/3n = n/3 and n− n/3 = 2n/3.

1.2.5 Theorem (Brent [Bre74]). Let F be a formula of size s. Then there is a formula F ′ of size
poly(s) and depth O(log s) computing the same polynomial as F .

Proof. By Lemma 1.2.4, there is an edge in F such that when removing e, we get two parts, each of
size between s/3 and 2s/3. The part not containing the output gate of F is again a formula, which
we call H. The part containing the output gate is not a formula, since one of the gates has fanin
one after removal of e. We add a new child to this gate, which is labeled with a new input variable
Y . Call the resulting formula G. G computes a linear form aY + b, since Y appears only once
in G. (a and b are polynomials in the original input variables.) If we substitute the polynomial
h computed by H for Y , then we get the polynomial f computed by F . If we substitute 1 for
Y , then we get a + b, and if we substitute 0 for Y , then we get b. Therefore, there are formulas
of size ≤ 2s/3 computing a + b, b and h. With these formulas, we can proceed recursively. We
get formulas G′1, G′0, and H ′ computing a + b, b, and h, respectively. We can combine them to a
formula computing ah+ b = f as depicted in Figure 1.1: For the size σ(s) of this new formula, we
get the recursion

σ(s) = 4 · σ(2s/3) + 3
and for the depth d(s), we get the recursion

d(s) = d(2s/3) + 3.

It is a routine check that σ(s) = poly(s) and d(s) = O(log s).

1.2.6 Corollary. VPe = VNC1.

1.3 Constant size iterated matrix multiplication
For some c ∈ N, we define the family (imm(c)

n) like the family (immn), except that every polynomial
is an iterated matrix product of c×c-matrices (instead of n×n-matrices), so imm(c)

n is a polynomial
in c2n variables.

CHAPTER 1. VALIANT’S FRAMEWORK 6

1.3.1 Theorem (Ben-Or & Cleve [BC92]). Let F be a formula of depth d computing a polynomial
f , then f is a projection of imm(3)

4d .

Proof. We will prove by induction on d, that we can find 4d 3× 3-matrices the entries of which are
either indeterminates or constants such that the product of these matrices is 1 f 0

0 1 0
0 0 1

This is obviously true for depth zero formulas, since these formulas compute constants or single
variables.

If the depth d is larger than zero, we either have f = g + h or f = gh and g and h are both
computed by formulas of depths ≤ d− 1. By the induction hypothesis, there are two sets of 4d−1

3× 3-matrices each such that their products are 1 g 0
0 1 0
0 0 1

 and

 1 h 0
0 1 0
0 0 1

 ,

respectively. In the case of an addition gate we have 1 g 0
0 1 0
0 0 1

 1 h 0
0 1 0
0 0 1

 =

 1 g + h 0
0 1 0
0 0 1

Therefore we can write f as a projection of a 3×3-iterated matrix multiplication of length 2·4d−1 ≤
4d.

In the case of a multiplication gate, we have 1 g 0
0 1 0
0 0 1

 1 0 0
0 1 h
0 0 1

 =

 1 g gh
0 1 h
0 0 1

 .

Note that h is standing in the “wrong” position. But we can easily fix this by applying permutation
matrices from the left and the right. This just corresponds to exchanging the rows or columns of
the first and last matrix of the corresponding matrix product, respectively. We proceed with 1 0 0

0 1 −h
0 0 1

 1 g gh
0 1 h
0 0 1

 1 −g 0
0 1 0
0 0 1

 =

 1 0 gh
0 1 0
0 0 1

Note that we now have a −g and −h instead of a g and h. But this is easily by multiplying the
second row and column by −1. This can again be achieved by doing this with the first and last
matrix of the 4d−1 matrices. Altogether, we get that f is a projection of a product of 4 · 4d−1 = 4d
matrices.

1.3.2 Corollary. imm(3) is VPe-complete.

Proof. Let f = (fn) ∈ VPe. Let Fn be a formula of polynomial size computing fn. By Theo-
rem 1.2.5, there is an equivalent formula of polynomial size and depth O(logn). By Theorem 1.3.1,
fn is a projection of imm(3)

poly(n). This proves the hardness.

CHAPTER 1. VALIANT’S FRAMEWORK 7

To construct a formula of polynomial size for imm(3)
n , we divide the product into two products

of size n/2 each. We can assume that n is a power of 2, since imm(3)
n′ ≤ imm(3)

n if n′ ≤ n. The
entries of the result of the two products can we computed by 18 instances of imm(3)

n/2, one for each
entry of the two resulting matrices. From these two results, we can compute imm(3)

n by a constant
size formula. Since each entry of the two resulting matrices is used three times, we need three
distinct copies of the formulas for each entry. Therefore, we get the following recursion for the size
s(n) of the formula:

s(n) = 54s(n/2) +O(1).
Therefore, s(n) = poly(n).

Obviously, imm(c) is VPe-complete for any c ≥ 3. On the other hand, imm(1) is not, since
it only computes a single monomial. Allender and Wang [AW16] prove that imm(2) is also not
VPe-complete by exhibiting a polynomial that is not the projection of imm(2)

n for any n!

1.4 Further exercises
In the following exercises, we develop a combinatorial algorithm for the determinant by Mahajan
and Vinay [MV97]. A cycle cover of a directed graph is a collection of node disjoint cycles such
that each node is part of exactly one cycle. Let A be an n×n-matrix with entries from some ring.
A defines an edge-weighted directed graph G on the node set {1, . . . , n} by given the edge (i, j)
the weight ai,j . Permutations π in Sn stand in one-to-one correspondence with cycle covers C in
G. The weight w(C) of a cycle cover C is the product of the edge weights of its edges. The sign
of a cycle cover C with k cycles is sgn(C) = (−1)n+k. We can write

detA =
∑
C

sgn(C)w(C)

where the sum is over all cycle covers C.
A clow (closed ordered walk) is a sequence C = (c1, . . . , ci) of numbers in {1, . . . , n}, that is,

nodes in G, such that the first number c1 is smaller than all other numbers in the sequence. The
node c1 is called the head of C. A clow is a closed walk that visits c1 only once but may visits
others nodes more than once. The weight of a clow is the product of the weight of its edges. A
clow sequence S is a sequence of clows C1, . . . , Ck such that the heads h1, . . . , hk of C1, . . . , Ck, are
strictly increasing, that is, h1 < · · · < hk.

1.4.1 Exercise. Let S = (C1, . . . , Ck) be a clow sequence and let i be the smallest index such that
Ci+1, . . . , Ck are simple cycles. Assume that i ≥ 1. Let v be the first node (starting from the head)
in Ci that is either visited twice in Ci or is also in one of Ci+1, . . . , Ck, say Cj.

1. (*) Prove that v can never satisfy both conditions simultaneously.

2. (**) In the first case, we define a new sequence by removing the simple cycle starting in
v from Ci and add it as a new clow to the sequence (at the appropriate position with the
appropriate node as head). Prove that the new sequence is indeed a clow.

3. (**) In the second case, we join Cj and Ci. Prove that we again get a clow sequence.

4. (***) Define a map I on the set of all clow sequences of length n as follows: If i = 0, then
I(S) = S, that is, S is a fix point. Otherwise, I(S) is either the clow sequence from part 2.)
or 3.). Prove that I is an involution.

5. (*) Prove that when S is not a fixed point of I, then w(S) = w(I(S)) and sgn(S) =
− sgn(I(S)).

CHAPTER 1. VALIANT’S FRAMEWORK 8

6. (**) Prove that
detA =

∑
S

sgn(S)w(S)

where the sum is now over all clow sequences S of length n.

Next we will use dynamic programming to efficiently compute the determinant using clow
sequences. A partial clow sequence consists of a number of clows plus one clow which is not yet
completed. [`, c, c0, s] will denote the weight of all partial clow sequences of length `, where the
incomplete clow has head c0 and ends in the current node c. s = ±1 denotes the parity of the
finished clows so far. One can extend a partical clow sequence by either adding a new node to
the last partial clow or by closing it and starting a new clow. We create a dynamic programming
graph: The nodes in this graph are all of the form (`, c, c0, s) with 1 ≤ ` ≤ n, 1 ≤ c0 ≤ c ≤ n, and
s = ±1. From every node (`, c, c0, s) there are edges going to (` + 1, c′, c0, s) for all c′ > c0 and
edge weight ac,c′ . And there are edges going to (` + 1, c′0, c′0,−s) for all c′0 > c0 with edge weight
ac,c0 . The weight of a path in this dynamic programming graph is the product of the edge weights.

1.4.2 Exercise. 1. (**) Prove that the [`, c, c0, s] is the weight of all paths starting in a node
of the form (0, h, h, 1), 1 ≤ h ≤ n, and ending in (`, c, c0, s).

2. (**) Prove that there is an arithmetic circuit of size O(n4) for computing the determinant.

3. (***) Prove that we can even achieve that this circuit has depth O(log2 n).

Chapter 2

Universality of the determinant

2.1 Homogeneous circuits
Recall that a polynomial is homogeneous if all its monomials have the same total degree. A
circuit is called homogeneous if at every gate, it computes a homogeneous circuit. Of course,
nonhomogeneous polynomials cannot be computed by homogeneous circuits. However, we have
the following result.

2.1.1 Lemma. If f is a polynomial of degree d that is computed by a circuit of size s, then there
is a homogeneous circuit of size O(d2s) computing the homogeneous parts of f . Furthermore, at
every gate, we only compute a polynomial of degree at most d.

Proof. We replace every gate g by d+ 1 gates. If g computes a polynomial f , then the new gates
will compute the homogeneous components of f . We do this in a bottom up fashion If g is an
input gate, then there is nothing to do. We just have to add d dummy gates computing the zero
polynomial. Let g be a gate with children h1 and h2 in the original circuit. Assume that h1 and h2
have been replaced by gates h1,0, . . . , h1,d and h2,0, . . . , h2,d computing polynomials p1,0, . . . , p1,d
and p2,0, . . . , p2,d, respectively. If g is an addition gate, then we will introduce new gates g0, . . . , gd
and gi computes p1,i + p2,i. If g is a multiplication gate, then gi computes

∑i
j=0 p1,jp2,i−j .

2.1.2 Corollary. If f is a polynomial of degree d that is computed by an arithmetic circuit of
size s, then there is a circuit C of size poly(s, d) computing f such that every node in C computes
a polynomial of degree at most d. Furthermore, for every multiplication gate, at least one of the
inputs is not a constant.

Proof. We homogenize the given circuit as above. This immediately gives the upper bound on the
degree. When two constants are multiplied, then either two degree zero components are multiplied
or one of the higer degree homogeneous parts became zero. In the first case, we can replace the
multiplication gate by an input gate labeled with the product of the two constants. (Remember
that we can use every constant from F.) In the second case, we simply can remove the gate
that outputs 0. (Note that we do not have to construct the circuit, we just need to prove it
existence.)

2.2 Multiplicatively disjoint circuits
2.2.1 Definition. An arithmetic circuit is multiplicatively disjoint if for all multiplication gates,
the subcircuits induced by its two children are disjoint.

9

CHAPTER 2. UNIVERSALITY OF THE DETERMINANT 10

Multiplicatively disjoint circuits are between circuits and formulas. In a formula, also the
subcircuits of addition gates are disjoint.

2.2.2 Definition. Let C be an arithmetic circuit. The formal degree of a gate g is defined induc-
tively: A leaf has formal degree 1. If g is a multiplication gate, then its formal degree is the sum of
the formal degrees of its two children. If g is an addition gate, then the formal degree of g is the
maximum of the formal degrees of its children. The formal degree of C is the formal degree of its
output gate.

The formal degree of a circuit disregards that the degree at gate might drop when there are
cancellations. Multiplications with constants might also increase the formal degree.

2.2.3 Lemma. If a circuit has size s and formal degree d, then there is a multiplicatively disjoint
circuit C ′ of size ≤ sd computing the same polynomial.

Proof. Each gate g of formal degree e ≤ d will be replaced by d + 1 − e copies g1, . . . , ge. Let gi
be one of these copies. We call i the index of the copy. We will make sure that all gates of the
subcircuit with output gi are copies with an index lying between i and i + e − 1. In this way we
ensure that we will get multiplicatively disjoint circuits.

Inductively, we construct a circuit Ce with the following property: For each gate g for formal
degree f ≤ e in C, there are copies of the gates g1, . . . , gd+1−f in Ce computing the same function
as g and all the gates of the subcircuit with root gi have indices lying between i and i+ f − 1.

The nodes of formal degree one are all input nodes and sums of degree one nodes. C1 consists
of d copies of the input nodes. Since C is acyclic, we can order the addition gates in such a way,
that whenever we deal with a gate g, all its predecessors have been processed. For each addition
gate g of formal degree one, we add copies g1, . . . , gd. Let g′ and g′′ be the children of g in C
with formal degrees one. We connect gi with the copy g′i and g′′i . The restriction on the ranges is
fulfilled by construction.

Assume that we constructed Ce−1 (induction hypothesis). To obtain Ce, we now add copies of
all gates g of formal degree e in C. Let g′ and g′′ be the children of sucha gate g of formal degrees
e′ and e′′, respectively.

We start with the multiplication gates. In this case e = e′ + e′′ with e′, e′′ < e. This means
that the copies g′1, . . . , g′d+1−e′ and g′′1 , . . . , g

′′
d+1−e′′ were constructed in a previous step. We add

the copies g1, . . . , gd+1−e and connect gi with g′i and g′′i+e′ . These copies exist, since i ≤ d+1−e ≤
d+ 1− e′ and i+ e′ ≤ d+ 1− e+ e′ = d+ 1− e′′. The indices of the copies of the subcircuit with
root g′i lie between i and i + e′ − 1, the indices of the copies in the subcircuit with root g′′i+e′ lie
between i+ e′ and i+ e′ + e′′ − 1 = i+ e− 1. Furthermore, i ≤ i+ e′ ≤ i+ e− 1. Therefore the
condition on the indices of the subcircuits is fulfilled.

Next come the addition gates of formal degree e. Note that an addition gate of formal degree e
might have a predecessor of formal degree e. As in the base case, we can order the addition gates
in such a way, that whenever we deal with a gate g, all its predecessors have been processed. For
each addition gate g of formal degree e, we add copies g1, . . . , gd+1−e. Let g′ and g′′ be the children
of g in C with formal degrees e′ ≤ e and e′′ ≤ e, respectively. We connect gi with the copy g′i and
g′′i . The indices of the copies in these subcircuits lie in the range from i to i + e′ − 1 ≤ i + e − 1
and i+ e′′ − 1 ≤ i+ e− 1, respectively.

The circuit Cd is the circuit we are looking for. It contains a copy of the output gate of C. The
circuit is multiplicatively disjoint by the way we chose the indices when connecting the copies of
the children to the multiplication gate.

2.2.4 Lemma. Let f be a polynomial of degree d computed by a circuit C of size s. Then there
is a circuit of size polynomial in d and s computing f such that its formal degree is bounded by
sd+ 1.

CHAPTER 2. UNIVERSALITY OF THE DETERMINANT 11

Proof. Let C be the given circuit and C ′ be the circuit constructed in Corollary 2.1.2. Let the
depth of a gate be the length of a longest path from any leaf to this gate. We will now prove by
induction on the depth that the formal degree of any gate g of depth δ computing a homogeneous
component of degree i is bounded by δ · i + 1. Recall that the circuit C ′ is a simulation of the
circuit C. Every node is replaced by d+ 1 nodes, one for each homogeneneous component. Then
every operation in C is simulated by a bunch of operations in C ′. We will measure the depth in
the above inductive statement by the depth in C and we will only prove it for nodes in C ′ that
correspond to nodes in C.

For the base case note that every leaf has formal degree 1. Now let g be a gate of depth δ
computing a homogeneous component of degree i. If i = 0, then note that g has formal degree 1
by construction. So we assume that i ≥ 1. We first treat the case when g is corresponds to an
addition gate in C. In C ′, g is an addition gate, its two inputs are gates g′ and g′′ both computing
homogeneous polynomials of degree i. The formal degree of these two gates are bounded by δ′ ·i+1
and δ′′ · i + 1 where δ′ and δ′′ are the depth of g′ and g′′, respectively. The formal degree of g is
max{δ′ · i+ 1, δ′′ · i+ 1} ≤ δ · i+ 1.

If g is a multiplication gate, then

g =
i∑

j=0
g′jg
′′
i−j

where g′j and g′′i−j are the homogeneous components of the predecessors of g. By the induction
hypothesis, the formal degrees of g′j and g′′i−j are bounded by δ′j+1 and δ′′(i− j)+1, respectively.
The formal degree of g′jg′′i−j is bounded by δ′j + 1 + δ′′(i − j) + 1 ≤ δi + 1, when 0 < i < j.
Note for the upper bound that δ > δ′, δ′′ and i ≥ 1. The formal degree of g′0g′′i is bounded by
1 + δ′′i+ 1 ≤ δi+ 1. The same argument works for g′jg′′0 . This concludes the inductive step.

From the claim the bound on the formal degree of the new circuit follows immediately.

2.2.5 Theorem (Malod & Portier [MP08]). A p-family (gn) is in VP if and only if there is a
family of polynomial size multiplicative disjoint circuits (Cn) computing (gn).

Proof. If (gn) ∈ VP, then by Lemma 2.2.4, there is a sequence of circuits (Cn) of size poly(n)
computing (gn) such that the formal degree of Cn is polynomially bounded. Now we can apply
Lemma 2.2.3.

For the other direction, note that it can be easily proven by induction that the degree of a
multiplicatively disjoint circuit of size s is bounded by s.

2.2.6 Exercise. (*) Prove the last statement.

2.3 Weakly skew circuits and algebraic branching programs
Let M = (mi,j) be an n×n matrix. We can interpret M as the weighted adjacency matrix of some
graph over the node set {1, . . . , n}. For every (i, j), there is an edge (i, j) of weight mi,j . A cycle
cover in a directed graph is a collection of node-disjoint directed cycles such that every node is
contained in exactly one cycle. Permutations in Sn stand in a one-to-one correspondence with cycle
covers. Every permutation σ yields a cycle cover consisting of the edges (i, σ(i)). On the other
hand, the edges of a cycle cover encode a permutation of the nodes with the intepretation that an
edge (i, j) means that i is mapped to j. Note that this is nothing but the cycle decomposition of a
permutation. The sign of the permutation is −1 if the number of cycles is even, and 1 if it is odd.
The weight w(C) of a cycle cover C is the product of the weights of the edges in it. Therefore,

detM =
∑

cycle covers C
(−1)n+number of cycles in Cw(C)

CHAPTER 2. UNIVERSALITY OF THE DETERMINANT 12

Conceptually, it is often easier to think of an edge of weight zero as not being present in the
graph. Since the weight of a cycle cover is the product of its edge weights, this does not make any
difference in the above equation for detM .

2.3.1 Definition. A circuit is called weakly skew if every multiplication gate g has at least one
child g′ such that after removing the edge (g′, g), the graph consists of two weakly connected com-
ponents.

In a formula, this is true for every child of a gate, i.e., no intermediate result is reusable. In a
weakly skew circuit, one child of every gate can be reused, but not both. Weakly skew is however
stronger than multiplicatively disjoint, since in the later case, while the subcircuits need to be
disjoint, they can be connected to the rest of the circuit.

2.3.2 Exercise. (*) Construct a multiplicatively disjoint ciruit that is not weakly skew.

2.3.3 Definition. Let F be a field and X1, . . . , Xn be indeterminates.

1. An algebraic branching program A is an acyclic graph with two distinguished nodes s and t
and an edge labeling with labels from F ∪ {X1, . . . , Xn}.

2. The weight w(P) of a path P from s to t is the product of the labels of the edges in the path.

3. The polynomial computed by A is ∑
s-t path P

w(P).

4. The size of an arithmetic branching program is the number of edges in it.

5. A is called layered if for every node v in A, all s-v paths have the same length.

If A is layered, then we can think of the nodes of A being grouped into layers: two nodes are
in the same layer if the length of any path from s to them is the same. In a layered branching
program, edges only go from one layer to the next.

2.3.4 Lemma. Let A be a branching program of size s. Then there is a layered branching program
of size O(s2) computing the same function.

Proof. For a node v in the branching program, let d(v) be the length of a longest path from s to
v. Scan through the nodes by increasing value of d(v) (breaking ties arbitrarily) until you find the
first node v0 such that there is a path from s to v0 that has length ` < d(v0). Take the last edge e
of such a path and subdivide it d(v0)− ` many times. If e has label w, then one of the new edges
gets label w and all other ones will get label 1. We do this with all shorter paths from s to v0 and
then go on with the next node at which the layering property is violated.

We formalize the notion of being reusable. Intuitively, a gate in a weakly skew circuit is reusable
it is not in the subcircuit of a multiplication gate that is not connected to the rest of the circuit.

2.3.5 Definition. Let C be a weakly skew arithmetic circuit. The set of reuseable gates in C
is inductively defined as follows: Every gate of outdegree zero is reusable. (We consider circuits
with multiple output gates to simplify some proofs in the following.) We remove every gate g of
outdegree zero from C and for each such multiplication gate, we also remove the subcircuit of that
child g′ that is only connected to the rest of the circuit via the edge (g′, g). Let C ′ be the resulting
circuit. Every gate that is reusable in C ′ is reusable in C, too.

2.3.6 Theorem. Let f ∈ k[X1, . . . , Xn] with deg f = poly(n). The following statements are
equivalent:

CHAPTER 2. UNIVERSALITY OF THE DETERMINANT 13

1. f is computed by a weakly skew circuit of size poly(n).

2. f is computed by an algebraic branching program of size poly(n).

3. f is a projection of immp(n) for some polynomially bounded function p.

4. f is a projection of detp(n) for some polynomially bounded function p.

Proof. (1)⇒ (2): Assume that f is computed by a weakly skew circuit C of size m. We now prove
by induction on m that there is a arithmetic branching program computing A of size ≤ 2m such
that for every reusable gate g in C there is a node vg such that the sum of the weights of all paths
from s to vg is the same polynomial as computed at g.

Let g be some output node. If g is also an input node, then A consists of a single edge. (This
is the induction basis.)

For the induction set, assume that g is not an input gate. If g is an addition gate, then we
remove g from C, let C ′ be the resulting circuit. By the induction hypothesis, there is an algebraic
branching program such that for every gate g′ that is reusable in C ′, there is a node vg′ in C ′ such
that the sum of the weights of all path from s to vg′ equals the polynomial computed at g′. Let h
and h′ be the children of g. We add a new node vg and connect the nodes vh and vh′ to it. Both
edges get weight one. If h = h′, then we add only one edge with weight two. By construction, the
sum of the weights of all paths from s to vg is the sum of the polynomials computed at h and h′.
The resulting arithmetic branching program has two more edges than A′.

If g is a multiplication gate, then after removal of g, we get two separate circuits C1 and C2.
Let g1 and g2 be the children of g. Only the gates of one of them, say C2, can be reusable in C.
Let m1 and m2 be the sizes of C1 and C2. From the induction hypotheses, we get corresponding
algebraic branching programs A1 and A2 with sources s1 and s2. In A1, there are vertices s1 and
vg1 such that the sum of the weights of all path from s1 to vg1 equals the polynomial computed
at g1. We identify the node s1 of A1 with the node vg2 in A2. Then the sum of the weights of all
path from s2 to vg1 is the product computed at g. For all gates h in C2, the sum of the weights of
all paths from s2 to vh paths equals the polynomial computed at h. The size of the new branching
program is 2m1 + 2m2 ≤ 2m.1

(2) ⇒ (3): Let A be an algebraic branching program computing f . By Lemma 2.3.4 we can
assume that A is layered. Let ` be the maximum size of a layer and let m be the number of layers.
We will inductively construct `× `-matrices M1, . . . ,Mm with entries from k ∪ {X1, . . . , Xn} such
that the first row of M1 · · ·Mi are the polynomials computed at the nodes in the ith layer, that
is, the sum of the weights of all path from s to each node in this layer. M1 has a one in position
(1, 1) and zeroes elsewhere. This one corresponds the the source node s. Assume we constructed
M1, . . . ,Mi. Let (a1, . . . , a`) be the first row of M1 · · ·Mi. A node v in the (i+ 1)th layer receives
edges from the nodes of the ith layer. Let (b1, . . . , b`) be the labels of these edges (if an edge is not
present, the corresponding bj = 0.) The polynomial computed at v is given by

(a1, . . . , a`) ·

 b1
...
b`

 .

The matrix Mi+1 simply consists of the corresponding columns (b1, . . . , b`)T . Since we can embed
a product of m `× `-matrices into a product of d d× d-matrices with d = max{m, `}, we get that
f is a projection of immpoly(n).

1This construction does not work if the circuit is only multiplicatively disjoint, since in this case, while the
subcircuits of every multiplication gate are disjoint, they might both be connected to the rest of the circuit. However,
the nodes of A1 cannot be used any more, once s1 is identified with vg2 .

CHAPTER 2. UNIVERSALITY OF THE DETERMINANT 14

+

h h′

g

vh vh′

vg

C ′

A′

∗ g

g1 g2

vg1

s2

s1

vg2

Figure 2.1: Transforming weakly skew circuits into algebraic branching programs. (Top: addition gate,
bottom: multiplication gate)

(3)⇒ (4): Note that an iterated matrix product can be easily computed by a layered algebraic
branching program, you just have to “reverse” the construction of the previous step. Therefore it
suffices to prove that every polynomial that is computed by a layered algebraic branching program
A is a projection of a determinant of polynomial size. We modify A as follows: add an edge of
weight one from t to s and add a self loop of weight one to every node except s and t. Let M
be the weighted adjacency matrix of this modified program A′. detM is the sum of the weights
of all cycle covers in A′. All cycle covers in A′ consist of one big cycle through s and t and the
remaining nodes are covered by self-loops. Since the program is layered, all cycle covers have the
same number of cycles and therefore the same sign. The weight of a cycle cover equals the weight of
the corresponding path from s to t, potentially with an opposite sign. Therefore, f is a projection
of a polynomially large matrix.

(4) ⇒ (1): One way to evaluate the determinant by a weakly skew circuit was done in the
exercise at the end of the previous chapter.

2.3.7 Definition. A p-family (fn) is in VPws if it is computed by weakly skew circuits of polynomial
size

Theorem 2.3.6 gives us further, equivalent definitions of VPws. In particular, a p-family (fn) is
in VPws if it is a p-projection of the determinant family. Note that imm can be computed by very
restricted weakly skew circuits, namely for every multiplication gate, one of the inputs consists of
a variable or constant. This is achieved by sequentially multyplying the matrices using the trivial
methods. We call such circuits skew. Since by Theorem 2.3.6, every polynomial that is computed
by a weakly skew circuit of size s is a p-projection of imm, we get the following corollary.

2.3.8 Corollary. If a polynomial is computed by a weakly skew circuit of size s, then it is computed
by a skew circuit of size poly(s).

2.3.9 Exercise. (**) Write a 2×2-determinant as a projection of an iterated matrix multiplication
(size of your choice). Write the (1, 1)-entry of a the product of two 2× 2-matrices as a projection
of a determinant (size of your choice).

CHAPTER 2. UNIVERSALITY OF THE DETERMINANT 15

2.4 Further exercises
The aim of this section is to prove that VP = VNC2, which is originally due to Valiant et al. We
follow ideas by Tavenas.

2.4.1 Definition. Let C be a circuit with unbounded addition gates, multiplication gates of fanin
bounded by 5 and scalar multiplication gates. We call a circuit ×-balanced, if for all multiplication
gates g, the degree of the polynomial computed at each child g′ of g is at most half the degree of
the polynomial computed at g.

2.4.2 Exercise. (****) Let f be a homogeneous polynomial of degree d computed by a circuit of
size s. Then f is computed by a homogeneous ×-balanced circuit of degree d and size poly(s, d).

We break the above exercise into smaller parts. We may assume that the given circuit is ho-
mogeneous. Furthermore, we may assume that all internal nodes have positive degree by replacing
an internal gate of degree zero by the corresponding constant. In particular, a constant cannot
be the input to am addition gate. Furthermore, we replace every multiplication gate which has a
constant as an input by a special scalar multiplication gate �. We order the multiplication gates
in the circuit in such a way that the right child has higher degree than the left child (breaking ties
arbitrarily). Let C be the resulting circuit.

2.4.3 Exercise. (*) Let o be the output gate of C. We have

f =
∑

parse tree T
v(T) =

∑
leaf `

(o, `).

Thus, if we can compute all values (o, `), then we can compute f . Note that the second sum is
polynomial while the first is exponential.

Let α and β be gates of C. We define (α, β) as follows:

• if β is a leaf, then (α, β) is the sum of the values of all parse trees rooted at α such that β
appears on the rightmost path in the tree.

• if β is not a leaf, then (α, β) is the sum of the values of all parse trees rooted at α such that β
appears on the rightmost path, but the subtree on the rightmost path with root β is deleted
and replaced by 1.

Note that (α, β) = 0, if β is not contained in the subcircuit with root α.
We now show how to compute the values (α, β) by a dynamic programming approach. If α is

an addition gate, then this computation done by a single addition gate. If α is a multiplication
gate, then this computation is done by an addition gate with a layer of multiplication gates below.
The inputs of these multiplication gates will be polynomials of degree at most half the degree of
(α, β).

From this it follows that we can turn this dymnamic programming scheme into a ×-balanced
circuit:

• If β does not appear on any parse tree rooted in α, then (α, β) = 0.

• If α = β, then (α, β) = [α] if α is a leaf and (α, β) = 1 otherwise.

In the remaining cases, α 6= β, α is not a leaf, and β appears on the rightmost path in some parse
tree rooted at α.

2.4.4 Exercise. (*) What is the expression when α is an addition gate?

2.4.5 Exercise. (*) What is the expression when α is a scalar multiplication gate?

CHAPTER 2. UNIVERSALITY OF THE DETERMINANT 16

• The interesting case is when α is a multiplication gate. We first assume that β is a leaf.
Then deg(α) > deg(β) and deg(β) ≤ 1. Fix a parse tree rooted at α and with the rightmost
path ending in β. On this path, there is exactly one gate γ such that for the right child γr
of γ,

deg(γ) ≥ 1
2 deg(α) ≥ deg(γr). (2.4.6)

Then
(α, β) =

∑
leaf s, γ fulfilling (2.4.6)

(α, γ)(γ`, s)(γr, β), (2.4.7)

where γ` is the left child of γ.

2.4.8 Exercise. (**) Prove that deg(α, γ), deg(γr, β), and deg(γ`, s) are bounded by degα/2

More problematic is the case when β is not a leaf. (2.4.7) still holds, but we have deg(α, β) =
degα− deg β. So we choose γ in such a way that

deg(γ) ≥ 1
2(deg(α) + deg(β)) ≥ deg(γr). (2.4.9)

The problem is that we can only bound deg(γ`, s) by deg(α)/2 or deg(α, β) but not by deg(α, β)/2.
Therefore, we split the term (γ`, s) once more. Since s is a leaf, we are in the first subcase. The
degree of γ` is at least one, since γ is not a �-gate. Therefore, the degree of (α, β) is at least two.
If deg(γ`) = 1, then we are done. Otherwise, we choose a multiplication gate δ such that

deg δ ≥ 1
2 deg γ` ≥ deg δr (2.4.10)

where δr is the right child of δ. As before, we can write:

(γ`, s) =
∑

leaf t; δ fulfilling (2.4.10)

(γ`, δ)(δ`, t)(δr, s), (2.4.11)

Altogether, we get
(α, β) =

∑
s,γ,t,δ

(α, γ)(γ`, δ)(δ`, t)(δr, s)(γr, β)

where the sum is over all leaves s and γ fulfilling (2.4.6) and over all leaves t and δ fulfilling (2.4.10).
The sum has polynomial size.

2.4.12 Exercise. (**) Again, verify the degree constraints.

2.4.13 Exercise. (**) Let f be a homogenous polynomial of degree d that is computed by a circuit
of size s. Then there is a semi-unbounded circuit of size poly(s, d) and depth O(log d).

Chapter 3

The permanent

3.1 VNP and formulas
A language L is in NP if there is a deterministic polynomial time relation R such that for all x,
x ∈ L iff there is a polynomially long bit string y such that R(x, y) = 1. Think of x being a formula
in 3-CNF and y being an assignment. R(x, y) = 1 means that y satisfies x. The class #P is a class
of functions, to each x we assign the number of y such that R(x, y) = 1, that is, we compute∑

y

[R(x, y) = 1].

Here, the bracket is Iverson bracket, which is one if the Boolean expression is true. So in our
example, we want to count the number of satisfying assignments.

3.1.1 Definition. 1. A p-family (fn) is in VNP, if there are polynomials p and q and a sequence
(gn) ∈ VP of polynomials gn ∈ k[X1, . . . , Xp(n), Y1, . . . , Yq(n)] such that

fn =
∑

e∈{0,1}q(n)

gn(X1, . . . , Xp(n), e1, . . . , eq(n)).

2. A family of polynomials fn is in VNPe if in the definition of VNP, the family (gn) is in VPe.

You can think of the X-variables representing the input and the Y -variables the witness. With
this interpretation, VNP is more like #P. In particular, we will see that the permanent polynomial

pern =
∑
σ∈Sn

X1,σ(1) · · ·Xn,σ(n)

is complete for VNP.

3.1.2 Exercise. (**) Let G = (Gn) be a sequence of graphs. Assume that Gn has nodes 1, . . . , n.
Let indG be the family of polynomials that is defined by

indG,n =
∑
I

∏
i∈I

Xi

where the sum is taken over all independent sets I of Gn. Prove that indG is in VNP.

3.1.3 Definition. Let C be an arithmetic circuit.

17

CHAPTER 3. THE PERMANENT 18

1. A parse tree of C is defined recursively as follows: Every circuit consisting of one node is a
parse tree. If the size of C is larger than one, let g be the output gate and g1 and g2 be its
children. Let C1 and C2 be the subcircuits with output gates g1 and g2. If g is an addition
gate, then we get the set of all parse trees by either taking a parse tree of C1 or a path tree of
C2 and connecting it to g. If g is a multiplication gate, then we get the set of all parse trees
by taking a parse of C1 and a parse tree of C2 and connecting both to g.

2. The set of all parse trees of C is denoted by pt(C).

3. The weight w(T) of a parse tree T is the product of the labels of its leaves.

For every multiplication gate, we have to include both children in the parse tree, for every
addition gate we have to choose one of them. Note that a gate may occur several times in a
parse tree, since it is reused in the circuit several times. For each occurrence in the parse tree, we
introduce a new copy. (Otherwise, it would not be a tree.)

3.1.4 Exercise. Let C be a circuit and p be the polynomial computed by C. Prove (for instance
by structural induction) that

p =
∑

T∈pt(C)

w(T).

3.1.5 Lemma. A circuit C is multiplicatively disjoint if every parse tree of C is a subcircuit of
C.

Proof. Assume that C is not multiplicatively disjoint. Then there is a node v in C such that there
a two node disjoint paths to some multiplication gate g. Since g is a multiplication gate, these two
paths can be extended to a parse tree.

Conversely, if there is a parse tree T that is not a subcircuit of C, then there are gates g and
h in T such that there a two nodes disjoint path from g to h. Since T is a parse tree, h is a
multiplication gate. Thus, C is not multiplicatively disjoint.

3.1.6 Lemma. Let C be a multiplicatively disjoint circuit with edge set E. For each edge e ∈ E,
let Xe be an indeterminate. There is a formula F in the Xe’s of size polynomial in the size of C
such that for every a ∈ {0, 1}|E|, F (a) is the weight of the parse tree, if the edges “selected” by the
vector a form a parse tree in C, and zero otherwise.

Proof. For every node v in C, we introduce an additional variable Yv. Note that for {0, 1} valued
variables X and Y , we can simulate Boolean AND by XY and Boolean NOT by 1 −X. We can
write the fact that a given vector encodes a parse tree by the following Boolean expressions:∧

(i,j)∈E

X(i,j) ⇒ Yi ∧ Yj

ensures that whenever an edge is selected, its end points are selected, too. Let g be the output
gate of C. Then

Yg

ensures that the output gate is selected. For a gate g, let `(g) and r(g) be its children. The
following expression ensures that for every multiplication gate g that is selected, both incoming
edges are selected, too. ∧

multiplication gate g
Yg ⇒ X(`(g),g) ∧X(r(g),g).

CHAPTER 3. THE PERMANENT 19

If we replace the Boolean AND on the righthand side by a Boolean XOR, we get an expression
that checks for every selected addition gate whether exactly one of the incoming edges is chosen.
Finally, we have to check that every selected gate has at least one outgoing edge. This is done by
the following expression: ∧

v∈V

Yv ⇒ ∨
(v,u)∈E

X(v,u)

 .

We can eliminate all occurences of the newly introduced variables by replacing Yv by the expression∨
(v,u)∈E

X(v,u)

and Yg by 1. The Boolean AND of these expressions is a Boolean formula that is true iff the vector
a encodes a parse tree. By the considerations above, it can be replaced by an arithmetic formula.

If a encodes a parsetree, we can get the corresponding weight by the following expression:∏
v∈V

(Yv · wv + 1− Yv).

Here wv is the label of v if it is an input gate and 1 otherwise. Again, we can eliminate the Yv’s
as above. The product of the two expressions, one for checking whether a is a parse tree and one
for computing its weight, is the formula F .

3.1.7 Corollary. Let f be a polynomial computed by an arithmetic circuit of size s. Then there
is an arithmetic formula F of size polynomial in s and a polynomial p such that

f(X) =
∑

a∈{0,1}p(s)

F (X, a).

3.1.8 Theorem. VNP = VNPe.

Proof. Let (fn) be in VNP and (gn) ∈ VP such that

f(X) =
∑

e∈{0,1}q(n)

gn(X, e).

As seen above, there is a formula Fn of polynomial size such that

gn(X,Y) =
∑

a∈{0,1}p(n)

Fn(X,Y, a).

Therefore,
f(X) =

∑
e∈{0,1}p(n), a∈{0,1}q(n)

Fn(X, e, a).

While the statement of the theorem sounds astonishing at a first glance, it just uses the fact that
we can write the result of a polynomially large circuit by an exponential sum over a polynomially
large formula and then combines the two exponential sums into one.

CHAPTER 3. THE PERMANENT 20

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

u′

v v′

u
−1

u u′

v v′

zx

y

−2

Figure 3.1: The equality gadget. The pair of edges (u, v) and (u′, v′) of the left-hand side is connected
as shown on the right-hand side.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Figure 3.2: First row: The one possible configuration if both edges are taken. Second row: The six
possible configurations if none of the edges is taken.

3.2 Hardness of the permanent
Let G = (V,E) be an edge weighted graph. Recall that a cycle cover C of G is a selection of node
disjoint directed cycles such that every node is contained in exactly one cycle. The weight w(C)
of C is the product of the weight of the edges in C. Cycle covers can be viewed as the graph of a
permutation. The cycles in the cycle cover correspond to the cycles in the cycle decomposition of
a permutation. If we also write G for the weighted adjacency matrix of G (by abuse of notation),
then

per(G) =
∑

cycle cover C of G
w(C).

Let G be a graph and e = (u, v) and e′ = (u′, v′) be two edges in G. As a first step, we want
to replace G by a graph Ĝ such that per(Ĝ) is the sum over all w(C) such that C is a cycle cover
of G that either contains both e and e′ or none of them. This is achieved by subdividing the edges
an connecting them by an equality gadget as depicted in Figure 3.1.

Let C be a cycle cover of G that takes both edges. Then there is one way to extend this to a
cycle cover of Ĝ. The weight of this new cycle cover is 2 ·w(C), see Figure 3.2. When C does not
take any of the two edges, then there are six ways to extend C. These six ways sum up to weight
2 · w(C).

If C is a cycle cover of G that takes only one edge of e and e′, say e, then there are two ways
to extend C to Ĝ, see Figure 3.3. The weight of these covers is the same, but they differ in sign,
therefore the contributions of these two covers cancel each other.

Finally, there are inconsistent ways to cover the equality gadget in Ĝ, that is, covers of Ĝ that
do not correspond to any cover in G, see Figure 3.3. Again, we can form pairs of these covers such
that the contribution of these covers cancel each other.

CHAPTER 3. THE PERMANENT 21

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

Figure 3.3: First row: The two covers of the equality gadget when only one edge is taken. Second row:
Inconsistent covers of the equality gadget. (In both rows, there is a corresponding symmetric
case).

3.2.1 Lemma. Let F be a field of characteristic distinct from 2. Let G be a graph and e and e′ be
edges in G. Then there is a graph Ĝ such that

1
2per(Ĝ) =

∑
C

w(C),

where the sum is taken over all cycle covers C of G that either use both of e and e′ or none of
them.

Let (fn) ∈ VNP and let (gn) ∈ VP such that

fn(X1, . . . , Xp(n)) =
∑

e∈{0,1}q(n)

gn(X1, . . . , Xp(n), e1, . . . , eq(n)).

We may assume that (gn) ∈ VPe. We proved that every polynomial that is computed by a
formula of size s is a projection of a determinant of polynomial size. The same proof yields that
it is also a projection of a polynomially large permanent, since the cycle covers of the arithmetic
branchning program occuring in the proof all had the same sign. It follows that we can write fn as
an exponential sums of permanents. The permanent itself is an exponential sum. So we are done
if we can “squeeze” the outer exponential sum into the inner one.

The rosette graph of size t consists of a directed cycle of size t. The edges c1, . . . , ct of this cycle
are called connector edges. The head and the tail of each connector edge are connected by a path
of length two. Every node has a self-loop. All edges have weight one in the rosette graph. The
following fact is easily verified:

3.2.2 Lemma. Let S be a subset of the connector edges.

1. If S is nonempty, then there is exactly one cycle cover of the rosette graph containing the
edges in S and no other connector edges.

2. There are two cycle covers containing no connector edges.

gn is a projection of a polynomially large permanent. This means that there is an edge weighted
graph G (with the weights being field elements and variables) such that

gn(X1, . . . , Xp(n), Y1, . . . , Yq(n)) =
∑

cycle cover C
w(C).

CHAPTER 3. THE PERMANENT 22

Figure 3.4: The rosette graph of size four. Connector edges are drawn dashed.

Assume that the variable Yi occurrs `i times in G. We add a rosette graph of size `i and connect
every edge labeled with Yi with one of the connector edges of the rosette. All edges inherit their
weights from the corresponding subgraphs except that the edges carrying a weight Yi get the weight
1 instead. We do this for each i. Assume, we introduced t equality gadgets altogether. We will add
one isolated self loop with weight 1/2t to compensate for the 2 that is introduced by every equality
gadget. (The characteristic of k should be distinct from 2 for this!) Let H be the resulting graph.

Let C be a cycle cover of G. w(C) is a monomial m(X1, . . . , Xn, Y1, . . . , Yq(n)). Let I be the
set of indices such that Yi appears in w(C). What is the contribution of C in∑

e

gn(X1, . . . , Xp(n), e1, . . . , eq(n))?

If Yi appears in w(C), then we have to set ei = 1, otherwise, the constribution to the exponential
sum will be zero. If Yi does not appear in w(C), then we can set ei to 0 or 1. Therefore, the
contribution of C is

2q(n)−|I|m(X1, . . . , Xp(n), 1, . . . , 1).
We call a cycle cover D of H consistent if for every equality gadget, either both edges it connects

are chosen or none of them is chosen. A cycle cover C of G can be extended to a consistent cycle
cover of H. If an edge with label Yi appears in C, then we can extend it in one possible way in
the corresponding rosette. If no such edge appears in C then there are two ways. In total, there
are 2q(n)−|I| extensions. By Lemma 3.2.1, we know that

perH =
∑

consistent D
w(D).

Therefore,
perH =

∑
e

gn(X1, . . . , Xp(n), e1, . . . , eq(n)).

3.2.3 Theorem. Over fields of characteristic distinct from 2, per is VNP-complete.

Proof. It remains to show that per ∈ VNP. It is quite easy to write a Boolean expression E(Y) of
polynomial size which checks whether a given matrix Y ∈ {0, 1}n×n is a permutations matrix. As
done before, we can write this as an equivalent arithmetic formula Ê(Y). Now it is easy to check
that

perX =
∑

Y ∈{0,1}n×n

Ê(Y)
∏
i,j

(Xi,jYi,j + 1− Yi,j).

CHAPTER 3. THE PERMANENT 23

Over fields of characteristic 2, the permanent can only be VNP-hard, if VNP = VP, since it
conincides with the determinant in this case. But there are other VNP-complete polynomials that
are also hard over fields of characteristic two.

3.3 Valiant’s conjecture
Valiant’s conjecture is the algebraic counterpart of the P versus NP conjecture.

3.3.1 Conjecture (Valiant). VP (VNP.

Since the permanent is VNP-complete, we can rephrase this conjecture as

per /∈ VP.

Since VPws ⊆ VP, we can formulate a weaker (or stronger, depending on your point of view)
version of Valiant’s conjecture, namely, VNP (VPws. Since VPws has a nice complete family, this
version can be reformulated as

per 6≤p det.

3.4 Further exercises
3.4.1 Exercise. (Valiant’s criterion, ***) Let φ be a function in #P. Define a family of polyno-
mials (fn) by

fn =
∑

e∈{0,1}n

φ(e)Xe1
1 . . . Xen

n .

Prove that (fn) ∈ VNP.

Chapter 4

Determinantal complexity

The question whether VPws = VNP can be rephrased as the question whether det is p-projection of
per. Related questions have been studied. One of them is the so-called determinantal complexity.

4.0.1 Definition. The determinantal complexity D(f) of a polynomial f ∈ F[X1, . . . , Xn] is the
smallest s such that there are affine linear forms αi,j ∈ F[X1, . . . , Xn], 1 ≤ i, j ≤ s, such that we
can write f = dets(αi,j).

4.0.2 Lemma. (fn) ∈ VPws iff D(fn) is p-bounded.

Proof. If (fn) ∈ VPws, then it is a p-projection of det. Therefore, its determinantal complexity
is p-bounded. For the other direction, note that the determinant has weakly skew circuits of
polynomial size. We can compute the affine linear forms by weakly skew circuits of polynomial
size. Therefore, (fn) has weakly polynomial circuits of polynomial size.

4.1 Mignon-Resssayre bound
In this section, we prove the best lower bound for the determinantal complexity, due to Mignon
and Ressayre [MR04].

4.1.1 Observation. ∂
∂Xi,j

pern(X) is the permanent of the (n− 1)× (n− 1) matrix obtained from
X by deleting the ith row and the jth column. The same is true for the determinant.

For a matrix A ∈ Fn×n, let Hper(A) denote the n2×n2-matrix with the entry in row (i, j) and
column (k, `) being equal to

∂

∂Xi,j∂Xk,`
pern(A).

That is, we take the permanent polynomial, differentiate it twice and then we plug in the values
from the matrix C

For the proof, we need to construct a matrix A such that per(A) = 0 but Hper(A) has full rank
n2. Let A be the matrix

A =

1− n 1 . . . 1

1 1 . . . 1
...

...
1 1 . . . 1

 ,

that is, a1,1 = 1− n and all other entries are 1.

4.1.2 Lemma. per(A) = 0.

24

CHAPTER 4. DETERMINANTAL COMPLEXITY 25

Proof. Like for the determinant, we can do a Laplace expansion of the permanent. It is even easier,
since there are no signs to keep track off. (If you prefer to think in terms of cycle covers, a Laplace
expansion along the ith row just groups the cycle covers depending on which node is visisted right
after node i.)

So we do a Laplace expansion along the first row. Since all other rows are filled only with 1’s,
all the submatrices that we get are the same. We get it once multiplied by 1− n and n− 1 times
multiplied by 1. So the sum is 0.

4.1.3 Lemma. Hper(A) has rank n2.

Proof. When i = j or k = `, then

∂

∂Xi,j∂Xk,`
pern(X) = 0.

This is due to the fact that every monomial contains only one variable from each row or column.
(This property is called set-multilinear).

If i 6= j and j 6= `, then
∂

∂Xi,j∂Xk,`
pern(X)

is the permanent of the submatrix obtained by deleting rows i and k and columns j and ` from
X. If 1 ∈ {i, j, k, `}, then

∂

∂Xi,j∂Xk,`
pern(A) = (n− 2)!,

since the matrix that we obtain from A after deleting the rows and columns is the all-ones-matrix
of size (n− 2)× (n− 2), the permanent of which is (n− 2)!. If 1 /∈ {i, j, k, `}, then

∂

∂Xi,j∂Xk,`
pern(A) = −2(n− 3)!,

since the matrix that we obtain from A in this case has n− 1 in position (1, 1) and 1’s elsewhere.
Using Laplace expansion, one can easily see that the permanent of this matrix is −2(n − 3)!.
Therefore, we have that

Hper(A) = (n− 3)!

0 B B . . . B
B 0 C . . . C

B C 0
...

... C
B C . . . C 0

where

B =

0 n− 2 . . . n− 2

n− 2 0
...

n− 2 . . . n− 2 0

and

C =

0 n− 2 n− 2 . . . n− 2
n− 2 0 −2 . . . −2

n− 2 −2 0
...

... −2
n− 2 −2 . . . −2 0

 .

CHAPTER 4. DETERMINANTAL COMPLEXITY 26

The matrix B has full rank: If we subtract the (n− 1)th row from the nth, then the (n− 2)th row
from the (n− 1)th and so on until we subtract the first row from the second, we get the matrix

(n− 2)

0 1 1 . . . 1
1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
0 0 . . . 1 −1

 .

From the structure of the rows 2 to n it follows that every nontrivial vector in the kernel of the
matrix has to be a nonzero multiple of the all-ones-vector. The scalar product of this vector with
the first row is however nonzero. Therefore, B has full rank. Doing the same transformation with
C, but stopping one rwo earlier, we get the matrix

0 n− 2 n− 2 . . . n− 2
n− 2 0 −2 . . . −2

0 −2 2 . . . 0
...

...
0 0 . . . −2 2

 .

From the structure of the third to nth row, we ge that the entries at positions 2 to n of every
nontrivial vector in the kernel have to be the same. From the first row, it follows that these entries
have to be 0. And finally, the second row tells us that also the first entry has to be zero then.
Therefore, C is also invertible.

We have
CB−1 0 . . . 0

0 I . . . 0
...

...
0 0 . . . I

Hper(A)

CB−1 0 . . . 0

0 I . . . 0
...

...
0 0 . . . I

 = (n− 3)!

0 C C C . . . C
C 0 C . . . C

C C 0
...

... C
C C . . . C 0

= (n− 3)!

0 1 . . . 1

1 0
... 1
1 . . . 1 0

⊗ C.
Since the Kronecker product of two full rank matrices has itself full rank, Hper(A) has full rank.

4.1.4 Theorem. D(pern) ≥ n2/2

Proof. Let s be the determinantal complexity of pern. We know that there are affine linear forms
αi,j(X), 1 ≤ i, j ≤ s such that.

pern(X) = dets(αi,j(X)).
Let A = (ai,j) be the matrix from the previous lemma. Write αi,j(X) = λi,j(X −A) + yi,j , where
λi,j is a homogeneous linear form and yi,j is a constant, i.e., we perform a translation on the
coordinates. Thus,

pern(X) = dets(λi,j(X −A) + yi,j). (4.1.5)
Since pern(A) = 0, we have dets(yi,j) = 0, so Y := (yi,j) is not of full rank. Let S and T be
invertible matrices such that

SY T =
(

0 0
0 It

)

CHAPTER 4. DETERMINANTAL COMPLEXITY 27

for some t < s. Multiplying the matrix on the righthand side of (4.1.5) by(
1/detS 0

0 Is−1

)
S and T

(
1/detT 0

0 Is−1

)
from the left and the right, respectively, does not change its determinant. As(

1/detS 0
0 Is−1

)
SY T

(
1/detT 0

0 Is−1

)
=
(

0 0
0 It

)
(recall that t < s), we can assume w.l.o.g. that (yi,j) is of this form. Define Hdet in the same way
as Hper. Now we differentiate both sides of (4.1.5). We get

Hper(X) = LHdet(αi,j(X −A) + yi,j)LT

for some matrix L with entries from F by the chain rule (see below). Therefore,

Hper(A) = LHdet(Y)LT

and
rkHper(A) = rkHdet(Y).

By the previous Lemma, we know that rank Hper(A) = n2. Therefore, we are done when we show
that rk(Hdet(Y)) ≤ 2s.

Let us first consider the case when t = s− 1. An entry of Hdet(yi,j) is of the form

∂2

∂Xe,f∂Xk,`
dets(yi,j).

This entry can only be nonzero, if differentiating removes the first row and the first column and
the hth row and hth column for any other h. This means that

1. (e, f) = (1, 1) and (k, `) = (h, h),

2. (e, f) = (1, h) and (k, `) = (h, 1),

3. (e, f) = (h, 1) and (k, `) = (1, h),

4. (e, f) = (h, h) and (k, `) = (1, 1).

In the first case, we get one row with s− 1 ones in it. In the fourth case, we get one column with
s− 1 ones in it. In the second case, we get s− 1 different rows, each having a single one and zeros
elsewhere. The third case is similar. Altogether, we get that the rank is at most 2 + 2(s− 1) = 2s.
(In fact, equality holds.)

When t = s − 2, then we have to delete the first and second row and column, respectively, to
get an nonzero entry. Therefore, the rank of the matrix can be at most four, which is less than 2s.

When t < s− 2, then every entry of Hdet(Y) will be zero.

4.1.6 Observation. Let f be a polynomial in Y1, . . . , Ym variables and `1, dots, `m be affine linear
forms in X1, . . . , Xn. Then by the chain rule

∂2

∂Xi∂Xj
f(`1, . . . , `n) =

m∑
s=1

m∑
t=1

∂f2

∂Ys∂Yt
f(`1, . . . , `n) ∂

∂Xi
`s

∂

∂Xj
`t

Note that ∂
∂Xi

`s and ∂
∂Xj

`t are just constants. Let L = (∂
∂Xi

`s)1≤s≤m,1≤i≤n. Then(
∂2

∂Xi∂Xj
f(`1, . . . , `n)

)
= L

(
∂f2

∂Ys∂Yt
f(`1, . . . , `n)

)
LT

CHAPTER 4. DETERMINANTAL COMPLEXITY 28

4.2 Grenet’s construction
The best upper bound of the determinantal complexity is due to Grenet [Gre12]. It is (of course)
exponential. Grenet’s construction even writes the permanent as a projection of the determinant.
It can be easily described in combinatorial terms (see [BES] for an alterative explanation). We
construct a digraph G as follows: The nodes are all subsets of {1, . . . , n}. We identify ∅ and
{1, . . . , n} with each other, so there are 2n − 1 nodes in total. Let S and T be two nodes of G.
There will be an edge from S to T with weight Xi,j if |S| = i − 1, j /∈ S, and T = S ∪ {j}. The
node ∅ will have outgoing edges with weight X1,j to the node {j}, 1 ≤ j ≤ n and incoming edges
with weights Xn,j from the node {1, . . . , n} \ {j}. Furthermore, every node except ∅ gets a self
loop of weight 1.

How does a cycle cover of G look like? Edges go only from nodes S to nodes T of larger
cardinality. Therefore, the graph is “almost” acyclic, we only get cycles since we identified ∅ with
{1, . . . , n}. Every cycle has to go through ∅. So there can be only one cycle which is not a self
loop and since ∅ has no self loop, we have to use one such cycle and cover all other nodes with
self loops. Therefore every cycle cover of G has the same number of cycles and therefore the same
sign.

4.2.1 Observation. Cycle covers of G stand in one-to-one correspondance with permutations in
Sn.

This is due to the fact that every cycle simulates the process of adding the numbers 1, . . . , n
in some particular order to the empty set until we get {1, . . . , n}. Let π be this order. Then the
weight of this cycle is X1,π(i) · · ·Xn,π(n). It follows that

per(G) = per(X)

Since all cycle covers of G have the same sign, per(G) = ±det(G). Thus we haven proven the
following theorem.

4.2.2 Theorem. D(pern) ≤ 2n − 1.

4.3 Why are lower bounds hard?
Kayal [Kay12] proved the following theorem.

4.3.1 Theorem. It is NP-hard to decide whether for two given polynomials f and g (even in the
sparse representation, that is, as a list of monomials), f is an affine projection of g.

One can even formulate the symmetric tensor rank problem over F as a projection problem.
This one has recently shown to be equivalent to the existential theory over the corresponding field,
see [BRS17] for more details.

Bibliography

[AW16] Eric Allender and Fengming Wang. On the power of algebraic branching programs of
width two. Computational Complexity, 25(1):217–253, 2016.

[BC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant
number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[BES] Markus Bläser, David Eisenbud, and Frank-Olaf Schreyer. Ulrich complexity. Differ-
ential Geometry and Applications. to appear.

[Blä01] Markus Bläser. Complete problems for Valiant’s class of qp-computable families of
polynomials. In Jie Wang, editor, Computing and Combinatorics, 7th Annual Interna-
tional Conference, COCOON 2001, Guilin, China, August 20-23, 2001, Proceedings,
volume 2108 of Lecture Notes in Computer Science, pages 1–10. Springer, 2001.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, 1974.

[BRS17] Markus Bläser, Raghavendra Rao, and Jayalal Sarma. Testing polynomial equivalence
by scaling matrices. In Proc. 21st Int. Symp. on Fundamentals of Computation Theory,
2017. to appear.

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory.
Springer, 2000.

[DMM+14] Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, and
Nitin Saurabh. Homomorphism polynomials complete for VP. In Venkatesh Raman
and S. P. Suresh, editors, 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014,
New Delhi, India, volume 29 of LIPIcs, pages 493–504. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2014.

[Gre12] Bruno Grenet. An upper bound for the permanent versus determinant problem, 2012.

[Kay12] Neeraj Kayal. Affine projections of polynomials: extended abstract. In Howard J.
Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
643–662. ACM, 2012.

[MP08] Guillaume Malod and Natacha Portier. Characterizing valiant’s algebraic complexity
classes. J. Complexity, 24(1):16–38, 2008.

[MR04] Thierry Mignon and Nicolas Ressayre. A quadratic bound for the determinant and
permanent problem. International Mathematics Research Notices, 2004(79):4241–4253,
2004.

29

BIBLIOGRAPHY 30

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and com-
plexity. Chicago J. Theor. Comput. Sci., 1997, 1997.

[vzG87] Joachim von zur Gathen. Feasible arithmetic computations: Valiant’s hypothesis. J.
Symb. Comput., 4(2):137–172, 1987.

