Chapter 1.
Introduction to

Dynamic Graph Algorithms

Danupon Nanongkai
KTH, Sweden

ADFOCS 2018
Last edited: Aug. 5, 2018

About This Lecture

What (some) dynamic graph algorithm
designers want.

Plan

1. Dynamic algorithms & update time

2. Example: Dynamic connectivity

3. Intermediate questions, amortization, randomization
4. The story of connectivity

Disclaimer: This session is mostly about upper bounds

Please feel free to ask questions at any time!

DYNAMIC ALGORITHMS
& UPDATE TIME

xample 1: What’s my Erdés number?

(How far am | from Erd&s?)

collaboration network 10 years ago collaboration network today

Example 2: Fastest driving route

Dynamic graph problems

Want: maintain some graph properties

Distance, connectivity, MST, Maximum matching, etc.

Challenge: Graph changes over time

Edge insertions, deletions, weight changes, etc.

Goal: Fast algorithms

Minimize = time to process each update

Remark: Query operation/time is omitted for simplicity

Static vs. Dynamic Graph Algorithms

Whole input graph Graph updates
\ (e.g. Insert/delete edge (u, v))

Q Static algorithm Dynamic algorithm
e

|] -

Property of input graph Property of updated graphs

distance, connectivity, MST, Maximum matching, etc. .
Y & e.g. new values of distance, MST,...

f Running time: Time to return output j
Update time: Time to return output after each update

Remark: Query operation/time is omitted for simplicity

Why Dynamic Algorithms?

Evolving Networks Analysis:

Subroutine for Static Algorithms:

Decremental All-Pairs Shortest Paths
[Roditty-Zwick FOCS’'04]

Decremental SSSP [HKN FOCS’14, 7]
Inverse [SL FOCS’15]
Connectivity on trees (link-cut tree) in 0 (1)

Minimum spanning tree in 5(1)

2-edge connectivity in 0(1)

Decremental min-cut (restricted)

Approx. multi-commodity flow
[Madry STOC’10]

Approx. s-t flow
Interior point method [SL FOCS’'15]
Directed max flow [Goldberg Tarjan STOC'88]

(1 + €)-approx Global min cut, tree packing
[Thorup STOC'01, Karger-Thorup SWAT’00]

Unique perfect matching [Gabow Kaplan Tarjan STOC'99]

Interval Packing, Traveling salesperson [chekuri-Quanrud SODA’17, FOCS'17]

EXAMPLE: DYNAMIC CONNECTIVITY

Notations

* n =number of nodes
* m = number of edges
* polylog(n) is mostly hidden

14

Example

Dynamic Connectivity

Each Update: An edge insertion/deletion.

Maintain: Is the graph connected?

PP G

Output = “not connected” Output = “connected”

Output = “not connected”

Naive algorithms

Solve from scratch every time
(e.g. Breath-First Search)

Update time = O(m)

6 Happy with linear update time?

Do we need to read the whole data @

every time?

n = # of nodes, m=# of edges

17

Ultimate goal

What's the best update time for basic
graph problems under edge updates?

(st-reach, connectivity, distances, min-cut, max-matching, max-flow etc.)

Remarks Other settings (not focused today):
- Queries, e.g. “distance between two nodes = ?”
- Other types of updates, e.g. node updates

Under only edge insertions, we can maintain
connectivity in O(log n) update time

Example: Connectivity, only insertions

Input:

Optlonal

Algorithm: /(l\

Q@G)

M
Foito 2

Output = “not connected”| Output = “not connected” | Output = “connected”

o A0 A0

BHO® Q Yoloh®

Algorithm:

* Maintain a tree for each
connected component

A\ Merge components: make
small tree a subtree

Analysis: O(log n) update time

 Tree depth = O(log n)

e Node’s distance to root
increases = component size
doubles

— <

Under only edge insertions, we can maintain
connectivity in O(log n) update time

How about edge deletions only &
deletions+insertions?

pair (Erd6s number)?

How about higher edge connectivity,
spanning tree, minimum spanning tree?

G How about maintaining distance between a

Can you guess '1,?.3

What’s the right update time for following
problems under edge insertions/deletions?

i) O(m) i) O(polylog n) iii) something else

Answer: It’s complicated ...

1. st-connectivity Randomized or amortized (but not both): Polylog(n)

Exists undirected st-path?

Amortized: Q(m?/2o(1))

2o SHIEEEEI) Worst-case, randomized: May be ®(n497)

Exists directed st-path?

Amortized: Q(m1/2)

3. st-distance Worst-case, randomized: O(n724)

Output length of shortest (directed, weighted) st-path.

n = # of nodes, m=# of edges

24

INTERMEDIATE QUESTIONS
(FOR ALGORITHM DESIGNERS)

Questions
1. Tight update time =7

2. Non-trivial time (beating static)? Polylog time?

Naive

\ Non-trivial /

o/

P0|y|og/ Update time = ?

<Upper bounds

O(1)

Lower bounds>

26

Why polylog update time?
The Class Dynamic P

Input: graph size m

|

#@ Static algorithm

|

Input: Insert/delete (u, v))
size log(m)

l

q@} Dynamic algorithm

!

Output

L In dynamic P? 1

Output
In P?
_ . .
Exist poly(m)-time
algorithm?

Exist pblylog(m)—time
algorithm?

n = # of nodes, m=# of edges

28

Questions

1. Tight update time = ? 3. Answer with relaxations?

2. Non-trivial time (beating static)? Polylog time? 4. Remove relaxations
V

Relaxations
Naive Amortization, Randomization
\ Non-trivial /

POMOg/ Update time = ?

<Upper bounds

O(1)

Lower bounds>

29

Randomized Dynamic Algorithms

* Las Vegas: Expected update time

 Monte Carlo: Wrong output with small probability

Assumption: OblIVIOUS adversary (more on this later)

A= = = —— - .

: Dynamic x

______ - -
- ‘ Algorithm [_ -

Oblivious Adversary ! . Non-Oblivious
e.g. social network data TTTTT T Adversary

from hard disk

30

Amortized Update Time

2
Worst case t <t <t <t oo e "]r,,\
for each update J,,)
time<t time >

Amortized t 'XXE

(“average case”)
after u updates
time < ut » < 3t

Empty-start Assumption (for graphs):
Start from empty graphs

32

Typical dynamic graph algorithms with
amortized time

* Initialize(n): Create an empty n-node graph
* Insert(u,v): Insert edge (u,v)
* Delete(u,v): Delete edge (u,v)

- (optional) Query(u,v): Ask about the current
graph.

Example

Optional

st-Reachability under insertions

Each Update: An edge insertion.

Maintain: Exists directed st-path?

FL P

Output = “no” Output = “no” Output = “yes”

Example

st-Reachability under insertions

Optional

Claim: Exists algorithm with O(m) time after m edge insertions

Algorithm (sketched):

Keep track of nodes reachable from s using directed edges.
— When see new node, explore its out-going edges.

Analysis: Read each edge only once.

) &7 &

Output = “no” Output = “no” Output = “yes”

= newly-read edges

Questions
1. Tight update time =7
2. Non-trivial time (beating static)? Polylog time?

3. Answer with relaxations?
4. Remove relaxations

Relaxations
Amortization, Randomization

Special cases: Decremental, Incremental, ...
(Insertions/Deletions only)

Naive

\ Non-trivial /
\

pper bounds

<u

Polylog/ Types of Dynamicity

Incremental
Only edge insertions, weight decrement Fu"v_dyna mic

both deletions and insertions

O(1) Decremental

Only edge deletions, weight increment

Others: Emergency planning, f-sensitivity, nodes on/off,
offline, etc.

Questions
1. Tight update time =7
2. Non-trivial time (beating static)? Polylog time?

3. Answer with relaxations?
4. Remove relaxations

Relaxations
Amortization, Randomization

Special cases: Decremental, Incremental, ...
(Insertions/Deletions only)

Naive

\ Non-trivial /

"/

PonIog% Update time = ? A

<
o
Conditional lower bounds _6o°
(conjectures-based) &
Cell-probe lower bounds
(information theoretic)

<Upper bounds

O(1)

Lower bounds>

>

Complexity classes
(e.g. Completeness)

40

THE STORY OF DYNAMIC
CONNECTIVITY

The Story of Dynamic Connectivity

Naive

Naive ﬁ Frederickson [stoc’s3] w/m x x

\ Non-trivial V/

EGIN [FOCS'92] Jn x x
Henzinger, King [stoc’es] polylogn v v
T [STOC’00], PD [STOC’04], HHKP [SODA’17] @(lo gn) v v
o) HLT [sToc’es], W [SODA'13] polylogn v -
Kapron King Mountjoy [SODA’13] polylogn x v

Also [GibbKKT’15]
KKPT [ESA’16] n - lglogn x x

(log n)1/2

y/ gl Major open problem polylogn
orjustnz” €

n = # of nodes, m=# of edges 42

Open: Lower bounds for dynamic
connectivity?

Challenges: Need technique that can distinguish
between
 Decremental vs. Incremental Algorithms

— Incremental connectivity is easy

— Decremental connectivity is as hard as the fully-
dynamic one [Wulff-Nilsen STOC’17]

 Randomized vs. Deterministic Algorithms
— Already exists fast randomized algorithms
— even without oblivious adversary assumption

(,&,e@ Suffice: Balanced Sparsest Cut

O [N, Saranurak, Wulff-Nilsen FOCS’17]

The problem (Informally) Lobnceh

Want: Sparse cut with many nodes on| | “*" < x|
both sides (“Balanced”)

Q 0
Known [nsstoc’17]: Randomized almost- lL //
linear-time polylog-approx: adf &°
oo
If derandomized =2
no(l)
Result holds even for dynamic MST

First barrier: Deterministically expander testing
44
*For further consequences of this result, see [ChuGPSSW FOCS’18].

CONCLUSION

Some Jagons

 Update Time
* |ncremental/Decremental Algorithms

e Amortization

— Also: Empty-start assumption®

e Randomization

— Also: Oblivious-adversary assumption

* This is not a common name.

Algorithms designers’ goals:

* Small update time

* Deterministic, worst-case, or at least witout assumptions:
e oblivious-adversary, and
* empty-start.

\0
&

Questions to keep in mind when prove lower bounds o
N

Does your lower bound hold for randomized and amortized algorithms?

* If yes for amortized: Hold when start from empty graphs?

e If yes for randomized: Hold for oblivious adversary?

If all answers are yes = Algorithms designer can give up

Heads-up

Good news: “Yes” for most lower bounds we will see.
Bad news: We lack lower bound techniques to separate
* randomized vs. deterministic algorithmes,

e amortized vs. worst-case bounds, and

* incremental vs. decremental algorithms.

Questions?

Acknowledgements:
Sayan Bhattacharya, Jan van den Brand, Deeparnab Chakraborty, Sebastian Forster, Monika Henzinger, Christian
Wulff-Nilsen, Thatchaphol Saranurak

This project has received funding from the European Research Council (ERC) under the
European Union's Horizon 2020 research and innovation programme under grant agreement
No 715672 56

