Chapter 1.

Introduction to Dynamic Graph Algorithms

Danupon Nanongkai

KTH, Sweden

About This Lecture

What (some) dynamic graph algorithm designers want.

<u>Plan</u>

- 1. Dynamic algorithms & update time
- 2. Example: Dynamic connectivity
- 3. Intermediate questions, amortization, randomization
- 4. The story of connectivity

Disclaimer: This session is mostly about upper bounds

Please feel free to ask questions at any time!

Part 1

DYNAMIC ALGORITHMS & UPDATE TIME

Example 1: What's my Erdős number?

(How far am I from Erdős?)

collaboration network 10 years ago

collaboration network today

Example 2: Fastest driving route

Dynamic graph problems

Want: maintain some graph properties

Distance, connectivity, MST, Maximum matching, etc.

Challenge: Graph changes over time

Edge insertions, deletions, weight changes, etc.

Goal: Fast algorithms

Minimize update time = time to process each update

Static vs. Dynamic Graph Algorithms

Running time: Time to return output

Update time: Time to return output after each update

Why Dynamic Algorithms?

Evolving Networks Analysis:

Subroutine for Static Algorithms:

Decremental All-Pairs Shortest Paths [Roditty-Zwick FOCS'04]	Approx. multi-commodity flow [Madry STOC'10]
Decremental SSSP [HKN FOCS'14, ?]	Approx. s-t flow
Inverse [SL FOCS'15]	Interior point method [SL FOCS'15]
Connectivity on trees (link-cut tree) in $ ilde{O}(1)$	Directed max flow [Goldberg Tarjan STOC'88]
Minimum spanning tree in $ ilde{O}(1)$	$(1+\epsilon)$ -approx Global min cut, tree packing [Thorup STOC'01, Karger-Thorup SWAT'00]
2-edge connectivity in $ ilde{\mathcal{O}}(1)$	Unique perfect matching [Gabow Kaplan Tarjan STOC'99]
Decremental min-cut (restricted)	Interval Packing, Traveling salesperson [Chekuri-Quanrud SODA'17, FOCS'17]

Part 2

EXAMPLE: DYNAMIC CONNECTIVITY

Notations

- n = number of nodes
- m = number of edges
- polylog(n) is mostly hidden

Example

Dynamic Connectivity

Each Update: An edge insertion/deletion.

Maintain: Is the graph connected?

Output = "not connected"

Output = "connected"

Output = "not connected"

Naïve algorithms

Solve from scratch every time

(e.g. Breath-First Search)

Update time = O(m)

- ? Happy with linear update time?
- Po we need to read the whole data every time?

Ultimate goal

What's the **best update time** for basic graph problems under edge updates?

(st-reach, connectivity, distances, min-cut, max-matching, max-flow etc.)

Remarks Other settings (not focused today):

- Queries, e.g. "distance between two nodes = ?"
- Other types of updates, e.g. node updates

Example

Under **only edge insertions**, we can maintain connectivity in **O(log n)** update time

Example: Connectivity, **only insertions**

Algorithm:

- Maintain a tree for each connected component
- Merge components: make small tree a subtree

Analysis: O(log n) update time

- Tree depth = O(log n)

Under **only edge insertions**, we can maintain connectivity in **O(log n)** update time

- How about edge deletions only & deletions+insertions?
- How about maintaining distance between a pair (Erdős number)?
- How about higher edge connectivity, spanning tree, minimum spanning tree?

Can you guess 1??>

What's the *right* update time for following problems under edge insertions/deletions?

i) O(m) ii) O(polylog n) iii) something else

Answer: It's complicated ...

1. st-connectivity

Randomized or amortized (but not both): Polylog(n)

Exists undirected st-path?

2. st-reachability

Amortized: $\Omega(m^{1/2-o(1)})$

Worst-case, randomized: May be $\Theta(n^{1.407})$

Exists directed st-path?

Amortized: $\Omega(m^{1/2})$

Worst-case, randomized: $O(n^{1.724})$

Output length of shortest (directed, weighted) st-path.

3. st-distance

Part 3

INTERMEDIATE QUESTIONS (FOR ALGORITHM DESIGNERS)

Questions

- 1. Tight update time = ?
- 2. Non-trivial time (beating static)? Polylog time?

Why polylog update time?

The Class **Dynamic P**

Exist poly(m)-time algorithm?

Exist polylog(m)-time

algorithm?

Questions

- 1. Tight update time = ?
- 2. Non-trivial time (beating static)? Polylog time?
- 3. Answer with relaxations?
- 4. Remove relaxations

Relaxations

Amortization, Randomization

Update time = ?

Lower bounds

Randomized Dynamic Algorithms

- Las Vegas: Expected update time
- Monte Carlo: Wrong output with small probability

Assumption: Oblivious adversary. (more on this later)

Amortized Update Time

Worst case t

for each update time $\leq t$

Amortized t

("average case") after u updates time $\leq ut$

Empty-start Assumption (for graphs):

Start from empty graphs

Typical dynamic graph algorithms with amortized time

- Initialize(n): Create an empty n-node graph
- Insert(u,v): Insert edge (u,v)
- Delete(u,v): Delete edge (u,v)
- (optional) Query(u,v): Ask about the current graph.

Example

st-Reachability under insertions

Each Update: An edge insertion.

Maintain: Exists directed st-path?

Output = "no"

Output = "no"

Output = "yes"

Example

st-Reachability under insertions

<u>Claim</u>: Exists algorithm with **O(m)** time after **m** edge insertions

Algorithm (sketched):

Keep track of nodes reachable from **s** using directed edges.

When see new node, explore its out-going edges.

Analysis: Read each edge only once.

= newly-read edges

Output = "no"

Output = "no"

Output = "yes"

Questions

- 1. Tight update time = ?
- 2. Non-trivial time (beating static)? Polylog time?
- 3. Answer with relaxations?
- 4. Remove relaxations

Questions

- 1. Tight update time = ?
- 2. Non-trivial time (beating static)? Polylog time?
- 3. Answer with relaxations?
- 4. Remove relaxations

Relaxations

Amortization, Randomization

Special cases: Decremental, Incremental, ... (Insertions/Deletions only)

Update time = ?

Conditional lower bounds (conjectures-based)

Cell-probe lower bounds (information theoretic)

Complexity classes (e.g. Completeness)

Part 4

THE STORY OF DYNAMIC CONNECTIVITY

The Story of Dynamic Connectivity

Reference	Update Time	Amortized?	Random?
Naïve	m	*	×
Frederickson [STOC'83]	\sqrt{m}	*	*
EGIN [FOCS'92]	\sqrt{n}	*	×
Henzinger, King [STOC'95]	polylog n	✓	✓
T [STOC'00], PD [STOC'04], HHKP [SODA'17]	$\widetilde{\Theta}(\log n)$	✓	✓
HLT [STOC'98], W [SODA'13]	polylog n	✓	×
Kapron King Mountjoy [SODA'13] Also [GibbKKT'15]	polylog n	1×3	✓
KKPT [ESA'16]	$\sqrt{n} \cdot \frac{\log \log n}{(\log n)^{1/2}}$	×	*

Major open problem		×	×
	or just $n^{\overline{2}^{-\epsilon}}$		

Open: Lower bounds for dynamic connectivity?

Challenges: Need technique that can distinguish between

- Decremental vs. Incremental Algorithms
 - Incremental connectivity is easy
 - Decremental connectivity is as hard as the fullydynamic one [Wulff-Nilsen STOC'17]
- Randomized vs. Deterministic Algorithms
 - Already exists fast randomized algorithms
 - even without oblivious adversary assumption

Suffice: Balanced Sparsest Cut

[N, Saranurak, Wulff-Nilsen FOCS'17]

The problem (Informally)

Want: **Sparse** cut with many nodes on both sides ("Balanced")

Known [NS STOC'17]: Randomized almostlinear-time polylog-approx*

If derandomized →

Update Time	Amortized?	Random?
n ^{o(1)}	×	×

Result holds even for dynamic MST

First barrier: Deterministically expander testing

^{*}For further consequences of this result, see [ChuGPSSW FOCS'18].

CONCLUSION

Some Jagons

- Update Time
- Incremental/Decremental Algorithms
- Amortization
 - Also: Empty-start assumption*
- Randomization
 - Also: Oblivious-adversary assumption

Algorithms designers' goals:

- Small update time
- Deterministic, worst-case, or at least witout assumptions:
 - oblivious-adversary, and
 - empty-start.

Questions to keep in mind when prove lower bounds

Keep in mind!

Does your lower bound hold for **randomized** and **amortized** algorithms?

- If yes for amortized: Hold when start from empty graphs?
- If yes for randomized: Hold for **oblivious adversary**?

If all answers are yes \rightarrow Algorithms designer can give up

Heads-up

Good news: "Yes" for most lower bounds we will see.

Bad news: We lack lower bound techniques to separate

- randomized vs. deterministic algorithms,
- amortized vs. worst-case bounds, and
- incremental vs. decremental algorithms.

Questions?

Acknowledgements:

Sayan Bhattacharya, Jan van den Brand, Deeparnab Chakraborty, Sebastian Forster, Monika Henzinger, Christian Wulff-Nilsen, Thatchaphol Saranurak

