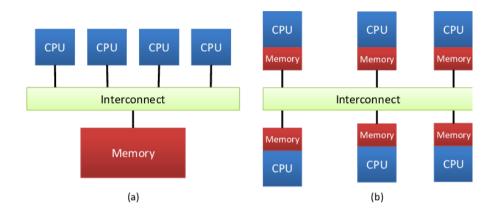
ADFOCS Lectures

- Asynchronous Crash-Prone Distributed Computing
- Locality in Distributed Network Computing
- Congestion-Prone Distributed NetworkComputing
- Other Aspects of Distributed Computing

Various Models



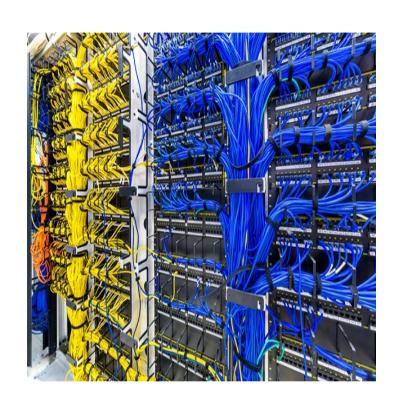
Message Passing

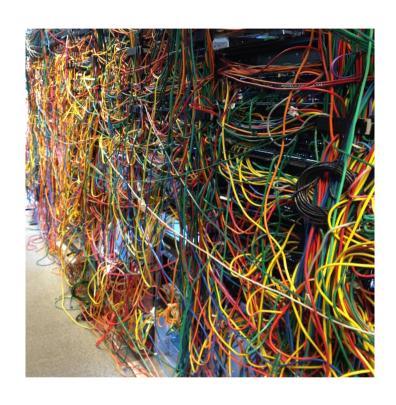
Synchronous Asynchronous



Failures: crash, transient, Byzantine, etc.

Networks





Two major technological constraints:

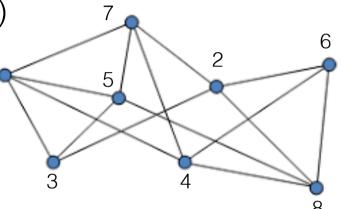
- Latency / Locality
- Bandwidth / Information

LOCAL Model

 Each process is located at a node of a network modeled as an n-node graph (n = #processes)

 Computation proceeds in synchronous rounds during which every process:

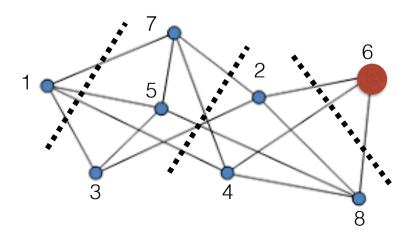
- 2. Receives a message from each neighbor
- 3. Performs individual computation (same algorithm for all nodes)



Complexity = #rounds

Lemma If a problem P can be solved in t rounds in the LOCAL model by an algorithm A, then there is a t-round algorithm B solving P in which every node proceeds in two phases:

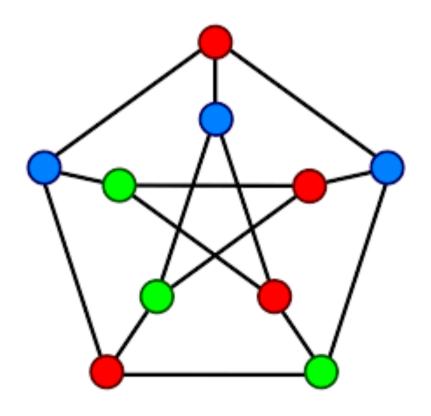
- Phase 1. Gather all data in the t-ball around it
- Phase 2. Compute the solution

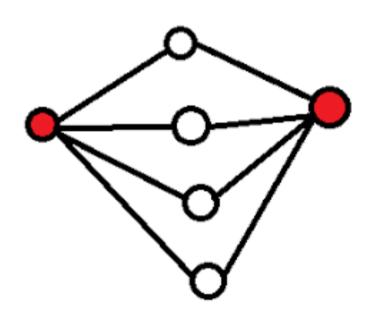


Graph problems

Vertex coloring

Independent set



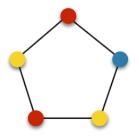


$(\Delta + 1)$ -coloring

 Δ = maximum node degree of the graph

 $(\Delta+1)$ -coloring = assign colors to nodes such that every pair of adjacent nodes are assigned different colors.

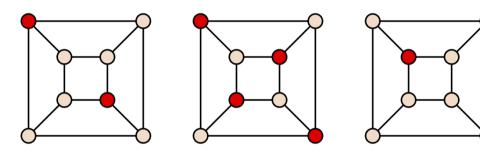
Lemma Every graph is $(\Delta+1)$ -colorable



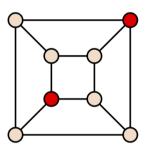
Theorem (Brooks, 1941)

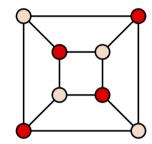
Every graph G is Δ -colorable, unless G is a complete graph, or an odd cycle.

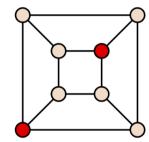
Maximal Indepent Set (MIS)



Maximal, not maximum!





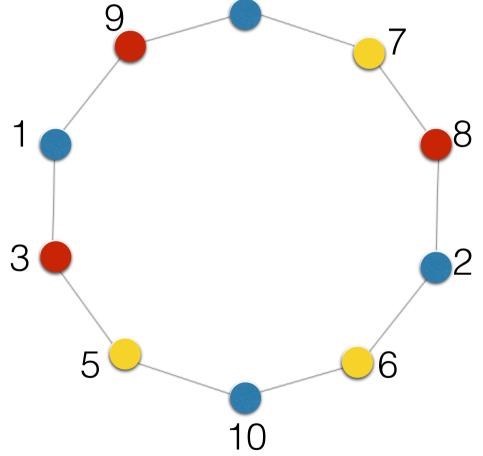


Roadmap

- 1. Deterministic algorithms
- 2. Randomized algorithms
- 3. Strong links between deterministic and randomized algorithms

Deterministic Algorithms

3-coloring the n-node cycle C_n



How many rounds for 3-coloring the n-node cycle?

Round complexity of 3-coloring C_n

Theorem (Cole and Vishkin, 1986) There exists an algorithm for 3-coloring C_n performing in O(log*n) rounds.

Iterated logarithms:

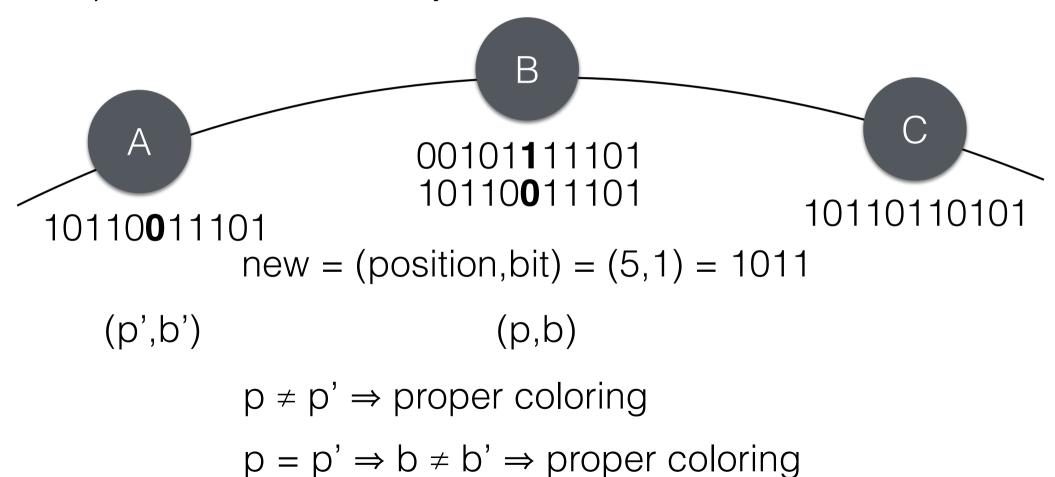
- $\log^* x = \text{smallest } k \text{ such that } \log^{(k)} x < 1$
- $\log^* 10^{100} = 5$

Theorem (Linial, 1992) Any 3-coloring algorithm for C_n performs in $\Omega(\log^* n)$ rounds.

Dijkstra Prize 2013

Cole-Vishkin Algorithm

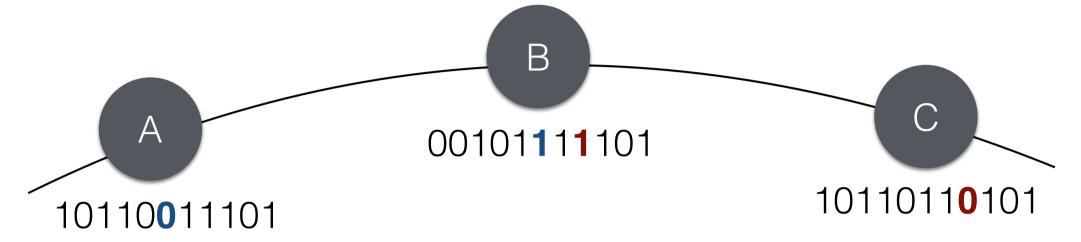
Initial color = ID Express colors in binary Assume: n is known, and consistent sens of direction



Number of iterations

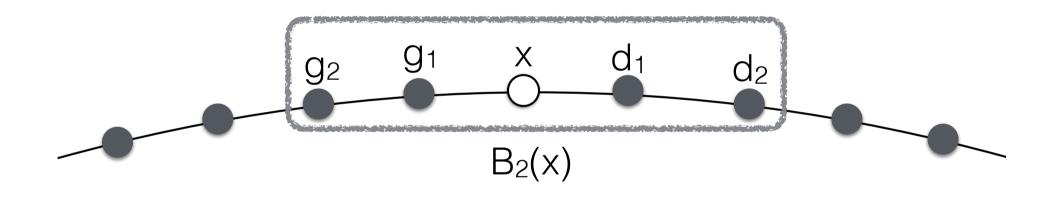
- k-bit colors ⇒ new colors on \[\log_2 k \rangle +1 \] bits
- log*n + O(1) rounds to reach colors on 3 bits
- 8 colors down to 3 colors in 5 rounds
- Total number of rounds = log*n + O(1)

Speeding up the Algorithm



- Every node can simulate 2 rounds in just 1 round
- left round + right round → implemented in 1 round
- Total number of rounds = ½ log*n + O(1)

Linial's Lower Bound

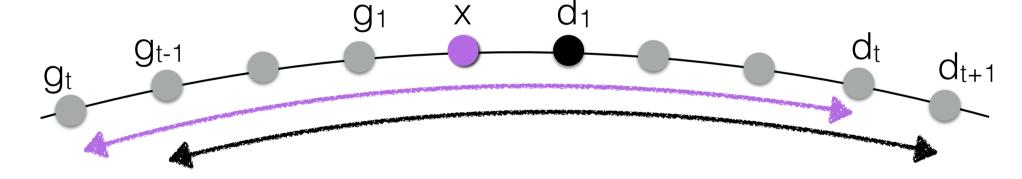


every node x decides as a t-round algorithm \longrightarrow function \mathcal{A} applied to $B_t(x)$ where $B_t(x)=(q_t,q_{t-1},\ldots,q_1,x,d_1,\ldots,d_{t-1},d_t)$

Configuration Graph Gt,n

vertices = { $(g_t,...,g_1,x,d_1,...,d_t) \in \{1,...,n\}^{2t+1}$ }

$$edges = \left\{ \begin{matrix} (g_t, \ldots, g_1, x, d_1, \ldots, d_t) & (g_{t-1}, \ldots, g_1, x, d_1, \ldots, d_t, d_{t+1}) \\ \bullet \end{matrix} \right\}$$



- 1. t-round 3-coloring algorithm for $C_n \Rightarrow \chi(G_{t,n}) \leq 3$
- 2. $t < \frac{1}{2} \log^* n O(1) \Rightarrow \chi(G_{t,n}) > 3$

Step 1

Lemma t-round c-coloring algo for $C_n \Rightarrow \chi(G_{t,n}) \leq c$

Proof Algo
$$\mathcal{A} \Rightarrow \text{vertex}(g_1, ..., g_1, x, d_1, ..., d_t)$$
 colored

$$\mathcal{A}(g_t,\ldots,g_1,x,d_1,\ldots,d_t)$$

Coloring is proper as

$$(g_t,...,g_1,x,d_1,...,d_t)$$
 and $(g_{t-1},...,g_1,x,d_1,...,d_{t+1})$

can appear as view of x and d_1 in some instances of ID assignment to the nodes of the ring.

Application

Corollary (Linial, 1992) For n even, 2-coloring C_n requires $\Omega(n)$ rounds.

Proof Assume t rounds, with $t \le n/2 - 2 \Rightarrow 2t+1 \le n-3$.

- 1. $(x_1, x_2, ..., x_{2t+1})$
- 2. $(x_2,...,x_{2t+1},y)$
- 3. $(x_3,...,x_{2t+1},y,z)$
- 4. $(x_4,...,x_{2t+1},y,z,x_1)$
- 5. $(x_5,...,x_{2t+1},y,z,x_1,x_2)$

2t+1. $(x_{2t+1},y,z,x_1,...,x_{2t-2})$

2t+2. $(y,z,x_1,...,x_{2t-2},x_{2t-1})$

2t+3. $(z,x_1,...,x_{2t-1},x_{2t})$

odd cycle

 $\chi(G_{t,n}) > 2$

Step 2

Lemma $t < \frac{1}{2} \log^* n - O(1) \Rightarrow \chi(G_{t,n}) > 3$

Proof is technical (uses line graphs)¹

But worth reading!

A simpler proof of Linial's lower bound

Proof (Laurinharju & Suomela, 2014)

A is a k-ary c-coloring function if

- 1. $\mathcal{A}(x_1,x_2,...,x_k) \in \{1,2,...,c\}$ for all $1 \le x_1 < x_2 < ... < x_k \le n$ 2. $\mathcal{A}(x_1,x_2,...,x_k) \ne A(x_2,x_3,...,x_{k+1})$ for all $x_k < x_{k+1} \le n$

Claim 0. t-tound algorithm \mathcal{A} for 3-coloring C_n

 \rightarrow A is (2t+1)-ary 3-coloring function

Claim 1. If \mathcal{A} is a 1-ary c-coloring function then $c \ge n$.

Claim 2. If \mathcal{A} is a k-ary c-coloring function, then there is a (k-1)-ary 2^c -colouring function \mathcal{E} .

$$\mathcal{Z}(x_1, x_2, ..., x_{k-1}) = \{ \mathcal{A}(x_1, x_2, ..., x_{k-1}, x_k) : x_k > x_{k-1} \}$$

For contradiction, let $1 \le x_1 < x_2 < ... < x_k \le n$ with $\mathcal{Z}(x_1, x_2, ..., x_{k-1}) = \mathcal{Z}(x_2, ..., x_{k-1}, x_k)$

Let $C = \mathcal{A}(X_1, X_2, ..., X_{k-1}, X_k)$.

- $ightharpoonup C \in \mathcal{B}(X_1, X_2, \dots, X_{k-1})
 ightharpoonup C \in \mathcal{B}(X_2, \dots, X_{k-1}, X_k)$
- \Rightarrow $\exists x_{k+1} > x_k : \mathbf{C} = \mathcal{A}(x_2, ..., x_k, x_{k+1}) \Rightarrow \mathcal{A} \text{ is not } k\text{-ary } c\text{-coloring function.}$

Theorem Any 3-coloring algorithm for C_n performs in $\Omega(\log^* n)$ rounds.

Proof Let A be a t-tound algorithm for 3-coloring C_n

- \Rightarrow A is (2t+1)-ary 3-coloring function (by Claim 0)
- \Rightarrow A is (2t)-ary 2³ -coloring function (by Claim 2)
- \Rightarrow A is (2t-1)-ary $2^{(2)3}$ -coloring function
- \Rightarrow A is (2t-2)-ary $2^{(3)3}$ -coloring function

:

- \Rightarrow A is (1)-ary $2^{(2t)3}$ -coloring function
- \Rightarrow $2^{(2t)3} \ge n$ (by Claim 1)
- \Rightarrow t $\geq \frac{1}{2} \log^* n 1$.

$(\Delta+1)$ -coloring arbitrary graphs

Best lower bound (Linial, 1992)

 $\Omega(\log^* n)$ rounds

Best upper bound (Panconesi & Srinivasan, 1992)

20(√log n) rounds

Gap open for a quarter of a century!

$(\Delta+1)$ -coloring arbitrary graphs

Complexity as $f(n)+g(\Delta)$

Theorem (Linial, 1992)

There is a $(\Delta+1)$ -coloring algorithm performing in $O(\log^* n) + \tilde{O}(\Delta^2)$ rounds.

Theorem (F., Heinrich, Kosowski, 2016) There is a $(\Delta+1)$ -coloring algorithm performing in $O(\log^* n) + \tilde{O}(\sqrt{\Delta})$ rounds.

$O(\Delta^2)$ -coloring

Theorem (Linial, 1992) $O(\Delta^2)$ -coloring in $log^*n+O(1)$ rounds

Lemma For all $k > \Delta \ge 2$, there exists $J = \{S_1, ..., S_k\}$ where

 $S_i \subseteq \{1, ..., 5 \mid \Delta^2 \log k \} \}$ for i=1,...,k

such that, for every $\Delta+1$ sets S_{i0} , S_{i1} ,..., $S_{i\Delta}$ in J, we have

 $S_{i0} \nsubseteq U_{j=1,...,\Delta} S_{ij}$.

Algorithm: Init: k = n and color(u) = ID(u)

Each round: color range [1,k] reduced to [1,5 $\lceil \Delta^2 \log k \rceil$]

 $color(u) = c \rightarrow u \text{ has set } S_c$

New color: smallest $x \in S_c \setminus U_{i=1,...,\Delta} S_{color(vi)}$.

Locally Iterative Algorithm

Theorem [L. Barenboim, M. Elkin, U. Goldenberg (2017) There exists a locally iterative algorithm for $(\Delta+1)$ -coloring, performing in $O(\log^* n + \Delta)$ rounds.

Proof. Compute $O(\Delta^2)$ -coloring in $log^*n+O(1)$ rounds.

Assume for simplicity a $(\Delta+1)^2$ -coloring with $\Delta+1=p$ prime.

Represent color $c_0(v) = (a_v, b_v)$ where $a_v, b_v \in GF(p)$.

- if $\not\exists u \in N(v)$, with $b_u = b_v$ then v adopts $(0,b_v)$ as final color;
- otherwise, v recolors itself as (a_v, b_v + a_v).

The following two properties hold:

- Recoloring preserves proper coloring
- After $2p + 1 = 2(\Delta + 1) + 1$ rounds, all nodes have finalized their color.

Locally Checkable Labeling

Let \mathcal{F}_{Δ} be the set of all (connected) graphs with maximum degree Δ .

Definition (Naor and Stockmeyer, 1995) An LCL in \mathcal{F}_{Δ} is specified by a finite set of labels, and a finite set of labeled balls with maximum degree Δ , called good balls.

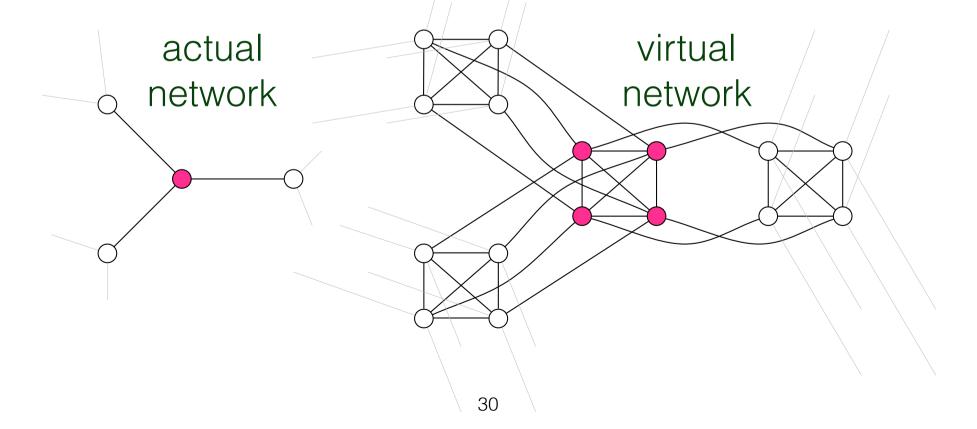
Examples:

- k-coloring, k-edge-coloring
- maximal independent set (MIS)
- maximal matching
- Etc.

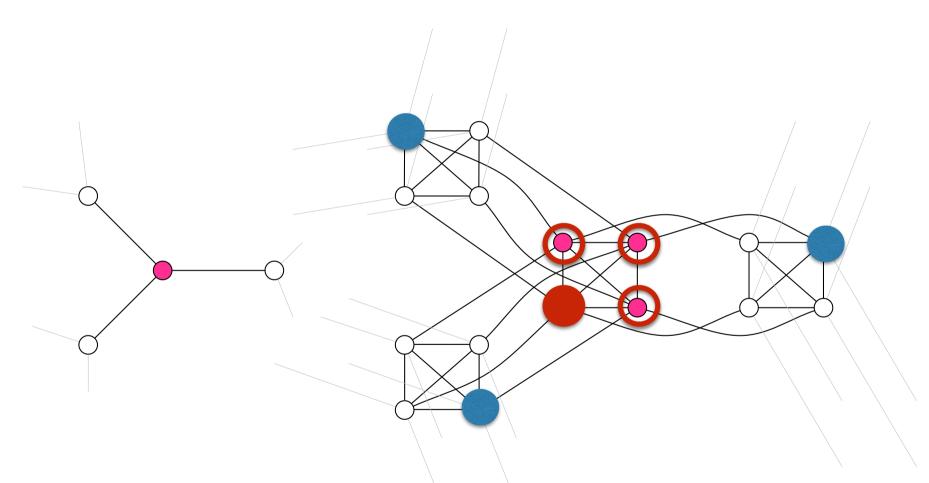
Focus is on LCL tasks solvable sequentially by a greedy algorithm selecting nodes in arbitrary order, like, e.g., k-coloring for $k \ge \Delta + 1$.

Maximal Independent Set

- $(\Delta + 1)$ -coloring \rightarrow MIS in Δ rounds by maximizing $\{1\}$
- MIS \rightarrow (\triangle +1)-coloring by simulation



Claim 1. At most one node of each clique in the MIS Claim 2. At least one node of each clique in the MIS

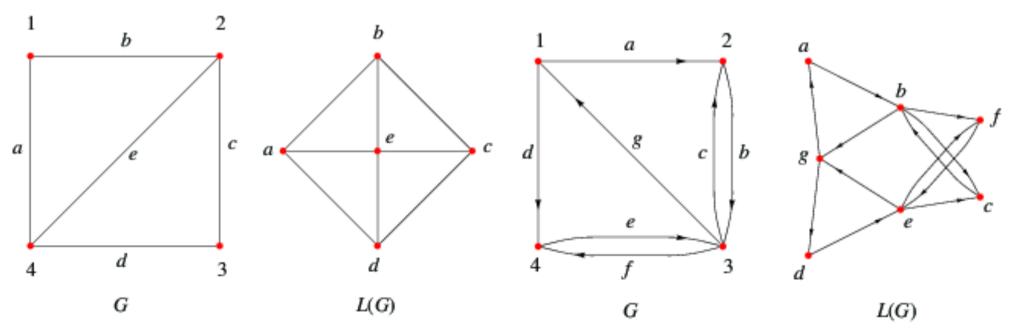


Color = index of node in the MIS

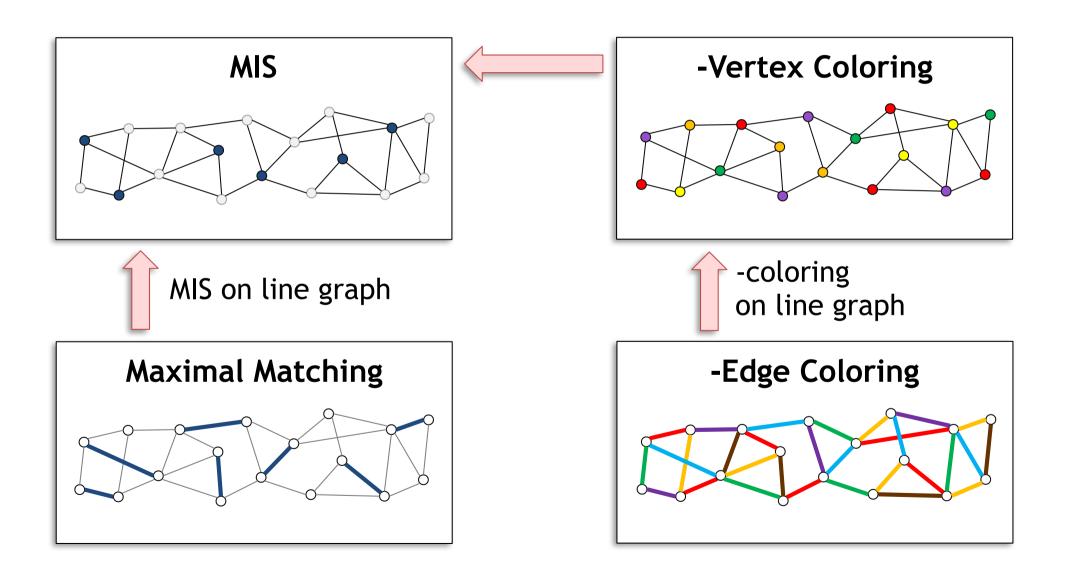
Line Graphs

Definition The line graph of a graph G is the graph L(G) such that

- V(L(G)) = E(G)
- $\{e,e'\} \in E(L(G)) \iff e \text{ and } e' \text{ are incident in } G$



Four classical problems



Round Complexity

	MIS	(Δ+1)-coloring
Deterministic	2√log(n) Panconesi, Srinivasan (1992)	2√log(n) Panconesi, Srinivasan (1992)
Randomized	$2^{\sqrt{\log\log(n)}} + O(\log \Delta)$ Ghaffari (2016)	2 √loglog(n) Chang, Li, Pettie (2018)
	Maximal Matching	(2Δ-1)-edge-coloring
Deterministic	O(log ³ n) Fischer (2017)	O(log ⁶ n) Ghaffari, Fisher, Kuhn (2017) Ghaffari, Harris, Kuhn (2018)
Randomized	$O(log^3log n)+O(log \Delta)$ Barenboim, Elkin, Pettie, Schneider (2012)	O(log ⁶ log n) Elkin, Pettie, Su (2015)

Lower Bounds

	MIS and Maximal Matching	(Δ+1)-coloring and (2Δ-1)-edge-coloring
Deterministic and Randomized	$Ω(min{ log Δ / loglog Δ, \sqrt{log n / loglog n})$	Ω(log*n)
	Kuhn, Moscibroda, Wattenhofer (2004)	Linial (1987) Naor (1990)

Randomized Algorithms

Randomized algorithm for $(\Delta + 1)$ -coloring

Algorithm (Barenboim and Elkin, 2013) for node u

```
while uncolored do
   \mathscr{C} = \{\text{colors previously adopted by neighbors}\}\
   pick \ell(u) at random in \{0,1,\ldots,\Delta+1\} - \mathscr{C}
      • 0 is picked w/ probability ½
      • \ell(u) \in \{1, ..., \Delta+1\} - \mathscr{C} is picket w/ proba 1/(2(\Delta+1-|\mathscr{C}|))
   if \ell(u) \neq 0 and \ell(u) \notin \{colors picked by neighbors\}
      then adopt \ell(u) as my color
                                                                        1 round
      else remain uncolored
                                                                        1 round
   inform neighbors of status
```

Definition A sequence $(\mathcal{E}_n)_{n\geq 1}$ of events holds with high probability (whp) whenever $\Pr[\mathcal{E}_n] = 1 - O(1/n^c)$ for some constant c > 0.

Theorem (Barenboim and Elkin, 2013) The (Δ +1)-coloring algorithm takes, w.h.p., O(log n) rounds.

```
Recall: 
« A given B holds » or « A conditioned to B »
```

A and B independent $\Leftrightarrow Pr[A \land B] = Pr[A] \cdot Pr[B]$

- $Pr[A|B] = Pr[A \land B] / Pr[B] \Rightarrow Pr[A \land B] = Pr[A|B] \cdot Pr[B]$
- $Pr[A] = Pr[A|B] \cdot Pr[B] + Pr[A|\neg B] \cdot Pr[\neg B]$
- Union bound: $Pr[A \lor B] \le Pr[A] + Pr[B]$

$$\Pr[\exists \ s \in S : s \models \mathcal{P}] = \Pr[(s_1 \models \mathcal{P}) \lor (s_2 \models \mathcal{P}) \lor ... \lor (s_m \models \mathcal{P})]$$

Claim For every node u, at any round, Pr[u terminates] ≥ ½

$$\Pr[u \text{ termine}] = \Pr[\ell(u) \neq 0 \text{ et aucun } v \in N(u) \text{ satisfait } \ell(v) = \ell(u)]$$

$$= \Pr[\forall v \in N(u), \ell(v) \neq \ell(u) \mid \ell(u) \neq 0] \cdot \Pr[\ell(u) \neq 0]$$

$$= \frac{1}{2} \cdot \Pr[\forall v \in N(u), \ell(v) \neq \ell(u) \mid \ell(u) \neq 0]$$

$$\Pr[\ell(v) = \ell(u) \mid \ell(u) \neq 0] = \Pr[\ell(v) = \ell(u) \mid \ell(u) \neq 0 \land \ell(v) = 0] \Pr[\ell(v) = 0]$$

$$+ \Pr[\ell(v) = \ell(u) \mid \ell(u) \neq 0 \land \ell(v) \neq 0] \Pr[\ell(v) \neq 0]$$

$$= \Pr[\ell(v) = \ell(u) \mid \ell(u) \neq 0 \land \ell(v) \neq 0] \Pr[\ell(v) \neq 0]$$

$$\leq \frac{1}{2} \Pr[\ell(v) = \ell(u) \mid \ell(u) \neq 0 \land \ell(v) \neq 0]$$

$$= \frac{1}{2} \frac{1}{\Delta + 1 - |C(u)|} .$$

$$\Pr[\exists v \in N(u) : \ell(v) = \ell(u) \mid \ell(u) \neq 0] \le (\Delta - |C(u)|) \frac{1}{2(\Delta + 1 - |C(u)|)} < \frac{1}{2}$$

O(log n) rounds w.h.p.

Pr[u does not terminate in k ln(n) rounds]

$$\leq (3/4)^{k \ln(n)} = n^{-k \ln(4/3)}$$

 $Pr[\exists u \text{ that does not terminate in } k \ln(n) \text{ rounds}] \leq n^{1-k \ln(\frac{4}{3})}$

Let c > 1, by choosing $k = (1+c)/ln(\frac{4}{3})$, we get:

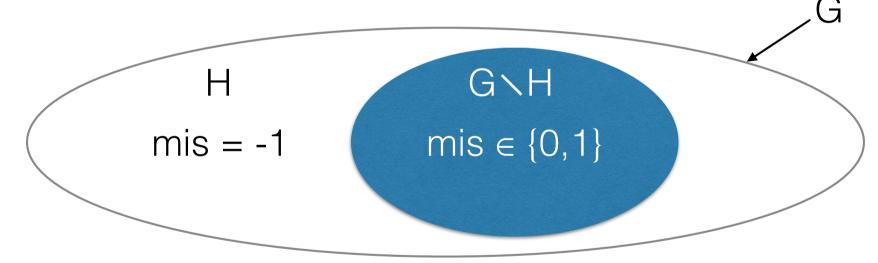
Pr[all nodes terminates after $(1+c)/\ln(\frac{4}{3}) \ln(n)$ rounds] $\geq 1-1/n^c$.

Randomized algorithm for MIS

```
Algorithm (Luby, 1986)
```

 $mis(u) \in \{-1,0,1\} = \{undecided, not in MIS, in MIS\}$

At any given round: $H = G[\{u : mis(u)=-1\}]$



Trick: enforcing an order between nodes:

```
v > u \iff deg_H(v) > deg_H(u)
or (deg_H(v) = deg_H(u) \text{ and } ID(v) > ID(u))
```

Luby's algorithm

One phase of the algorithm for node u with mis(u) = -1

```
if deg<sub>H</sub>(u) = 0 then mis(u) ← 1
else join(u) ← true with proba 1/(2 deg<sub>H</sub>(u)), false otherwise
exchange join with every v \in N(u)
free(u) ← \nexists v \in N(u) such that v \succ u and join(v)=true
if (join(u) = true and free(u) = true) then mis(u) ← 1
exchange mis with every v \in N(u)
if (mis(u) = -1 and \exists v \in N(u) mis(v)=1) then mis(u) ← 0
exchange mis with every v \in N(u)
```

Luby's algorithm terminates in O(log n) rounds, w.h.p.

Structure of the proof:

- 1. $Pr[mis(u) = 1] \ge 1/(4 deg_H(u))$
- 2. For a set \mathcal{N} of nodes,

 $u \in \mathcal{N} \Rightarrow Pr[u \text{ terminates}] \ge 1/36$

3. For a <u>large</u> set **£** of edges,

 $e \in \mathcal{E} \Rightarrow Pr[e \text{ removed from H}] \ge 1/36$

4. Use concentration result (Chernoff bound) to get w.h.p.

```
\Pr[mis(u) \neq 1 \mid join(u)] = \Pr[\exists v \in N(u) : v \succ u \land join(v) \mid join(u)]
                                          = \Pr[\exists v \in N(u) : v \succ u \land join(v)]
                                               \sum \Pr[join(v)]
                                                 v \in N(u): v \succ u
                                          = \sum_{v \in N(u): v \succ u} \frac{1}{2 \deg(v)}

\leq \sum_{v \in N(u): v \succ u} \frac{1}{2 \deg(u)}

                                          \leq \frac{\deg(u)}{2\deg(u)}
```

if deg_H(u) = 0 then mis(u) ← 1 else join(u) ← true with proba $1/(2 \text{ deg}_H(u))$ exchange join with every $v \in N(u)$ free(u) ← $\nexists v \in N(u)$ such that $v \succ u$ and join(v)=true if (join(u) = true and free(u) = true) then mis(u) ← 1 exchange mis with every $v \in N(u)$ if (mis(u) = -1 and $\exists v \in N(u)$ mis(v)=1) then mis(u) ← 0 exchange mis with every $v \in N(u)$

$$\Pr[mis(u) = 1] = \Pr[mis(u) = 1 \mid join(u)] \cdot \Pr[join(u)]$$

$$\Pr[mis(u) = 1] \ge \frac{1}{2} \cdot \frac{1}{2 \deg(u)} = \frac{1}{4 \deg(u)}.$$

A node u is large if $\sum_{v \in N(u)} \frac{1}{2 \deg(v)} \ge \frac{1}{6}$

Claim: u large ⇒ Pr[u terminates] ≥1/36

• True if $\exists v \in N(u)$: $deg_H(v) \le 2$

• $\forall v \in N(u)$, if $\deg_H(v) \ge 3$ then $\frac{1}{2 \deg(v)} \le \frac{1}{6}$

$$\implies$$
 \exists $S \subseteq N(u): \frac{1}{6} \le \sum_{v \in S} \frac{1}{2 \operatorname{deg}(v)} \le \frac{1}{3}$

$$\Pr[E_1 \vee E_2 \vee \cdots \vee E_r] = \sum_{i} \Pr[E_i] - \sum_{i \neq j} \Pr[E_i \wedge E_j] + \sum_{i \neq j \neq k} \Pr[E_i \wedge E_j \wedge E_k] - \dots$$

$$\cdots + (-1)^{r+1} \Pr[E_1 \wedge \cdots \wedge E_r].$$

$$\Pr[mis(u) \neq -1] \geq \Pr[\exists v \in S : mis(v) = 1]$$

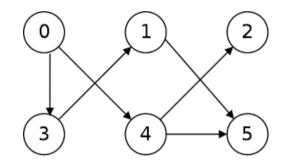
$$\geq \sum_{v \in S} \Pr[mis(v) = 1] - \sum_{v,w \in S, v \neq w} \Pr[mis(v) = 1 \land mis(w) = 1].$$

if
$$deg_H(u) = 0$$
 then $mis(u) \leftarrow 1$
else $join(u) \leftarrow true$ with proba $1/(2 deg_H(u))$
exchange $join$ with every $v \in N(u)$
free(u) $\leftarrow \nexists v \in N(u)$ such that $v \succ u$ and $join(v)$ =true
if $(join(u) = true$ and $free(u) = true)$ then $mis(u) \leftarrow 1$
exchange mis with every $v \in N(u)$
if $(mis(u) = -1$ and $\exists v \in N(u)$ $mis(v) = 1$) then $mis(u) \leftarrow 0$
exchange mis with every $v \in N(u)$

An edge e={u,v} is large if u or v is large

For $e = \{u, v\}$ with $u \prec v$, orient the edge $u \rightarrow v$

Claim For every small node u, $deg^+(u) \ge 2 deg^-(u)$



Out-degree

In-degree

Indeed: $deg^+(u) < 2 deg^-(u) \Longrightarrow deg(u) < 3 deg^-(u)$

$$S = \{v \in N(u) : deg(v) \le deg(u)\}$$

$$|S| \ge deg^{-}(u) \Longrightarrow |S| \ge |N(u)|/3$$

$$\sum_{v \in N(u)} \frac{1}{2 \deg(v)} \ge \sum_{v \in S} \frac{1}{2 \deg(v)} \ge \sum_{v \in S} \frac{1}{2 \deg(u)} \ge \frac{\deg(u)}{3} \cdot \frac{1}{2 \deg(u)} = \frac{1}{6} \quad \blacksquare$$

Let
$$m = |E(H)|$$
 We have:
$$\sum_{u \text{ petit}} \deg^{-}(u) \le \frac{1}{2} \sum_{u \text{ petit}} \deg^{+}(u) \le \frac{m}{2}$$

$$\Longrightarrow \sum_{u \text{ grand}} \deg^-(u) \ge \frac{m}{2} \implies \text{at least m/2 large edges}$$

X_e = Bernouilli variable equal to 1 if e is removed from H

For e large,
$$Pr[X_e=1]\geq 1/36 \Longrightarrow \mathbb{E}X_e \geq 1/36$$

$$X = \sum_{e \text{ large}} X_e \Longrightarrow \mathbb{E} X = \sum_{e \text{ large}} \mathbb{E} X_e \ge m/72$$

Let
$$p = Pr[X \le \frac{1}{2} EX]$$

$$\mathbb{E}X = \sum_{x=0}^{m} x \ \Pr[X = x] = \sum_{x=0}^{\frac{1}{2}\mathbb{E}X} x \ \Pr[X = x] + \sum_{x=\frac{1}{2}\mathbb{E}X+1}^{m} x \ \Pr[X = x] \le \frac{1}{2} p \mathbb{E}X + (1-p)m$$

$$\implies p \le \frac{m - \mathbb{E}X}{m - \frac{1}{2}\mathbb{E}X} \le \frac{m - \frac{1}{2}\mathbb{E}X}{m} \le 1 - \frac{1}{144}.$$

Let $\mathscr{E} =$ « at least m/144 edges are removed from H »

$$Pr[\mathscr{E}] \ge 1/144$$

Let $Y_1, Y_2, ..., Y_k$ be Bernouilli variables w/ parameter q = 1/144Let $Y = Y_1 + Y_2 + ... + Y_k$

Remark: Let $\alpha = 144/143$. If $Y \ge \log_{\alpha} |E(G)|$ then termination.

Chernoff Inequality: $\forall \ \delta \in]0,1[,\Pr[Y \leq (1-\delta)\mathbb{E}Y] \leq e^{-\frac{1}{2}\delta^2\mathbb{E}Y}.$

We have EY = kq, so, with $\delta = \frac{1}{2}$, we get $\Pr[Y \leq \frac{kq}{2}] \leq e^{-\frac{kq}{8}}$

For $k = c \log_{\alpha} n$, we get $\Pr[Y \leq \frac{cq \log_{\alpha} n}{2}] \leq e^{-\frac{cq \log_{\alpha} n}{8}}$

Let $c = 4/q \Longrightarrow \frac{1}{2} c q \log_{\alpha} n \ge \log_{\alpha} |E(G)|$ and $cq \ge 8 \ln(\alpha)$.

$$\Longrightarrow e^{-\frac{cq\log_{\alpha}n}{8}} = \frac{1}{n^{\frac{cq}{8\ln\alpha}}} \le \frac{1}{n}. \implies \Pr[Y \le \log_{\alpha}m] \le \frac{1}{n}.$$

Thus Luby's algorithm terminates in O(log n) rounds w.h.p.

Deterministic - Randomized

Network Decomposition

Definition A (d,c)-decomposition of an n-node graph G = (V, E) is a partition of V into clusters such that each cluster has diameter at most d and the cluster graph is properly colored with colors $1, \ldots, c$.

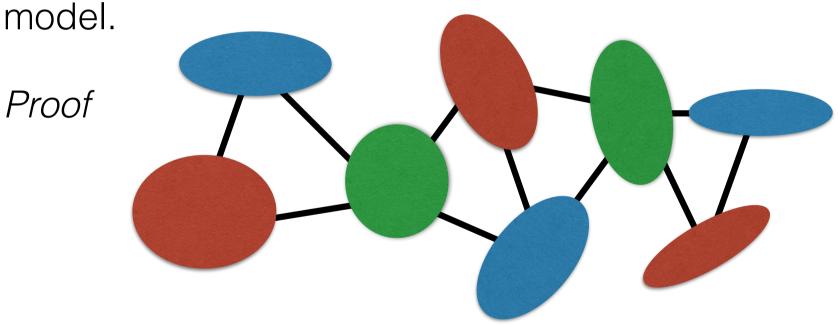
Theorem [Linial and Saks (1993)]

Every graph has a (O(log n),O(log n))-decomposition, and such a decomposition can be computed by a randomized algorithm in O(log²n) rounds in the LOCAL model.

Theorem [Panconesi and Srinivasan (1992)] A $(2^{O(\sqrt{\log n})}, 2^{O(\sqrt{\log n})})$ -decomposition can be computed deterministically in $2^{O(\sqrt{\log n})}$ rounds in the LOCAL model.

Impact on coloring and MIS

Lemma Given a (d,c)-decomposition, (Δ +1)-coloring and MIS can be solved in O(cd) rounds in the LOCAL



Proceed in c phases, each of O(d) rounds

Theorem [V. Rozhon and M. Ghaffari (2019)] A (O(log n),O(log n))-decomposition can be computed deterministically in O(log^{O(1)}n) rounds in the LOCAL model.

Corollary (Δ +1)-coloring and MIS can be deterministically solved in O(log^{O(1)}n) rounds in the LOCAL model.

SLOCAL Model

M. Ghaffari, F Kuhn, Y. Maus (2017)

- Sequential variant of the LOCAL model:
 - nodes are considered sequentially, one by one
 - the current node computes its output based solely on the states of the nodes in the ball of radius t around it
- LOCAL(t) = {problems solvable in t rounds}
- SLOCAL(t) = {problem solvable with balls of radius t}
- P-LOCAL = LOCAL($log^{O(1)}n$)
- P-SLOCAL = SLOCAL(log^{O(1)}n)

Completeness Results

In the LOCAL model, a problem Q is t-reducible to another problem P if

t-round algorithm for $P \Rightarrow t$ -round algorithm for Q.

P is P-SLOCAL-complete if $P \in P$ -SLOCAL, and any $Q \in P$ -SLOCAL is $O(log^{O(1)}n)$ -reducible to P.

Theorem [M. Ghaffari, F Kuhn, Y. Maus (2017)] Computing a (O(log^{O(1)}n),O(log^{O(1)}n))-decomposition is P-SLOCAL-complete.

Corollary P-LOCAL = P-SLOCAL.

Derandomization

For Locally Checkable Labeling (LCL) problems:

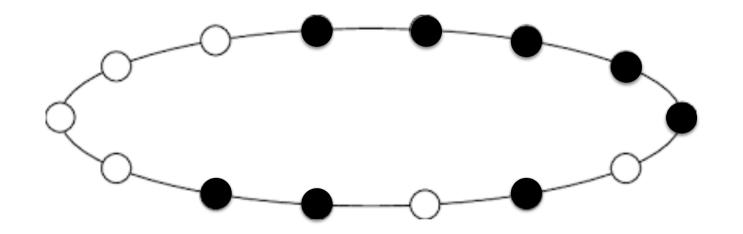
Theorem [M. Naor and L. Stockmeyer (1992)] LOCAL(O(1)) = RLOCAL(O(1))

Theorem [L. Feuilloley and P. F. (2015)] LOCAL(O(1)) = RLOCAL(O(1)) also for randomly locally checkable problems.

Theorem [V. Rozhon and M. Ghaffari (2019)] P-LOCAL = P-RLOCAL.

Randomized Algorithms using Shattering

Pick ● or ○ u.a.r.

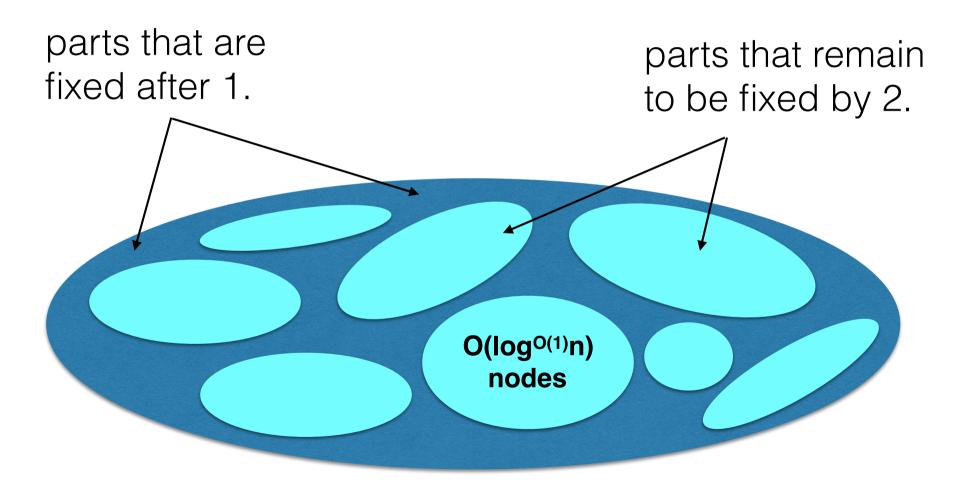


W.h.p., max length monochromatic interval \leq O(log n)

3-coloring or MIS: #rounds \approx **Det**(O(log n))

Graph Shattering

- 1. Shatter the graph using randomization
- 2. Complete each piece deterministically



 $Rand(n) \approx Det(O(log^{O(1)}n))$

Deterministic lower bounds Randomized lower bounds

Theorem [Y.-J. Chang, T. Kopelowitz, S. Pettie (2016)] For any LCL problem in the LOCAL model, its randomized complexity on instances of size n is at least its deterministic complexity on instances of size √log n.

Conclusion: one needs to design better deterministic algorithms for improving the performances of randomized algorithms!

Concluding remarks

Round Complexity

	MIS	(Δ+1)-coloring
Deterministic	O(log ^{O(1)} n) Rozhon, Ghaffari (2019)	O(log ^{O(1)} n) Rozhon, Ghaffari (2019)
Randomized	$O(\log^{O(1)}\log n) + O(\log \Delta)$	O(log ^{O(1)} log n)
	Maximal Matching	(2Δ-1)-edge-coloring
Deterministic	Maximal Matching O(log³n) Fisher (2017)	(2Δ-1)-edge-coloring O(log ⁶ n) Ghaffari, Fisher, Kuhn (2017) Ghaffari, Harris, Kuhn (2018)

Lower Bounds

	MIS and Maximal Matching	(Δ+1)-coloring and (2Δ-1)-edge-coloring
Deterministic and Randomized	$Ω(min{ log Δ / loglog Δ, \sqrt{log n / loglog n})$	Ω(log*n)
	Kuhn, Moscibroda, Wattenhofer (2004)	Linial (1987) Naor (1990)

Open problems

- Improve the constants (i.e., the degrees of the polylog)
- Close the gaps between lower and upper bounds
- Is $(\Delta+1)$ -coloring solvable in $O(\log^* n)$ rounds?