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ADFOCS Exercise Set #1 
Danupon Nanongkai 

 

Main Problems 

1. Weighted Global Min-Cut.  Given an undirected, weighted, graph 𝐺 = (𝑉,  𝐸),  a global 

min-cut is a partition of V into two subsets (A, B) such that the sum of weights of edges 

between A and B is minimized.  Prove that maintaining the value of global min-cut exactly 

under the following operations admits no O(𝑛1−𝜖) amortized update time assuming the 

OMv conjecture: 

• Initialize(n): Create an empty n-node graph.  

• Insert(u, v, w): Insert an edge between nodes u and v of weight w, if such edge does 

not already exist.  

• Delete(u, v): Delete edge (u,v) 

Related works: In contrast to the above, it was known that one can maintain a (1 + 𝜖)-

approximate value of global min-cut in 𝑂(√𝑛) time. It is a major open problem whether this 

can be improved to 𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛) (such update time exists for (2 + 𝜖)-approximation). 

2. Perfect matching. Given an undirected, unweighted, graph 𝐺 = (𝑉,  𝐸), a matching is a set 

of edges without common vertices.  The perfect matching is a matching which matches all 

vertices of the graph. Prove that maintaining if the graph has a perfect matching under edge 

insertions and deletions admits no O(𝑛1−𝜖)  amortized update time, assuming the OMv 

conjecture. 

Remark: If you find the above too hard, try to prove a lower bound for maximum matching 

instead.  

3. Matching without augmenting paths of length 5. An augmenting path for a matching 𝑀 is a 

path with an odd number of edges 𝑒1, 𝑒2, . . . , 𝑒𝑘 such that 𝑒𝑜𝑑𝑑 ∉ 𝑀 not in M and 𝑒𝑒𝑣𝑒𝑛 ∈

𝑀. Consider the problem of maintaining a matching without  an augmenting path of length 

5 or less, where after each edge deletion and insertion the algorithm has to output how the 

maintained matching changes. Prove that an algorithm for this problem admits no O(𝑛1−𝜖) 

amortized update time, assuming the OMv conjecture. 

Related works: Since perfect matching admits a high lower bound, recent research has been on 

approximating maximum matching size. The 2- and the 3/2-approximation algorithms of 

Baswana et al. (FOCS’11) and  Neiman-Solomon (STOC’13) exclude length 1 and 3 augmenting 

paths. The above shows a huge lower bound for the same approach for 5/4-approximation.  
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4. (Open-ended question) Dynamic diameter. Prove as high lower bound as possible for 

maintaining the diameter of an unweighted graph undergoing edge insertions and 

deletions.  

Remark: Don’t be surprised if the OMv conjecture does not imply a strong lower bound.  

5. (Bonus question by Jan van den Brand) Matrix inverse under row and column updates. 

Consider the problem of maintaining a matrix inverse (over finite fields or rational 

numbers). An algorithm for this problem should handle the following operations: 

• Initialize(𝒏, 𝒊, 𝒋): Create an 𝑛 × 𝑛 identity matrix 𝑨. Fix the value of i and j (the value 

of 𝐴𝑖𝑗
−1 has to be returned after every update). 

• Row-Update (𝒌, 𝒗): Change the k-th row of 𝐴 to vector 𝑣. 

• Column-Update (𝒌, 𝒗): Change the k-th column of 𝐴 to vector 𝑣. 

After each update, the algorithm should output the value of 𝐴𝑖𝑗
−1 or output that 𝐴 is not 

invertible. Prove that an algorithm for this problem admits no O(𝑛2−𝜖) amortized update 

time, assuming the OMv conjecture.  

Related works: In contrast to the above, O(𝑛2−𝜖) worst-case update time can be achieved if 

only row- or column-updates are allowed [Sankowski, FOCS’04]. 

 

Other problems (to warm-up and complete gaps from the lectures) 

a) A vertex cover in a graph is a set of nodes 𝑆 such that for every edge (𝑢,  𝑣), either 𝑢 or 

𝑣 is in 𝑆. Consider the problem where a fixed graph 𝐺 is given and an update is an 

insertion or deletion of a node to and from 𝑆. After each update, the algorithm has to 

say whether 𝑆 is a vertex cover. Prove that this problem admits no 𝑛1−𝜖 amortized 

update time.  

b) In the lecture, we proved that there is no dynamic st-reachability algorithm with 𝑛1−𝜖 

amortized update time. Show that there is also no algorithm with 𝑚
1

2
−𝜖 amortized 

update time.  

c) In the lecture, we sketched how to reduce from the 𝑂𝑀𝑣 conjecture to the 𝑂𝑢𝑀𝑣 

conjecture. Show a reduction from the 𝑂𝑀𝑣 conjecture to the 𝛾 − 𝑂𝑢𝑀𝑣 conjecture. 

  


