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Learning and Games
Price of Anarchy and Game Dynamics

Day 3:
 Learning in changing environments
Next: Can learning do better than Nash?



Summary from last two days

simple games and variants:
* matching pennies,

e coordination,
 prisoner’s dilemma,

* Rock-paper-scissor

Learning algorithms

* Fictitious play, and smoothed
versions

No-regret as outcome of learning or
as a behavioral model

Price of Anarchy and learning
outcomes in

* Congestion games, such as traffic
routing

* Auction games

Learning in multi-item auctions is
hard,

Alternate learning we can do instead



Quality of

Price of Anarchy
Papadimitriou’99]

Koutsoupias-
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aNash Opt

_earning Outcome

Assuming no-regret learners in fixed
game: [Blum, Hajiaghayi, Ligett, Roth’08,
Roughgarden’09]

PoA = lim L1 cost(a)
T—00 T Opt

Lykouris, Syrgkanis, T. 2016] dynamic population

T
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L cost(at,vh)

Uinds ZZ:1 Opt(v?)
where v! is the vector of player types at time t



Today’s context: unit demand bidders in
second price auction

Value if i gets subset S is v;(S)

f le: v; = [ i

or example: v;(S) I})gsxvu
Optimum is max value matching!

M ZijEM* Vij

Second price:
* Bid vector (b;1, bip, .., bin),
* Each item sold on 2" price (max wins pays next price)



Second Price Auction (Vickrey) (%) = v; — p

* Bidding the true value b; = v; is dominant strategy p = ax b;
* u;(v;, b_;) = u;(b) for any bid vector b !
ui(x) =0
* Yet: there are many other equilibria.
* Example: values 100, 5,4,3,2,1
e Bids : 994,99, 4, 3, 2,1 are full information Nash with bidder 1
winning
e Bids 0, 101, 4, 3, 2, 1 are full information Nash with bidder 2
winning
* |s either likely?
* Bidding b; > v; is dominated strategy!!! b; = v; is better




29 price multi-item, unit demand

* Learning to get no-regret is NP-hard (low regret)
Can learn if
* Bid always only on one item: (0,.., 0, bl-j, 0,..,0)
Why? Bidding v;; on selected item j is dominant strategy!

# strategies is n=#items, and we get
Yo ui(s7) = (1 - ©)max X,u;(x,5) — O(
* Bid is either 0 or v;; on all items (last time)
Tewi(sY) = (1 — e)max X (x, 57) — 0()

logn
)



2" price and Price of Anarchy

* Is no-regret enough?
* No! recall example with bid 101
* This is not a problem with 15t price. Why?

* No overbidding assumption: ). ;e b;j < v;(S) for all §
* Dominant strategy if bidding for one item only
* Not true always!



Price of Anarchy with second price
with no overbidding

Recall Roughgarden smoothness version:
* Rev(s) + X wi(s;,s—) = A2, vi(s™) — p X vi(s)
implies POA o

pi1
' A
Claim: unit demand buyers with no-overbidding, 2" price item auction is (1,1)-smooth

* Unit demand: optimum s bid only on item j assign in opt, and bid v;; on this item.

*
ui(si,s_i) = Vij — mIEciX bk]

Summing over players this gives us
Ziui(sgkrs—i) = Opt — Zj miaXbij > OPT — Zi Ul'(S)

(1,1) smooth implying price of anarchy ¢f, 2. of optimum

matching

No over-bidding



Do people actually learn?

Buyer-seller game [Fudenberg-Peysakhovich’14]:

* Seller has a used car of value v € [0,10] integer, unif. random, she
knows the value

* Buyer has value v + k for the car. He knows k, but doesn’t know v.

e offers a bid b, and gets the item for price b if v < b, his value is then
v 4+ k — b (quasi-linear value)

Experiment: k = 3, after bid, inform buyer of value v (in any case)



Equilibrium outcome and optimum bid
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* Equilibrium with v € [0,1] real.
* Bid b maximized expected value
Pr(v < b)[E(v|b = V) + k — b]

= b b+k b
N 2
1
= bk — —b?

2
Minimum when derivative =0

Derivative =k — b
Optimum bid: b = k



Equilibrium outcome and recency bias

647 * Learning O: best respond to the
most recent information

\/
6.0- \ / k=6 * Best response to hearing value v
_ N~ IS
?§5i3 \\\\\\\\ eBidb =v
= ~ * Behavior closer to best response
5.2 / —— to last value than proper
=3 learning!
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01-05 06-10 11-15 16-20 21-25 26-30
Round

Condition = +3, No Info == +3, Info == +6, No Info == +6, Info



Repeated game that is (slowly) changing
Lykouris, Syrgkanis, T.'16]

Dynamic population model:
At each step t each player i
is replaced with an arbitrary new player with probability p

In a population of n players (on m node graph), each step, Np

players replaced in expectation
1

logm

)

* players stay long enough to be able to learn (% ~ log m steps)

13

* Population changes all the time: need to adjust! (p =



Learning in Dynamic Game:
[Lykouris, Syrgkanis, T. “16]

Dynamic population model:
At each step t each player i
is replaced with an arbitrary new player with probability p

In a population of n players on m items, each step, np players
replaced in expectation

What should they learn from data?
No regret good enough?

zui(st) > (1+ E)zui(si*,sfi) + R
t

t

14



Need for adaptive learning

all a12 a13 alt
az1 az2 az3 azt
1 2 3 t
% S a” time

Example unit demand

* Strategy = item to bid on

* Best “fixed” strategy in hindsight too weak in
changing environment

* Learners need to adapt to the changing
environment



Adaptive Learning
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Theorem Approximate Regret [Foster,Li,Lykouris,Sridharan,T. NIPS'16]

for all player i, strategy x* sequence that changes k times

Yeui(sHvh) = Y (1 +e)u; (%, st; vh) + O(IE( logm)

Using any classical learning mixed with a bit of recency bias

16



Adaptive Learning (sketch of weaker bound)

N PR S I N N [N N S [
b 1 e

=4 changes

T k.
* Restart at roughly event % steps, so have - intervals.

* Only k intervals can have change. No guarantee on these intervals, but that
is a total of keT /k = €T steps

* Remaining intervals we do get learning! Each having a regret error of at
most (log m) /e for a total of k (logm) /€.

* Total guarantee this gives:
2ui(stvh) = X (1 +e) Xp uy(x, s v") + 0(12( logm)



Adapting result to dynamic populations

Inequality we “wish to have”

Z cost; (st vh) < Z cost;(sit, st;vh)
t t
where Sl-*t is the optimum strategy for the players at time t.

with stable population = no regret for s;" : optimal solution
Too much to hope for in dynamic case?

* sequence s*! of optimal solutions changes too much.
* No hope of learners not to learn this well!



Change in Optimum Solution

True optimum is too sensitive

* Example using matching

* The optimum solution

* One person leaving s
* Can change the solution for everyone
&
* Np changes each step — No time to ° =

learn!! (we have p>>1/n)



Theorem (high level)

If a game satisfies a “smoothness property”

The welfaLe optimization problem admits an approximation algorithm whose
outcome s* is stable to changes in one player’s type

Then any adaptive learning outcome is approximately efficient

PoA = lim Le=1 Opt(v))

close to POA
T— oo 2’11:1:1 SW (at'vt)

Proof idea: use this approximate solution as s* in Price of Anarchy proof
With s*not changing much, learners have time to learn not to regret following s*



Result (Lykouris, Syrgkanis, T'16) :

In many smooth games welfare close to Price of Anarchy even when the rate
with n players, assuming adaptive no-regret

of change is high, p =

logm
learners

- Worst case change of player type = need for learning players

- Bound a - B - Yy depends on
- a price of anarchy bound as game gets large, goes to 1 in auctions,
goes to 4/3 in linear congestion games

-y loss due to regret error goestolasp —» 0
- p loss in opt for stable solutions goestolasp — 0 & game is large

21



Proof (of a bit weaker version)

Assume we have matching sequence M* such that

1. # times player or assigned item changes < k

for each of the n sequences of players

2. total value of vV(M®,v®) = Yo Xiienye vjj = BOPT® = B }; max 2ij Vi

log m

Then total social welfare > = (1 —€)),.Optt —nk

Proof: let §; be that i bids on her assigned item in MT

You(sHvH) =1 —¢€) X, u;(s/,s,vh) — o g™ learning
l l 62

u; (5;,82,v%) =2 vj; — max by ; where (i,j) € M" smoothness




Proof outline(cont)

So far we have

logm

Yeui(sHv) =1 —€e) X uwi(5],sh,vh) — k—— learning
u;(8/,sL,v") = v/ j — max bkj where (i,j) € MT smoothness

Summing over all players and using the above we get

2 Liui(s5,v") 2 (1 =€) Lo v(MF,v7) — Xp )iy max by < 2, vi(s)

No over-bidding
So we get

2%, 2 vi(s) = (1 — €)B X, Opt™ —nk

logm




Stable = Optimum in Matching

True optimum is too sensitive

* Round all values to powers of 2. Values in
range [1,v] then only log v values
(loss of factor of 2)

* Use greedy allocation: assign large values first
(loss of factor of 2)

i
& greedy

optimal




Stable = Optimum in Matching

Not too many changes of assignments:
Potential function argument:

@ =sum of the powers of assighment values
Inexample® =34+24+34+44+24+0=14
Range of 0 < ® < mlogv

* decrease only due to departures, mpT log v in
expectation

* Increase due to improved allocation or new arrival
mpT log v

So total change per player k = (on average)

n




Use Differential Privacy — Stable Solutions

Joint privacy [Kearns et al. 14, Dwork et al. ‘06]

A randomized algorithm is jointly differentially private if
* when input from player i changes

* the probability of change in solution of players other thanii is
smaller than €

* Turn a sequence of randomized solutions to a randomized
sequence with small number of changes using Coupling Lemma

* and handling “failure probabilities” of private algorithms



Open problem: Auctions with budgets?

Values v;4, V;>, ..., V;;; and a budget B.

Version 1 (no learning). There are m items, and need to submit a single bid:
a; meaning

* Bid vector bi; = a;V;1,bjy = A;Vip, o) biyy = QVipm

* Give each bidder a subset of items where he is the max bidder (with
fractional allocation OK) on first/second price.

* Equilibrium if items with positive bid are fully allocated, no player exceeds
their budget, and all players either have «; = 1 or fully spend their budget

Theorem: there is Nash equilibrium of this game with all budgets exhausted.
First price: defines a market equilibrium!

Open: can the players learn to bid such an «;? When small items arrive online



Exercises 1

1. can learning algorithms, such as MW or FPL put > 0 probability on a
strictly dominated strategy x ?

Strictly dominated = for some y we have u(y,s_;) > u(x, s_;) for all strategies
s_; of other players.

2. In a coarse correlated equilibrium can a player play a strictly
dominated strategy x with probability >07?



Main question:
Quality of Selfish outcome

Selfish outcome = result of Learning behavior
Our Question: quality of learning outcomes?

which correlated equilibrium do users coordinate
on?

Answer: depends on which learning...

Theorem: V correlated equilibrium is the limit
point of no-regret play
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