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Algorithms vs. programs

Mechanical procedures for solving a given problem

algorithm program




Distributed Algorithm

A collection of autonomous computing entities
collaborating for solving a task
iNn absence of any coordinator
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Parallel vs. Distributed

Parallel computing Distributed computing
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Performances Coping with uncertainty
> petaFLOPS (1015 op./s) temporal and spatial



Seqguential vs. Distributed

Alan Turing

Alonzo Church

Typical model for distributed computing

Communication Medium



Communication Medium
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Limitations Faced by Distributed Computing:
Undecidability ‘ + Uncertainty 7

Sources of uncertainties:

e Spatial: communication network

e Temporal: clock drifts (asynchrony, load, etc.)
 Failures (transient, crash, malicious, etc.)

e Selfish behavior (game theory)

Several Turing machines are weaker than one!



Symmetry Breaking

| eader election

Consensus

Coloring

Graph problems

* Etc.

Applications :

Frequency assigmgents Distributed data-bases consistency



ADFOCS Lectures

o Asynchronous Crash-Prone Distributed
Computing

o Locality in Distributed Network Computing

o Congestion-Prone Distributed Network
Computing’

o Other Aspects of Distributed Computing

1See also lecture by Cristoph Lenzen on Wednesday
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ADFOCS Lectures

@ Asynchronous Crash-Prone Distributed
Computing
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Temporal
Uncertainty

Dealing with asynchronism:
e clock drifts

e cache misses

e poor load balancing

* efc.

and failures:

e crash failures

e transient failures

* byzantine (i.e., adversarial)
failures

e etc.
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Processing elements,
a.k.a. processes

?\/ly 1D is 1010%

My in}?ut is 1

- U J
Kfﬁ o write(value)

* read(register index)
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Consensus

Distributed replica,
mutual exclusion, etc

- Termination: every correct
process decides a value O or 1.

- Agreement: all the decided
values are identical.

- Validity: every decided value
must have been proposed.
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Impossibility of Consensus

M. Fischer, N. Lynch, M. Paterson (1985)

Theorem Binary consensus cannot be solved in a
shared-memory asynchronous system, even with at
most one crash failure.

Dijkstra Prize 2001
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Proof

(in the case of any #failures)

Also known as the wait-free model

Extension-based proof: sequence of system
configurations for which no processes can decide

CcO).C).C@ CO ...
Time = Scheduler
Bivalent vs. monovalent configurations

Monovalent configuration: 0-valent or 1-valent
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Claim 1 There exists an initial bivalent configuration

Proof. Assume all init configurations are monovalent.
Co = 00...0 is O-valent
Cnhn=11...11Is 1-valent
Let k be smallest index such that Ck is 1-valent

11...100...00
11...110...00

Scheduler crashes process pk
= other processes cannot distinguish Ck-1 from C
Contradiction! 4
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C ~p, C'it C and C’ looks the same from process p

Claim 2 Let C and C’ be two monovalent configurations.
If C ~p C' then C and C’ have the same valency.

Proof. The scheduler crashes all processes but p. 0
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A process p is critical for a bivalent configuration C if p
taking a step in C results in a monovalent configuration.

Claim 3 For every bivalent configuration C, there exists
a process p that is not critical for C.

Proof. Assume every process is critical.
o => O-valent and g = 1-valent

Case 1: p and g both read, or they read or write in
different registers

= Cpqg = Cgp, contradiction.

Case 2: p reads or writes in R, and g writes in R
= Cqg ~q CpQq, contradiction with Claim 2. 0
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Weak Consensus

‘!,»J,hé'r O,UC, : - Termination: every correct
? 1 process decides a value O or 1,
or L (i.e., aborts).

0 shé DE, Agreement: all the decided
q " SURE : :
P= . IL ' values # L are identical.
iy ~= . Validity: If no processes crash,
~~ 1;5 then at least one process must
N PR, decide a proposed value.
0=, > =&
IS -
1 ~~
~~
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Property Weak consensus is solvable wait-free in
asynchronous shared-memory systems.

The algorithm uses snapshot instructions

snapshot = atomic read of the entire memory (i.e., all the
registers)

Lemma Atomic snapshot can be implemented wait-free.
Remark /mmediate snapshot — write-snapshot as a

single atomic operation — can also be implemented
wait-free.
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Algorithm

Algorithm of process p with input value v
begin
write (p,v)
snapshot
let V = ((p1,Vp1),...,(Px,Vok)) /‘the view of p*/
write (p,V)
snapshot
let W = ((p1,Vp1),...,(pm,Vom)) /“the meta-view of p*/

m Vi /*smallest view in the meta-view of p*/

if for every i € [1,n] such that vi e V*, Vi € W holds

then decide smallest value in V*
else decide L

end
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Termination trivially holds
Claim 1 Agreement holds

Proof Assume p decides v=L1, and p’ decides v'=1 with v<V'.
Let g=q’ such that V*p = Vg and V*y = Vq.
> Onthe one hand: v g Vg since p’ decides v'>v.
Therefore Vg c Vq, and thus vq € Vq= V™
On the other hand: Vg4 ¢ Wp as otherwise V*p = Vg

Contradiction: p does not satisty the if-condition. El

24



Claim 2 Validity holds

Proof

e |t p decides L then there exists g=p such that g
performed its first write before the first snapshot of p,
and p performed its second snapshot before the

second write of Q. .
fime
O O O O >
write1  snapf snapz  writez

* Assume all proc decide 1.

O O O O O O Oo—

snapz Wwritez snapz write2 snapz  write2  snapez
J




Combinatorial
Topology



Configurations

global state process state/view
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Simplexes and Complexes

e A complex is defined as a pair K = (V,&) where

- Vs the (finite) set of vertices

- & is a collection of non-empty subsets of V, closed
under vertex deletion,i.e., Se § = v S C S, S'e §.
Every S € & is a simplex.

* Examples:

- G=(V,E) defines the complex K=(V, EUV) iz
- A higher dimensional complex: A

.

wikipedia




Protocol Complex

The configurations of a distributed system at

time t defines the protocol complex P: = (V,&§) S pv).

with P 3
- V={(p,v), p process, v state of p attimet} .~ @ ‘
- S e P(V) belongsto & if Sis a set of o © l

views from different processes,
corresponding to a same execution &



Input/Output Complexes
and Task Specification

0 0

A @

task specification

1

Input binary consensus Output binary consensus



Task Solvability

input protocol execution € protocol
complex | complex P
o
®
0,
@,
o
-
o
Theorem Task (1,0,4) is solvable iff
there exists & such that, for every S € |, output
complex O

5(§(S)) € A(S)




Wait-Free Computing

Asynchronous Shared Memory

Crash failures
S v

Alice hasn't seen Bob Alice saw Bob

Bob saw Alice Bob saw Alice

Alice B2 A2 BT B2 A1 B2 A2 Bob
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Three Processes

(iterated immediate snapshot)

All possible executions
during one step. ‘
XN /A
| > \avava’s
A facet of the simplex |
e Several facets

together
/ \o
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Wait-Free Solvability

D
R
&

Theorem A task is solvable in the asynchronous
model with crashes if and only if there exists a
simplicial map from a chromatic subdivision of the
iInput complex to the output complex, respecting the
specification of the task.

M. Herliny and N. Shavit (1999)

Godel Prize 2004
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Consensus

Output

Input
Complex

Complex

No simplicial map from a
subdivision of the input complex to
the output complex respecting

the specifications of consensus.
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Weak consensus

Input
Complex

Output
Complex




Variants

k-set agreement

e n processes with input values in {1,....m}

e Objective: agree on at most k proposed values

e remark: (n-1)-set agreement is called set-agreement
t-resilient model

* asynchronous

e t = maximum number of crash failures
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Set-agreement solvability

Theorem In the t-resilient model, it k > t+1, then k-set
agreement is solvable.

Proof Algorithm for (t+1)-set agreement in the t-resilient
model:

begin
repeat snapshot
until values from at least n-t processes are seen
decide minimum seen value

end

w at most t+1 different views l

38



Topological perspective

Vi

.: " ./ V\O \

t= 1

vields holes in the
protocol complex

&%

el

enables to map the
protocol complex to
the output complex




Other applications of topology
to distributed computing

* Processes occupy nodes of a graph G

* Synchronous model

 Communication by messages

No failures

Graph G is known to every process, including the
position of every other process.

40



| ower bound

A dominating set in G=(V,E) is a set D € V such that
every node not in D has a neighbor in D.

Definition G has dominating number d if the min size
of a dominating set in G has cardinality = d.

Theorem k-set agreement in G requires at least r

rounds where r is the minimum integer such that Gf
has dominating number < k.

41



Proof for m=3 and k=2

Input configuration: vive...va with vie {0,1,2}

For every 1,], there exists process g that is not
dominated by pi nor p;.

w triangle 00001122
These triangles can

| & be glued together

00011122 | 00011222
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00000000
Q

00000001 O Q 00000002
00000011 Q Q Q 00000022
00000111 O /’\ h Q 00000222

00111111 Q O Q Q Q Q 00222222
01111111 Q ~ Q 02222222
1111 S ) 22222222

7
222205222225
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Assume existence of an algorithm. 9 1 5
= Colored each node by the discarded color @ O @

w Remark:;

oo%oo
Impossible '
00000001 0 Qoooooooz
00000011 . 'ﬁ;{ Qoooooozz
00000111 . r D) 00000222
The coloring of the FERVALVARN SN
border nodes is forced BVAVAVAY

@ " O
00111111 g NN NN N O 00222222
01111111 g 5L L L L L L 02202022

GG 4 ’ .7 oo 8 0 0 &1
710, 17 7
111211125 22225 %222,

44



Sperner’'s Lemma

Lemma Every Sperner coloring of a triangulation of an
n-dimensional simplex contains a cell colored with a
complete set of colors.

N=1 /

| /N
7 ER
| <

45

n=2

N\




Proof sketch

V(G) = {0]  E(G) = {o—I—o}
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By induction on n: deg(u)
IS odd

ZVE\/ deg =2 |E |
triangles vvlth 1or2
colors induce nodes with
even degrees (0 or 2)

J

odd number of
3-colored triangles

-



Concluding remarks



Message Passing vs.
Shared Memory

T

Shared memor

Message passing




Equivalence

H. Attiya, A. Bar-Noy, D. Dolev (1990)

Theorem The message-passing and shared-memory
models with crash failures are “essentially” equivalent

Dijkstra Prize 2011
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Overcoming
iImpossibility results

Failure detectors: e.g., T. Chandra, V. Hadzilacos,
S. Toueg (1995)

Randomization: €.g., Ben-Or Algorithm for
consensus (1983)

Best-effort algorithms: e€.g., Paxos algorithm
(1989) by L. Lamport (Turing Award 2014)

Build-in atomic objects: beyond read/write
registers, like test&set, compare&swap, etc.
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Open problems

* Renaming:
» N processes start with unique names taken from a large
name space [1,N]

» they must decide new unique names from a name space
as small as possible.

» Result: 2n-1 possible; optimal for infinitely many n, but
not for all n.

- Algebraic topology:
» Randomized algorithms
» Byzantine failures

- Distributed verification

» Proving correctness using formal methods and/or proof
assistants

» Distributed monitoring
51



