Chapter 2, Cont. OMv Conjecture implies OuMv Conjecture

Danupon Nanongkai

KTH, Sweden

Notice: Technique similar to APSP → Negative Triangle

ADFOCS 2018 Last edited: Aug. 15, 2018

RECAP FROM LAST TIME

OMv Conjecture

(Online Matrix-Vector Multiplication) [Henzinger, Krinninger, N, Saranurak, STOC'15]

Conjecture: No algorithms with **total** time $O(n^{3-\epsilon})$ **Current Best:** $O(n^3/2^{\sqrt{\log n}})$ [Larsen-Williams SODA'17]

Example on board?

OuMv Conjecture (Matrix Form)

Input: $n \times n$ Boolean matrix M Then: n pairs of Boolean vectors (u_i, v_i)

Conjecture: No algorithms with **total** time $O(n^{3-\epsilon})$ even with polynomial time to process M! <u>Theorem 1</u>: OMv conjecture holds with polynomial preprocessing time.

<u>Details</u>:

- <u>OMv Conjecture (recall)</u>: No algorithms with **total** time $O(n^{3-\epsilon})$.
- <u>OMv' Conjecture</u>: No algorithms with **total** time $O(n^{3-\epsilon})$, even with polynomial time to process M!

<u>Claim</u>: OMv Conjecture implies OMv' Conjecture <u>Idea</u>: Partition M!

<u>Theorem 1</u>: OMv conjecture holds with polynomial preprocessing time.

Main Idea: Divide M into submatrices of small dimension n'

- Preprocessing time $poly(n') \ll n^2$ per element in M (when n' small enough)
- Time for each multiplication is still better than the trivial $(n')^3$ time if n' is not too small.

Proof (sketched):

1. Suppose algorithm A can solve OMv with n^{10} time for preprocessing M and $O(n^{2.9})$ time after that. We will construct an algorithm with $O(n^{2.99})$ time in total.

2. Divide M into submatrices each of dimension $n' \times n'$, where $n' = n^{1/20}$.

For each submatrix M':

- a. Preprocess in $(n')^{10} = n^{1/2}$ time.
 - There are at most n^2 submatrices $\rightarrow O(n^{2.5})$ total preprocessing time
- b. Handle every group of n' vectors v_i in $(n')^{2.9}$ time.
 - <u>Details</u>: "Roll-back" to the preprocessing stage after every n' pairs.
 - Time over n/n' groups and $\left(\frac{n}{n'}\right)^2$: $(n')^{2.9} \times \left(\frac{n}{n'}\right)^3 = n^{3-1/200}$

<u>Claim 2</u>: OMv' conjecture implies OuMv conjecture

OMv' conjecture implies OuMv conjecture

<u>Idea:</u> Suppose we can compute each uMv in $n^{1.9}$ time. For each vector v, use u to **binary search** for i s.t. $(Mv)_i = 1$.

- <u>Problem</u>: To find all 1's in Mv needs to compute uMv up to n times $\rightarrow n^{2.9}$ to compute one Mv.
- <u>Fix</u>: Partition *M*!

OMv' conjecture implies OuMv conjecture

Algorithm Sketch:

- 1. Divide M into submatrices each of dimension $n' \times n'$, where $n' = n^{1/2}$.
- 2. To find $i \leq \sqrt{n}$ s.t. $(Mv)_i = 1$, compute u'M'v' with u' = (1, 1, ...) on each submatrix M' on top \sqrt{n} rows.
- 3. $u'M'v' = 0 \rightarrow \text{Ignore } M' \text{ from now on}$
- 4. $u'M'v' = 1 \rightarrow$ Continue binary search within M'
- 5. Repeat with coordinate *i* ignored. Do the same for other rows.

Analysis

Algorithm Sketch:

- 1. Divide M into submatrices each of dimension $n' \times n'$, where $n' = n^{1/2}$.
- 2. To find $i \le \sqrt{n}$ s.t. $(Mv)_i = 1$, compute u'M'v' with u' = (1, 1, ...) on each submatrix M' on top \sqrt{n} rows.
- 3. $u'M'v' = 0 \rightarrow \text{Ignore } M' \text{ from now on}$
- 4. $u'M'v' = 1 \rightarrow$ Continue binary search within M'
- 5. Repeat with coordinate *i* ignored. Do the same for other rows.

Time to compute each Mv: Suppose u'M'v' takes $(n')^{1.9}$. For each matrix M':

- 1. $u'M'v' = 0 \rightarrow \text{Ignore } M' \text{ from now on } \rightarrow \text{Happens only once for}$ each M', total time = $(n')^{1.9} \times \left(\frac{n}{n'}\right)^2 \ll n^2$
- 2. $u'M'v' = 1 \rightarrow$ Continue binary search within $M' \rightarrow$ Will find new coordinate, thus happens only once for each coordinate. Total time = $(n')^{1.9} \times n \ll n^2$.

Questions?

Thanks to co-authors:

Sayan Bhattacharya, Jan van den Brand, Deeparnab Chakraborty, Sebastian Forster, Monika Henzinger, Christian Wulff-Nilsen, Thatchaphol Saranurak

This project has received funding from the *European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme* under grant agreement No **715672**