#### **Distributed Computing**

#### **Pierre Fraigniaud**





CNRS and Université de Paris



# Algorithms vs. programs

Mechanical procedures for solving a given problem

algorithm program

# Distributed Algorithm

A collection of autonomous computing entities collaborating for solving a task in absence of any coordinator









#### Parallel vs. Distributed

Parallel computing



Performances > petaFLOPS (10<sup>15</sup> op./s) Distributed computing



Coping with uncertainty temporal and spatial

### Sequential vs. Distributed









**Alan Turing** 

**Alonzo Church** 

Typical model for distributed computing







Communication Medium

#### Communication Medium





# Limitations Faced by Distributed Computing: Undecidability Uncertainty

#### **Sources of uncertainties:**

- Spatial: communication network
- Temporal: clock drifts (asynchrony, load, etc.)
- Failures (transient, crash, malicious, etc.)
- Selfish behavior (game theory)

• ...

Several Turing machines are weaker than one!

# Symmetry Breaking

- Leader election
- Consensus
- Coloring
- Graph problems
- Etc.



#### **Applications:**



Frequency assignments  ${\mathop{\mathsf{R}}}$ 



**Distributed data-bases consistency** 

#### ADFOCS Lectures

- Asynchronous Crash-Prone Distributed
   Computing
- Locality in Distributed Network Computing
- □ Congestion-Prone Distributed Network
   Computing¹
- Other Aspects of Distributed Computing

<sup>&</sup>lt;sup>1</sup> See also lecture by Cristoph Lenzen on Wednesday

#### Reference books









#### ADFOCS Lectures

- Asynchronous Crash-Prone Distributed Computing
- Locality in Distributed Network Computing
- Congestion-Prone Distributed NetworkComputing
- Other Aspects of Distributed Computing

# Temporal Uncertainty

#### Dealing with **asynchronism**:

- clock drifts
- cache misses
- poor load balancing
- etc.

#### and failures:

- crash failures
- transient failures
- byzantine (i.e., adversarial) failures
- etc.









# Computing Model



#### **Shared memory**

Processing elements, a.k.a. processes









- write(value)
- read(register index)

#### Consensus



Distributed replica, mutual exclusion, etc

- Termination: every correct process decides a value 0 or 1.
- Agreement: all the decided values are identical.
- Validity: every decided value must have been proposed.

#### Impossibility of Consensus

M. Fischer, N. Lynch, M. Paterson (1985)

**Theorem** Binary consensus cannot be solved in a shared-memory asynchronous system, even with at most one crash failure.

Dijkstra Prize 2001

#### Proof

(in the case of any #failures)

- Also known as the wait-free model
- Extension-based proof: sequence of system configurations for which no processes can decide  $C^{(0)}, C^{(1)}, C^{(2)}, C^{(3)}, \dots$
- Time = **Scheduler**
- Bivalent vs. monovalent configurations
- Monovalent configuration: **0**-valent or **1**-valent

#### Claim 1 There exists an initial bivalent configuration

Proof. Assume all init configurations are monovalent.

 $C_0 = 00...0$  is 0-valent

 $C_n = 11...1$  is 1-valent

Let k be smallest index such that  $C_k$  is 1-valent

11...100...00

11...110...00

Scheduler crashes process pk

→ other processes cannot distinguish C<sub>k-1</sub> from C<sub>k</sub>

Contradiction!

C ~p C' if C and C' looks the same from process p

Claim 2 Let C and C' be two monovalent configurations. If C  $\sim_p$  C' then C and C' have the same valency.

*Proof.* The scheduler crashes all processes but p.

A process p is critical for a bivalent configuration C if p taking a step in C results in a monovalent configuration.

**Claim 3** For every bivalent configuration C, there exists a process p that is <u>not</u> critical for C.

Proof. Assume every process is critical.

p → 0-valent and q → 1-valent

 Case 1: p and q both read, or they read or write in different registers

 $\Rightarrow$  Cpq = Cqp, contradiction.

Case 2: p reads or writes in R, and q writes in R
 ⇒ Cq ~q Cpq, contradiction with Claim 2.

#### Weak Consensus



- Termination: every correct process decides a value 0 or 1, or ⊥ (i.e., aborts).
- Agreement: all the decided
   values ≠ ⊥ are identical.
- Validity: If no processes crash, then at least one process must decide a proposed value.

**Property** Weak consensus is solvable wait-free in asynchronous shared-memory systems.

The algorithm uses *snapshot* instructions

snapshot = atomic read of the entire memory (i.e., all the registers)

Lemma Atomic snapshot can be implemented wait-free.

**Remark** *Immediate* snapshot — write-snapshot as a single atomic operation — can also be implemented wait-free.

# Algorithm

Algorithm of process p with input value v begin

```
write (p,v)
    snapshot
    let V = ((p_1, V_{p_1}), ..., (p_k, V_{p_k})) /*the view of p*/
    write (p,V)
    snapshot
    let \mathbf{W} = ((p_1, V_{p_1}), \dots, (p_m, V_{p_m})) /*the meta-view of p*/
    let V^* = \bigcap_{i=1,...,m} V_{pi} /*smallest view in the meta-view of p*/
    if for every i \in [1,n] such that v_i \in V^*, V_i \in W holds
    then decide smallest value in V*
    else decide 1
end
```

## Intuition



#### Termination trivially holds

#### Claim 1 Agreement holds

Proof Assume p decides v≠⊥, and p' decides v'≠⊥ with v<v'.

Let  $q \neq q'$  such that  $V^*_p = V_q$  and  $V^*_{p'} = V_{q'}$ .

On the one hand: v ∉ V<sub>q</sub>' since p' decides v'>v.

Therefore  $V_{q'} \subset V_q$ , and thus  $v_{q'} \in V_q = V^*_p$ 

• On the other hand:  $V_{q'} \not\in \mathbf{W}_p$  as otherwise  $V^*_p = V_{q'}$ 

Contradiction: p does not satisfy the if-condition.

#### Claim 2 Validity holds

#### Proof

If p decides ⊥ then there exists q≠p such that q
performed its first write before the first snapshot of p,
and p performed its second snapshot before the
second write of q.



Assume all proc decide ⊥.

```
snap<sub>2</sub> write<sub>2</sub> snap<sub>2</sub> write<sub>2</sub> snap<sub>2</sub> write<sub>2</sub> snap<sub>2</sub>
```

# Combinatorial Topology

# Configurations



System configurations at time t

#### Simplexes and Complexes

- A complex is defined as a pair K = (V, S) where
  - V is the (finite) set of vertices
  - $\mathcal{S}$  is a collection of non-empty subsets of V, closed under vertex deletion, i.e.,  $S \in \mathcal{S} \Longrightarrow \forall S' \subseteq S, S' \in \mathcal{S}$ . Every  $S \in \mathcal{S}$  is a simplex.

#### Examples:

- G=(V,E) defines the complex K=(V, E∪V)
- A higher dimensional complex:



## Protocol Complex

The configurations of a distributed system at time t defines the protocol complex  $P_t = (V, S)$  with

- $V = \{(p,v), p \text{ process}, v \text{ state of } p \text{ at time } t\}$
- S ∈ 𝒯(V) belongs to 𝒰 if S is a set of views from different processes, corresponding to a same execution శ్



# Input/Output Complexes and Task Specification



# Task Solvability



# Wait-Free Computing



#### Three Processes

(iterated immediate snapshot)



# Wait-Free Solvability



M. Herlihy and N. Shavit (1999)

**Theorem** A task is solvable in the asynchronous model with crashes if and only if there exists a simplicial map from a *chromatic subdivision* of the input complex to the output complex, respecting the specification of the task.

Gödel Prize 2004

#### Consensus



No simplicial map from a subdivision of the input complex to the output complex respecting the specifications of consensus.

#### Weak consensus



## Variants

### k-set agreement

- n processes with input values in {1,...,m}
- objective: agree on at most k proposed values
- remark: (n-1)-set agreement is called set-agreement

#### t-resilient model

- asynchronous
- t = maximum number of crash failures

## Set-agreement solvability

**Theorem** In the t-resilient model, if  $k \ge t+1$ , then k-set agreement is solvable.

*Proof* Algorithm for (t+1)-set agreement in the t-resilient model:

### begin

repeat snapshot

until values from at least n-t processes are seen decide minimum seen value

end

⇒ at most t+1 different views

# Topological perspective



t = 1

yields holes in the protocol complex



enables to map the protocol complex to the output complex

# Other applications of topology to distributed computing

- Processes occupy nodes of a graph G
- Synchronous model
- Communication by messages
- No failures



 Graph G is known to every process, including the position of every other process.

## Lower bound

A dominating set in G=(V,E) is a set  $D \subseteq V$  such that every node not in D has a neighbor in D.

**Definition** G has dominating number d if the min size of a dominating set in G has cardinality = d.

**Theorem** k-set agreement in G requires at least r rounds where r is the minimum integer such that  $G^r$  has dominating number  $\leq k$ .

## Proof for m=3 and k=2

Input configuration:  $v_1v_2...v_n$  with  $v_i \in \{0,1,2\}$ 

For every i,j, there exists process q that is not dominated by  $p_i$  nor  $p_j$ .



These triangles can be glued together



Assume existence of an algorithm.



■ Remark:



## Sperner's Lemma

**Lemma** Every Sperner coloring of a triangulation of an n-dimensional simplex contains a cell colored with a complete set of colors.



## Proof sketch

$$V(G) = \{O\}$$





- By induction on n: deg(u) is odd
- $\sum_{v \in V(G)} deg(v) = 2 |E(G)|$
- triangles with 1 or 2 colors induce nodes with even degrees (0 or 2)

odd number of 3-colored triangles



# Concluding remarks

# Message Passing vs. Shared Memory





Message passing

# Equivalence

H. Attiya, A. Bar-Noy, D. Dolev (1990)

**Theorem** The message-passing and shared-memory models with crash failures are "essentially" equivalent

Dijkstra Prize 2011

# Overcoming impossibility results

- Failure detectors: e.g., T. Chandra, V. Hadzilacos,
   S. Toueg (1995)
- Randomization: e.g., Ben-Or Algorithm for consensus (1983)
- **Best-effort algorithms:** e.g., *Paxos* algorithm (1989) by L. Lamport (Turing Award 2014)
- Build-in atomic objects: beyond read/write registers, like *test&set*, *compare&swap*, etc.

# Open problems

#### · Renaming:

- n processes start with unique names taken from a large name space [1,N]
- they must decide new unique names from a name space as small as possible.
- Result: 2n-1 possible; optimal for infinitely many n, but not for all n.

#### Algebraic topology:

- Randomized algorithms
- Byzantine failures

#### Distributed verification

- Proving correctness using formal methods and/or proof assistants
- Distributed monitoring