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Failures: crash, transient, Byzantine, etc.



Networks

Two major technological constraints:
- Latency / Locality
Bandwidth / Information

v



| OCAL Model

e Each process is located at a node of a network
modeled as an n-node graph (n = #processes)

» Each process has a unique IDin {1,...,n} {

« Computation proceeds in synchronous rounds
during which every process:

1. Sends a message to each neighbor

2. Receives a message from each neighbor ("‘/’\"\“’/“ﬂ

3. Performs individual computation (same
algorithm for all nodes)



Complexity = #rounds

Lemma If a problem P can be solved in t rounds in
the LOCAL model by an algorithm A, then there is a
t-round algorithm B solving P in which every node

proceeds in two phases:
Phase 1. Gather all data in the t-ball around it

Phase 2. Compute the solution




Graph problems

Vertex coloring Independent set




(A+1)-coloring

I
Local

A = maximum node degree of the graph specifications
J

‘,m

(A+1)-coloring = assign colors to nodes such that
every pair of adjacent nodes are assigned ditferent
colors.

Lemma Every graph is (A+1)-colorable /‘\/

Theorem (Brooks, 1941)

Every graph G is A-colorable, unless G is a complete
graph, or an odd cycle.



Maximal Indepent Set (MIS)

e Maximal, not maximum!
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Roadmap

. Deterministic algorithms
. Randomized algorithms

. Strong links between deterministic and
randomized algorithms



Deterministic
Algorithms



3-coloring the
n-node i:yc\e Cn

o *
1 @ ’8
3@ o>
10

How many rounds for 3-coloring the n-node cycle?
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Round complexity
of 3-coloring Cr

Theorem (Cole and Vishkin, 1986) There exists an
algorithm for 3-coloring Cn performing in O(log*n) rounds.
lterated logarithms:

- log® x = log x logk+1) x = log logk) x
- log*x = smallest k such that logk) x < 1

- log*101%0 = 5

Theorem (Linial, 1992) Any 3-coloring algorithm for Cn

' x
performs in Q(log*n) rounds. Diikstra Prize 2013
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Cole-Vishkin Algorithm

Initial color = 1D Assume: n is known, and
Express colors in binary consistent sens of direction

00101111101

10110011101
10110011101 10110110101
new = (position,bit) = (5,1) = 1011
(p’,b’) (p,b)

0 # P = proper coloring

o =p = b=b = proper coloring

13



Number of Iterations

k-bit colors = new colors on | logz k | +1 bits

log*n + O(1) rounds to reach colors on 3 bits
8 colors down to 3 colors in 5 rounds

Total number of rounds = log*n + O(1)
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Speeding up the Algorithm

00101111101
10110011101 10110110101

* Every node can simulate 2 rounds in just 1 round
e left round + right round = implemented in 1 round

» Total number of rounds = %2 log*n + O(1)

J
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Linial's Lower Bound

' g Y A d1 do
\_/ |

A >Bz X)

every node x decides as a
t-round algorithm === function # applied to By(x) where

Bt(X)Z(gt,gH y oo J1 ,X,d1 - ,dt-1 ,dt)



Configuration Graph Gin

vertices = { (gy,...,91,x,d1,...,dt) € {1,... n}2t+1}

1. t-round 3-coloring algorithm for Cn = y(Gin) < 3

2. t<¥log*™n-0(1) = y(Gin) > 3
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Step 1

Lemma t-round c-coloring algo for Cn = y(Gin) < C

Proof Algo ~# = vertex (g,...,91,%,d1,...,dt) colored

can appear as view of x and d+ in some instances of I1D
assignment to the nodes of the ring.
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Application

Corollary (Linial, 1992) For n even, 2-coloring Cs
requires Q)(n) rounds.

Proof Assume trounds, witht<n/2 -2 = 2t+1 < n-3.

AR A

2t+1.
214 2.
2t+3.

(X1 ’X21 LU ’X2t+1)

X4,...,X2t+1,Y,Z,X1)
X5,...,X2t+1,Y,Z,X1,X2)

(X2t+1 Y, Z,X1,. .. ,X2t_2)
(Y,Z,X1,...,X2t-2,X2t-1)
(z,X1,..., Xot-1,X2t)

19

odd cycle

3
X(Gt,n) > 2



Step 2

Lemmat < 2 log™n-0O(1) = x(Gin) >3

Proof is technical (uses line graphs)’

But worth reading!

10ther proofs use Ramsey theory. 20



A simpler proot

of Linial's lower bound
Proof (Laurinharju & Suomela, 2014)

A4 1S a k-ary c-coloring function if
1. A4 (X1,X2,... %) € {1,2,...,clforall 1 <Xy <Xo< ... <Xk <N

2. A (X1,X2,...,Xk) = A(X2,X3,...,Xk+1) Tor all Xk < Xk+1 <N

Claim 0. t-tound algorithm 4 for 3-coloring Cn
w 7 |s (2t+1)-ary 3-coloring function

Claim 1. If #is a 1-ary c-coloring function then ¢ > n.

21




Claim 2. If #is a k-ary c-coloring function, then there
is a (k—1)-ary 2¢-colouring function 2.

?(X1,X2,...,Xk—1) = { /4(X1,X2,...,Xk—1,Xk) . Xk > Xk-1 }

For contradiction, let 1 < xq1 < X2 < ... < Xk £ n with
& (X1,X2,...,Xk=1) = &(X2,...,XKk=1,Xk)

Let ¢ = 4 (X1,X2,...,Xk=1,Xk).

w 3 X1 > Xk: C = A4 (X2,... Xk, Xk+1) ™ A IS NOt k-ary
c-coloring function.

22



Theorem Any 3-coloring algorithm for C, performs in
Q(log™n) rounds.

Proof Let #be a t-tound algorithm for 3-coloring Cs
= A4S (2t+1)-ary 3-coloring function (by Claim 0)

= A4 1S (2t)-ary 23 -coloring function (by Claim 2)

= A4 1S (2t-1)-ary 2(2)3-coloring function

= A IS (21-2)-ary 2(3)3-coloring function

= A 1s (1)-ary 2(@)3-coloring function
= 2203 > n (by Claim 1)
=t>log*n - 1. W

23



(A+1)-coloring
arbitrary graphns

* Best lower bound (Linial, 1992)
Q(log*n) rounds
o Best upper bound (Panconesi & Srinivasan, 1992)

20(Vlog n) rounds

Gap open for a quarter of a century!

24



(A+1)-coloring
arbitrary graphs

BREAKING NEWS

(A+1)-coloring in log®"n rounds!
V. Rozhon and M. Ghaffari (2019)
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Complexity as f(n)+g(A)

Theorem (Linial, 1992)

There is a (A+1)-coloring algorithm performing in
O(log*™n) + O(A2) rounds.

Theorem (F., Heinrich, Kosowski, 2016)

There is a (A+1)-coloring algorithm performing in
O(log*n) + O(y/A) rounds.
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O(A2)-coloring

Theorem (Linial, 1992) O(A2)-coloring in log*n+O(1) rounds

Lemma For all k > A > 2, there exists J = {S1,...,S«} where
Sicii,... 51 A2logk] }fori=1,... k
such that, for every A+1 sets Sio, Si1,..., Sia in J, we have

.....

Algorithm: Init: k = n and color(u)=ID(u)

Each round: color range [1,k] reduced to [1,5 | A2 log k | ]
color(u) = ¢ = u has set S¢

New color: smallest x € S¢ \ Ui=1,....a Scolor(vi).

27




Locally Iterative Algorithm

Theorem [L. Barenboim, M. Elkin, U. Goldenberg (2017)
There exists a locally iterative algorithm for (A+1)-coloring, performing in
O(log*™n + A) rounds.

Proof. Compute O(A?)-coloring in log*n+O(1) rounds.
Assume for simplicity a (A+1)2-coloring with A + 1 = p prime.
Represent color co(v) = (av,byv) where ay,by € GF(p).

e if 2 ue N(v), with by = bythen v adopts (0,by) as final color;
e otherwise, v recolors itself as (ay, by + av).

The following two properties hold:
- Recoloring preserves proper coloring
o After2p + 1 =2(A + 1) + 1 rounds, all nodes have finalized their color.

-

28



ocally Checkable Labeling

Let Za be the set of all (connected) graphs with maximum
degree A.

Definition (Naor and Stockmeyer, 1995) An LCL in Za is

specified by a finite set of labels, and a finite set of labeled
balls with maximum degree A, called good balls.

Examples:
» k-coloring, k-edge-coloring Focus is on LCL tasks

| | solvable sequentially by
e maximal mdependent set (M|S) a greedy algorithm

selecting nodes in
arbitrary order, like, e.qg.,
e Fic. k-coloring for k > A+1.

 maximal matching

29



Maximal Independent Set

* (A+1)-coloring =» MIS in A rounds by maximizing {1}

e MIS = (A+1)-coloring by simulation

virtual
network

actual S
network

30



Claim 1. At most one node of each clique in the MIS

Claim 2. At least one node of each clique in the MIS

Color = index of node in the MIS

31



| ine Graphs

Definition The line graph of a graph G is the graph
L(G) such that

* V(L(G)) = E(G)
e {e,e'} e E(L(G)) < e and e’ are incident in G

(S

b b 1 a 2
- ¢

7
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Four classical problems

sSSP @N)

ﬁ MIS on line graph

Maximal Matching

ASEVaN

<

33

-Vertex Coloring

SEEPONN

-coloring
on line graph

-Edge Coloring

AN




Round Complexity

(A+1)-coloring

Deterministic 2Vlog(n) 2Vlog(n)
Panconesi, Srinivasan (1992) Panconesi, Srinivasan (1992)
Randomized 2V|09|09(n)+O(|og A) 2vloglog(n)

Ghaffari (2016) Chang, Li, Pettie (2018)

Maximal Matching (2A-1)-edge-coloring

Deterministic O(Iog3n) O(|096n) Ghaffari, Fisher, Kuhn (2017)

Fischer (2017) Ghaffari, Harris, Kuhn (2018)

;ELCLTFELEE O(logelog n)+O(log A) O(log®log n)

Barenboim, Elkin, Pettie, Schneider (2012) Elkin, Pettie, Su (2015)
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| ower Bounds

(A+1)-coloring and
(2A-1)-edge-coloring

MIS and Maximal Matching

Deterministic Q(min{ Iog A/ Ioglog A,
and Viog n / loglog n }) ()(log™n)

Randomized

Linial (1987)
Kuhn, Moscibroda, Wattenhofer (2004) Naor (1990)

35



Randomized
Algorithms



Randomized algorithm
for (A+1)-coloring

Algorithm (Barenboim and Elkin, 2013) for node u

while uncolored do
€ = {colors previously adopted by neighbors}
pick Z(u) at random in {O,1,...,A+1} - €
* 0 is picked w/ probability 72
e Z(u) e {1,....A+1} - B is picket w/ proba 1/(2(A+1-€]))
if #(u) = 0 and Z(u) ¢ {colors picked by neighbors}
then adopt #(u) as my color T L ound

else remain uncolored
inform neighbors of status <«

37



Definition A sequence (En)n=1 Of events holds with high
probability (whp) whenever Pr[€:] = 1 - O(1/n¢) for some
constant ¢ > 0.

Theorem (Barenboim and Elkin, 2013) The (A+1)-coloring
algorithm takes, w.h.p., O(log n) rounds.

Recall -Agmoms.a A and B ndependent )
./«Acondmoned toB » { Pr[A/\B] Pr[A] . Pr[B] “
- Pr{A|B] = Pr{AAB] / Pr[B] = Pr[AxB] = Pr[AB] - Pr[B]

and

« Pr[A] = Pr[A|B] - Pr[B] + Pr[A|=B] - Pr[-B]

. Umon bound Pr[AvB] < Pr[A] + Pr[B]
GEEE ] f Pr[(S1 - CP) ? (32 - q>)v v (sm - 7).
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Claim For every node u, at any round, Pr[u terminates] > V4

Pr|u termine] =

Prit(v) = £(u) | £(u) # O]

Pr[dv € N(u) : £(v)

Prll(u) # 0 et aucun v € N (u) satisfait £(v) =

l(u)]

Pr[vv € N(u), £(v) # £(u) | £(u) # O] - Prlé(u) # 0]

% - Pr[vo € N(u),{(v) # £(u) | £(u) # 0]

|
o
=

[£(v) =

I
0
—

(v) =

IA
|
2"
-
"~
/N
c
N——"

= L(u) [ £(u) # 0N L(v) # 0]

() | () # 0 A €(v) = 0] Prl(v) = 0
+ Prlf(v) = £(u) | £(u) £ 0 A £(v) # 0] Prle(v) # 0]
() | £(u) # 0 A £(v) # 0] Prl(v) # 0
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O(log n) rounds w.h.p.

Pr[u does not terminate in k In(n) rounds]
< (C%)k In(n) = n-kIn(%)

Pr[du that does not terminate in k In(n) rounds] < n1k (%)

Let ¢ >1, by choosing k = (1+c)/In(*4), we get:

Pr[all nodes terminates after (1+c)/In(*4) In(n) rounds]
> 1-1/nc.

J

40



41

Randomized algorithm

for MIS

Algorithm (Luby, 1986)
mis(u) € {-1,0,1} = {undecided, not in MIS, in MIS}
At any given round: H = G[{u ) mis(u)=-1}]

/G

Trick: enforcing an order between nodes:

(‘?

.

V » U< degn(v) > degn(u)

or (degn(v) = degn(u) and ID(v) > ID(u))

—~

_




Luby's algorithm

One phase of the algorithm for node u with mis(u) = -1

if degn(u) = 0 then mis(u) « 1

else join(u) « true with proba 1/(2 degn(u)), false otherwise
exchange join with every v € N(u)
free(u) < A v € N(u) such that v » u and join(v)=true
iIf (join(u) = true and free(u) = true) then mis(u) « 1
exchange mis with every v € N(u)
if (mis(u) = -1 and 3veN(u) mis(v)=1) then mis(u) < O
exchange mis with every v € N(u)

42



Luby's algorithm terminates
in O(log n) rounds, w.h.p.

Structure of the proof:
1. Pr[mis(u) = 1] > 1/(4 degn(u))
2. For a set N of nodes,

u e N = Pr[u terminates] >1/36

3. For a large set ‘E of edges,

e € E = Prle removed from H] >1/36

4. Use concentration result (Chernoff bound) to get w.h.p.

43



Step 1

Pr[3v € N(u) : v = u A join(v) | join(u)]
Pr[3v € N(u) : v = u A join(v)]

Primis(u) # 1| join(u)]

< Z Prljoin(v)]
veEN (u):v-u
= Y s
o 2 deg(v) i degH_(u) = 0 then mis(u) — 1
veEN (u):w=u else join(u) + true with proba 1/(2 degn(u))
exchange join with every v € N(u)
< Z 1 free(u) « A v e N(u) such that v » u and join(v)=true
— 2 deg(u) if (join(u) = true and free(u) = true) then mis(u) + 1
vEN (u):v>-u exchange mis with every v e N(u)
if (mis(u) = -1 and aveN(u) mis(v)=1) then mis(u) + O
< deg(u) exchange mis with every v e N(u)
— 2deg(u)
1
S _
2
Prlmis(u) = 1] = Primis(u) =1 | join(u)| - Pr[join(u)]
: 1 1 1
Primis(u) = 1] >

2 2deg(u) - 4deg(u)
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Step 2

A node u is large if Z 2 deg(v) > G
veEN (u) &

Claim: u large = Pr[u terminates] >1/36

e True if 3veN(u) : degn(v) < 2

* vveN(u), if degn(v) = 3 then > dog(0) < é
1 1 1
—> 35 € N(u) : ESZQdeg(U) <3

veES

Pr[E\V By V- VE] =Y PrlE]—Y PrE;AE]+ Y PrEAENE]—...

i 1] i#EjFk
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Primis(u) # —1]

—> Prmis(u) # —

1]
Z Prlmis(v) = 1 A mis(w)

v, WES, VAW

1].

1] —

2.

v, wES, VAW

Z Z Prljoin(v

veES wES

;E;gw%; 2deg
D

Jo%

Prljoin(v) A join(w)]

| - Prljoin(w)]

1
2deg(w)

.

1
2 deg(w)

2

> Pr[dv e S:mis(v) =
> ZPrmzs = 1] —
veS
1] > ZPr[mis(v):
vesS
> ZPrmzs
veS
> D Tdert)
vES4deg
1
> -
- (1;9 2 deg(v)
1 /1 1
> Z (22 ) =
= 6(2 3)

46

if degn(u) = 0 then mis(u) « 1

else join(u) + true with proba 1/(2 degn(u))
exchange join with every v e N(u)
free(u) « A v e N(u) such that v » u and join(v)=true
if (join(u) = true and free(u) = true) then mis(u) + 1
exchange mis with every v € N(u)
if (mis(u) = -1 and aveN(u) mis(v)=1) then mis(u) « 0
exchange mis with every v e N(u)




Step 3

An edge e={u,v} is large if u or v is large
For e = {u,v} with u < v, orient the edge u = v

Claim For every small node u, deg*(u) > 2 deg-(u)
OO O
o o‘o
Indeed: deg+*(u) < 2 deg(u) = deg(u) < 3 deg-(u)

S ={ve N(u):deg(v) < deg(u)}
S| > deg(u) = |S| = |N(u)|/3

1 1 1 deg(u) 1 1
2 Tdeg(e) 2 2= Tdeg(o) = 2= Tdegl) = 3 Tdeg — 6 m

vEN (u) veS veS
47

Out-degree In-degree




Let m = |E(H)] deo™ (u <! deot (1) <
We have: Z g()_QZ. g()_2

Xe = Bernouilli variable equal to 1 if e is removed from H
For e large, Pr[Xe=1]21/36 = EXe > 1/36

X =Yelarge Xe => EX = Yelarge EXe = M/72

Let p = Pr[X < 72 EX]

1EX m

]EX:ZxPr[X:x]:ZwPr[X:x]Jr Z r PrlX =2 < %EXJF(l—p)
= = z=2 EX+1
m—-EX _m-—3EX 1
= p< <l-—

< <
m—sEX ~ m 144
Let & = « at least m/144 edges are removed from H »
Pr[&] > 1/144
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Step 4

et Y1,Y2,...,Yk be Bernouilli variables w/ parameter g = 1/144
LetY = Yi+Yo+.. . + Yk
Remark: Let o = 144/143. If Y > log« |[E(G)| then termination.

Chernoff Inequality: v 6 € ]0,1[, Pr]Y < (1 — §)EY] < e 30 EY

We have EY = kq, so, with 6 = 72, we get Pr|Y < %] < e s

cqlog, mn

For k = ¢ logan, we get Pr[Y < quOan”] <e T~ B

Let c =4/g= Y2c g loguan > log«|E(G)| and cqg > 8 In(a).

cqlog, n 1 1 ]_
R - < - s Pr[Y <log,m] < -.

N 81n o n mn

Thus Luby’s algorithm terminates in O(log n) rounds w.h.p.

10 u



Deterministic « Randomized



Network Decomposition

Definition A (d,c)-decomposition of an n-node graph G = (V, E)
IS a partition of V into clusters such that each cluster has
diameter at most d and the cluster graph is properly colored
with colors 1, . . ., C.

Theorem [Linial and Saks (1993)]

Every graph has a (O(log n),O(log n))-decomposition, and
such a decomposition can be computed by a randomized
algorithm in O(log2n) rounds in the LOCAL model.

Theorem [Panconesi and Srinivasan (1992)]
A (20Wlog n) 20(log n))-decomposition can be computed
deterministically in 20Wleg n) rounds in the LOCAL model.
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lmpact on coloring and MIS

Lemma Given a (d,c)-decomposition, (A+1)-coloring

and MIS can be solved in O(cd) rounds in the LOCAL
model.

Proof

Proceed in ¢ phases, each of O(d) rounds H
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BREAKING NEWS

Theorem [V. Rozhon and M. Ghaffari (2019)]

A (O(log n),0(log n))-decomposition can be
computed deterministically in O(log®("n) rounds in
the LOCAL model.

Corollary (A+1)-coloring and MIS can be
deterministically solved in O(log®Mn) rounds in the
LOCAL model.
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SLOCAL Model

M. Ghaftfari, F Kuhn, Y. Maus (2017)

Sequential variant of the LOCAL model:
nodes are considered sequentially, one by one

. the current node computes its output based
solely on the states of the nodes in the ball of
radius t around it

LOCAL(t) = {problems solvable in t rounds}
SLOCAL(t) = {problem solvable with balls of radius t}
P-LOCAL = LOCAL(log®(n)

P-SLOCAL = SLOCAL(log©(n)
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Completeness Results

In the LOCAL model, a problem Q is t-reducible to another
problem P if

t-round algorithm for P = t-round algorithm for Q.

P is P-SLOCAL-complete if P € P-SLOCAL, and any
Q € P-SLOCAL is O(log®(n) -reducible to P.

Theorem [M. Ghaftari, F Kuhn, Y. Maus (2017)]
Computing a (O(log®Mn),0O(log®(n))-decomposition is
P-SLOCAL-complete.

Corollary P-LOCAL = P-SLOCAL.
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Derandomization

For Locally Checkable Labeling (LCL) problems:

Theorem [M. Naor and L. Stockmeyer (1992)]
LOCAL(O(1)) = RLOCAL(O(1))

Theorem [L. Feuilloley and P. F. (2015)]
LOCAL(O(1)) = RLOCAL(O(1)) also for randomly

locally checkable problems.

Theorem [V. Rozhon and M. Ghaffari (2019)]
P-LOCAL = P-RLOCAL.
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Randomized Algorithms
using Shattering

Pick @orOu.a.r.

e

W.h.p., max length monochromatic interval < O(log n)

3-coloring or MIS: #rounds = Det(O(log n))
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Graph Shattering

1. Shatter the graph using randomization
2. Complete each piece deterministically

parts that are parts that remain
fixed after 1. to be fixed by 2.




Deterministic lower bounds
3
Randomized lower bounds

Theorem [Y.-J. Chang, T. Kopelowitz, S. Pettie (2016)]

For any LCL problem in the LOCAL model, its
randomized complexity on instances of size n is at least
its deterministic complexity on instances of size +log n.

Conclusion: one needs to design better deterministic
algorithms for improving the performances of

randomized algorithms!
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Concluding remarks



Round Complexity

(A+1)-coloring

Deterministic O(Iogo(1)n)

Rozhon, Ghaffari (2019)

O(logP™n)

Rozhon, Ghaffari (2019)

;ELCCINTEELE O(log@(Mlog n)+O(log A)
Maximal Matching

Deterministic O(log3n)

Fisher (2017)

O(log®Mlog n)

(2A-1)-edge-coloring

O(|096n) Ghaffari, Fisher, Kuhn (2017)

Ghaffari, Harris, Kuhn (2018)

sERCEEERE O(logslog n)+0O(log A)

Barenboim, Elkin, Pettie, Schneider (2012)

O(logslog n)

Elkin, Pettie, Su (2015)
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| ower Bounds

(A+1)-coloring and
(2A-1)-edge-coloring

MIS and Maximal Matching

Deterministic Q(min{ Iog A/ Ioglog A,
and Viog n / loglog n }) ()(log™n)

Randomized

Linial (1987)
Kuhn, Moscibroda, Wattenhofer (2004) Naor (1990)
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Open problems

e |mprove the constants (i.e., the degrees of the
polylog)

e Close the gaps between lower and upper bounds

e |s (A+1)-coloring solvable in O(log*n) rounds”
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