ADFOCS Lectures

- Asynchronous Crash-Prone Distributed Computing
- Locality in Distributed Network Computing
- Congestion-Prone Distributed Network Computing

Other Aspects of Distributed Computing

CONGEST Model

- Each process is located at a node of a network modeled as an n-node graph (n = #processes)
- Each process has a unique ID in {1,...,n}
- Computation proceeds in synchronous rounds during which every process:
 - 1. Sends a message to each neighbor
 - 2. Receives a message from each neighbor
 - 3. Performs individual computation (same algorithm for all nodes)

Typically, $B = O(\log n)$

Non-local problems

All-Pairs Shortest Paths

Specification: Every node v aims at computing dist_G(v,u) for every other node

General idea (for unweighted graphs):

- Every node u launches a signal performing BFS(u)
- Whenever v receives signal of BFS(u), it sets dist_G(v,u) = #hops performed by the signal from u

Issue: Several signals may traverse the same edge at the same round.

The signals must be scheduled carefully.

Linear time algorithm

Theorem [S. Holzer, R. Wattenhofer (2012)] APSP can be solved in O(n) rounds in the CONGEST model.

Proof. Scheduling of the signals:

- Construct a BFS tree rooted a node with smallest ID
- Perform a DFS traversal of the tree where, whenever reaching a node u for the first time:
 - (1) wait 1 round,
 - (2) launch the BFS signal of u
 - (3) move to next DFS node.

See <u>https://users.ics.aalto.fi/suomela/apsp/</u>

BFS Construction

Weighted Graphs

Cf. Cristoph Lenzen's lecture!

Minimum Spanning Tree (MST)

Input of node u : ID(u), w(e) for every $e \in E(u)$ Output of node u : list of edges $e \in E(u)$ belonging to MST

Facts about MST

Let G = (V, E) be a connected weighted graph

- Without loss of generality, all weights can be assumed distinct in for every e = {u,v} with ID(u) > ID(v), replace w(e) by (w(e),ID(u),ID(v)).
- For every **cut** (S,V\S) in **G**, the edge of **minimum** weight in the cut belongs to the MST.
- For every cycle C in G, the edge of maximum weight in C does not belong to the MST

$$I_1 = (1,3)$$
 $I_2 = (3,2)$ $I_3 = (1,2)$

Remark MST requires at least D rounds in the cycle.

Algorithms with round-complexity O(f(n)+D) in n-node graphs of diameter D.

Objective: minimizing f(n)

Borůvska's algorithm (1926) distributed version

Collection of subtrees

called « fragments »

A phase = fragments are merged

Merges use the edge of minimum weight going out of each fragment

N(t) = #fragments after t rounds N(0) = n $N(t+1) \le N(t)/2$ \Rightarrow at most $\lceil \log_2 n \rceil$ phases

Round complexity

- complexity of a phase = $O(\max_{F} \operatorname{diam}(F))$
- $diam(F) \le n-1$
- **Theorem** The distributed version of Borůvska's algorithm can be implemented in O(n log n) rounds in the CONGEST model.
- The bound is tight:

Matroid Algorithm (1)

Algorithm for a node u

 $K \leftarrow E(u)$ edges incident to node u wait until having received an edge from each child repeat know $K \leftarrow K \cup \{\text{received edges}\}$ $\cup \cup \leftarrow \{ edges \ previously \ sent \ to \ parent(u) \}$ remove $R \leftarrow \{e \in K \setminus U : U \cup \{e\} \text{ contains a cycle}\}$ candidate $C \leftarrow K \setminus (U \cup R)$ if $C \neq \emptyset$ then send $e \in C$ with minimum weight to parent receive edges from children else terminate

Proof of correctness

Theorem The Matroid algorithm performs in O(n + D) rounds in the CONGEST model, and enables the root of the tree to construct a MST.

Lemma 0 Let A and B be acyclic subsets of edges. If |A|>|B| then there exists e ∈ A B such that B u {e} is acyclic. This is a matroid axiom

Proof B is a forest $\{T_1, \ldots, T_k\}$. Let $n_i = |V(T_i)|$. We have $|E(T_i)| = n_i - 1$.

For every i, there are at most n_i-1 edges of A connecting nodes in T_i.

➡ There is an edge in A whose extremities do not belong to a same tree T_i. A node u is said **active** at phase t if it has not terminated at phase t - 1.

Let h(u) = height of u = length of longest path to a leaf of the subtree T_u rooted at u.

Lemma 1 For every active child v of a node u, the set C of candidates for u at time t contains at least one edge sent by v to u before time t.
opremature termination

Proof Induction on h(u). Lemma holds for h(u)=0.

Assume lemma hold for all nodes at height $\leq k$.

Let u with h(u)=k+1, and v active child of u. Note $h(v) \le k$.

 E_u and E_v be edges sent by u to p(u), and by v to u=p(v) before phase t.

Since h(v) < h(u) we have $|E_v| > |E_u|$.

By Lemma 0, $\exists e \in E_v \setminus E_u$ such that $E_u \cup \{e\}$ is acyclic $\Rightarrow e \in C$.

Lemma 2

(a) If u sends e to p(u) at phase t then

- 1. all edges received by u at phase t-1 from its active children were of weight $\ge w(e)$, and
- all edges to be received by u at phases ≥ t will be of weight ≥ w(e).

(b) The weights of the edges sent by u to its parent are 🛹

Proof True for height 0. Assume holds for height k. (a.1) Let u with h(u) = k+1.

Let e' be edge sent by child v at phase t-1.

Let e'' \in C whose existence follows from Lemma 1. By induction, property (b) implies w(e'') \leq w(e').

By the choice of the edge in C, we have $w(e) \le w(e'')$. $\Rightarrow w(e') \ge w(e)$.

(a.2) follows from (a.1) and by induction from (b).

(b) follows from (a.2) by the choice of the edge in C.

→ it is legitimate to remove edges creating cycles with previously sent edges.

Complexity

In n-node graphs, any set of n edges includes a cycle

• every node sends \leq n-1 edges

#rounds ≤ D + n - 1

Broadcasting the MST from the root to all nodes

Pipelining the edges of $T = \{e_1, e_2, \dots, e_{n-1}\}$ down the BFS tree

➡ #rounds ≤ D + n - 1

Wrap Up

- Borůvska: O(n log n) rounds this is because fragments can have arbitrarily large diameter
- Matroid: O(D+n) rounds this is because too many edges are gathered at a single node.
- Combining Borůvska and Matroid:
 - control the diameter of the fragment, and stops when fragments have too large diameter
 - carry on with matroid for computing the (few) edges connecting the fragments already computed by Borůvska

Tool

- D ⊆ V is a dominating set if every u ∉ D has a neighbor in D.
- Remarks:
 - Every maximal independent set is a dominating set.
 - Every tree has a dominating set of size $\leq n/2$
- Objective: Distributed computing of a dominating set of size ≤ n/2 in consistently oriented trees.

MIS in Rooted Trees

Every node has pointer to its parent

- Perform Cole and Vishkin algorithm with parent
- When colors are on 3 bits, every node pushes down its color
- Performs 5 rounds to get all colors in {1,2,3}.

Complexity : O(log*n) rounds

Computing small dominating sets in rooted trees

- $X_d = \{nodes at distance d from a leaf\}$
- $Y = V(T) \setminus (X_0 \cup X_1 \cup X_2)$
- Let J be MIS in Y (comput. in O(log*n) rounds)
- Let $D = J \cup X_1$
- D is a dominating set
- $|X_1| \le |X_0| \Rightarrow |X_1| \le \frac{1}{2} |X_0 \cup X_1|$
- $|\mathsf{J}| \leq |(\mathsf{Y} \cup \mathsf{X}_2) \setminus \mathsf{J}| \Rightarrow |\mathsf{J}| \leq \frac{1}{2} |\mathsf{Y} \cup \mathsf{X}_2|$
 - \Rightarrow |D| \leq n/2

Fast MST algorithm

Two stages:

- 1. Few phases of Borůvska
- 2. Completed by Matroid

 $N(t) \le N(t-1)/2$ $\implies N(t) \le n/2^t$

 $diam(t) \le 3 \ diam(t-1) + 2 \\ \implies diam(t) \le 3^t - 1$

N(t) = #frags after t phasesdiam(t) = max diameter frags

Phase t costs O(diam(t) log*n) rounds

τ phases Borůvska costs Õ(3^τ) rounds

Matroid completes in $O(D+N(\tau))$ rounds

 $3^{\tau} = n/2^{\tau} \implies \text{#rounds} = \tilde{O}(D + n^{0.6131})$

Theorem MST construction can be achieved in $\tilde{O}(D + \sqrt{n})$ rounds in the CONGEST model.

Local problems

C₄-detection

H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$

G is H-free if G does not contain H as a subgraph.

Distributed decision

A distributed algorithm A *decides* ϕ if and only if:

- $G \models \phi \Rightarrow$ all nodes output *accept*
- $G \nvDash \phi \Rightarrow$ at least one node output *reject*

Theorem (Drucker, Kuhn & Oshman, 2014) Deciding C₄-freeness can be done in $O(\sqrt{n})$ rounds.

Algorithm

Algorithm 3 C_4 -detection executed by node u.

- 1: send ID(u) to all neighbors, and receive ID(v) from every neighbor v
- 2: send $\deg(u)$ to all neighbors, and receive $\deg(v)$ from every neighbor v
- 3: $S(u) \leftarrow \{\text{IDs of the min}\{\sqrt{2n}, \deg(u)\} \text{ neighbors with largest degrees}\}$
- 4: send S(u) to all neighbors, and receive S(v) from every neighbor v

5: if
$$\sum_{v \in N(u)} \deg(v) \ge 2n + 1$$
 then

6: output reject

7: **else**

```
8: if \exists v_1, v_2 \in N(u), \exists w \in S(v_1) \cap S(v_2) : w \neq u \text{ and } v_1 \neq v_2 then
```

9: output reject

10: **else**

- 11: output accept
- 12: **end if**
- 13: end if

Case 1: there exists a 'large' node w in C Case 2: all nodes of C are 'small'

W

V2

Lower bound techniques

Reduction to communication complexity

Communication complexity

$f: \{0,1\}^N \times \{0,1\}^N \to \{0,1\}$

Alice & Bob must compute f(a,b)

How many bits need to be exchanged between them?

Equality

• Alice gets $a \in \{0,1\}^N$, and Bob gets $a \in \{0,1\}^N$

$$f(a,b) = 1 \iff a = b$$

Theorem $CC(EQ) = \Omega(N)$.

Set-disjointness

- Ground set S of size N
- Alice gets $A \subseteq S$, and Bob gets $B \subseteq S$

$$f(A,B) = 1 \Longleftrightarrow A \cap B = \bigotimes$$

Theorem CC(DISJ) = $\Omega(N)$, even using randomization (i.e., even if Alice and Bob have access to sources of random bits).

Lemma Transmitting k^2 bits from c_k to c_1 takes $\Omega(k^2)$ rounds

Proof (simplified: no recombination)

- $\exists i, x_i uses \le k/2 \text{ of highway } \square \Omega(k \cdot k/2) \text{ rounds}$
- \forall i, x_i uses > k/2 of highway $\Im \Omega((k^2 \cdot k/2)/(k \log n) rounds_{\Box})$

Application 2 Deciding C4-freeness

Theorem (Drucker, Kuhn & Oshman, 2014) Deciding C₄-freeness required sending $\Omega(\sqrt{n/\log n})$ bits between some neighbors

Reduction from Set-Disjointness.

Lemma There are C₄-free graphs G_n with n nodes and $m = \Omega(n^{3/2})$ edges.
Reduction

Let A and B as in set-disjointness with $N = m = \Omega(n^{3/2})$

Distributed Property Testing

- **Property testing:** checking correctness of large data structure, by performing small (sub-linear) amount of queries.
- Graph queries (with nodes labeled from 1 to n):
 - what is degree of node x?
 - what is the ith neighbor of node x?
- Two relaxations:
 - G is ε-far from satisfying φ if removing/adding up to εm edges to/from G results in a graph which does not satisfy φ.
 - algorithm A tests ϕ if and only if:
 - $G \models \phi \Rightarrow Pr[all nodes output accept] \ge \frac{2}{3}$
 - $G \not\models \phi \Rightarrow Pr[at least one node outputs reject] \ge \frac{2}{3}$

Testing T-freeness

Theorem For every tree T, there exists a 1-sided error randomized algorithm performing in O(1) rounds in the CONGEST model, which correctly detects if the given input network contains T as a subgraph, with probability at least $\frac{2}{3}$.

Algorithm 1 Randomized tree-detection, for a given tree T. Algorithm executed by node u.

- 1: send ID(u) to all neighbors, and receive ID(v) from every neighbor v
- 2: let k = |V(T)|, and pick $color(u) \in [k]$ uniformly at random
- 3: send $\operatorname{color}(u)$ to all neighbors, and receive $\operatorname{color}(v)$ from every neighbor v
- 4: for every $c \in [1, k]$, let $N_c(u) = \{v \in N(u) \mid \operatorname{color}(v) = c\}$
- 5: $\operatorname{active}(u) \leftarrow \operatorname{false}$

6: for
$$c = 1$$
 to k do

- 7: send active(u) to all neighbors, and receive active(v) from every neighbor v
- 8: compute $A(u) = \{v \in N(u) \mid active(v) = true\}$
- 9: **if** $\operatorname{color}(u) = c$ **and** $(\forall c' \in \operatorname{child}(c), N_{c'}(u) \cap A(u) \neq \emptyset)$ **then**
- 10: $active(u) \leftarrow true$
- 11: **end if**
- 12: end for

13: if
$$color(u) = k$$
 and $active(u) = true$ then

- 14: output reject
- 15: **else**
- 16: output accept
- 17: end if

Remark: does not use ε-farness.

$Pr[detecting T] \ge (1/k)^k$

Perform O(k^k) repetitions of Algorithm 1 to get prob[detecting T] $\ge \frac{2}{3}$

Testing C₃-freeness

Algorithm of node u
Exchange IDs with neighbors
for every neighbor v do
 pick a received ID u.a.r.
 send that ID to v
if u receives ID(w) from v ∈ N(u) with w ∈ N(u) and v ≠ w
then output reject
else output accept

Lemma 1 For any triangle Δ , $Pr[\Delta \text{ is detected}] \ge 1/n$

Analysis

Theorem Let $\varepsilon \in [0,1[$. If G is ε -far from being C₃-free, then the algorithm detects a cycle with prob $\ge 1-(1/e)^{\varepsilon/3}$

Lemma 2 If G is ε -far from being C₃-free, then G contains at least ε m/3 edge-disjoint triangles.

Proof Let $S = \{e_1, e_2, \dots, e_k\}$ be min #edges to remove for making G triangle-free ($k \ge \epsilon m$).

Repeat removing e from S, as well as all edges of a triangle Δ_e containing e \Rightarrow at least k/3 steps.

All triangles Δ_e are edge-disjoint.

Analysis (continued)

Proof (of theorem)

- $Pr[no \Delta detected] \le (1-1/n)^{\epsilon m/3} \le (1-1/n)^{\epsilon n/3}$
- $(1-1/n)^n = 1/e$
- $Pr[no \Delta detected] \le (1/e)^{\epsilon/3}$

Repeat k times with k such that $(1/e)^{\epsilon k/3} \leq 1/3$

That is $k \ge 3 \ln(3) / \varepsilon \implies \#rounds = O(1/\varepsilon)$.

Open problem

Is there a distributed tester for K₅-freeness running in O(1) rounds in the CONGEST model?

Distributed Verification

Acyclicness

Non locally decidable!

Acyclicness

48

Algorithm of node u

exchange counters with neighbors if ∃! v∈N(u) : cpt(v)=cpt(u)-1 and ∀ w∈N(u) \{v}, cpt(w)=cpt(u)+1 then accept else reject if G is acyclic, then there is an assignment of the counter resulting in all nodes accept.

if G is has a cycle, then for every assignment of the counters, at least one node rejects.

Proof-Labeling Scheme

A distributed algorithm A verifies ϕ if and only if:

- $G \models \phi \Rightarrow \exists c: V(G) \rightarrow \{0,1\}^*$: all nodes accept (G,c)
- $G \nvDash \varphi \Rightarrow \forall c: V(G) \rightarrow \{0,1\}^*$ at least one node rejects (G,c)

The bit-string c(u) is called the *certificate* for u (cf. class NP) **Objective:** Algorithms in O(1) rounds (ideally, just 1 round in LOCAL) **Examples:**

- Acyclicness: c(u) = dist_G(u,r)
- Spanning tree: $c(u) = (dist_G(u,r), ID(r))$

Measure of complexity: $\max_{u \in V(G)} |C(u)|$

Application: Fault-Tolerance

Universal PLS

Theorem For any (decidable) graph property ϕ , there exists a PLS for ϕ , with certificates of size O(n²) bits in n-node graphs.

- **Proof** c(u) = (M,x) where
 - M = adjacency matrix of G
 - x = table[1..n] with x(i) = ID(node with index i)

Verification algorithm:

- 1. check local consistency of M using x
- 2. if no inconsistencies, check whether M satisfies ϕ

G satisfies $\stackrel{\text{exercice}}{\longleftrightarrow}$ both tests are passed

Lower bound

Theorem There exists a graph property for which any PLS has certificates of size $\Omega(n^2)$ bits.

Proof Graph automorphism = bijection $f:V(G) \rightarrow V(G)$ such that $\{u,v\} \in E(G) \iff \{f(u),f(v)\} \in E(G)$

Fact There are $\ge 2^{\epsilon n^2}$ graphs with no non-trivial auto.

If certificates on $< \epsilon n^2/3$ bits, then $\exists i \neq j$ such that the three nodes $\bigcirc \bigcirc \bigcirc$ have same certificates on G_i - G_i and G_i - G_i .

Local hierarchy

- Equivalent of, e.g., polynomial hierarchy in complexity theory
- {locally decidable properties} = $\Sigma_0 = \prod_0$
- {locally verifiable properties (with PLS)} = Σ_1

Deciding graph property ϕ is in Σ_1 if and only if:

- $G \models \phi \Rightarrow \exists c all nodes accept (G,c)$
- $G \nvDash \varphi \Rightarrow \forall c$ at least one node rejects (G,c)

Deciding graph property ϕ is in \prod_1 if and only if:

- $G \models \phi \Rightarrow \forall c all nodes accept (G,c)$
- $G \nvDash \varphi \Rightarrow \exists c \text{ at least one node rejects } (G,c)$

The hierarchy $(\Sigma_k, \Pi_k)_{k \ge 0}$

Deciding graph property ϕ is in Σ_2 if and only if:

- $G \models \phi \Rightarrow \exists c_1 \forall c_2 \text{ all nodes accept } (G,c_1,c_2)$
- $G \nvDash \varphi \Rightarrow \forall c_1 \exists c_2 \text{ at least one node rejects } (G,c_1,c_2)$

Deciding graph property ϕ is in \prod_2 if and only if:

- $G \vDash \phi \Rightarrow \forall c_1 \exists c_2 \text{ all nodes accept } (G,c_1,c_2)$
- $G \nvDash \varphi \Rightarrow \exists c_1 \lor c_2$ at least one node rejects (G,c_1,c_2)

Deciding graph property ϕ is in \sum_k if and only if:

- $G \models \varphi \Rightarrow \exists c_1 \forall c_2 \exists c_3 \dots Q c_k all nodes accept (G, c_1, \dots, c_k)$
- $G \nvDash \varphi \Rightarrow \forall c_1 \exists c_2 \forall c_1 \dots \neg Q c_k$ at least one node rejects (G, c_1, \dots, c_k)

Deciding graph property ϕ is in \prod_k if and only if:

- $G \models \varphi \Rightarrow \forall c_1 \exists c_2 \forall c_3 \dots Q c_k all nodes accept (G, c_1, \dots, c_k)$
- $G \nvDash \varphi \Rightarrow \exists C_1 \forall C_2 \exists C_3 \dots \neg Q C_k \text{ at least one node rejects } (G, C_1, \dots, C_k)$

Example: Minimum Dominating Set

Decision problem MinDS:

- input = dominating set \mathcal{D} (i.e., $\mathcal{D}(u) \in \{0, 1\}$)
- output = accept if $|\mathcal{D}| = \min_{\text{dom D}} |D|$

Theorem MinDS $\in \prod_2$

Proof

 c_1 encodes a dominating set, i.e., $c_1(u) \in \{0, 1\}$

c₂ encodes:

- a spanning tree T_{err} pointing to node u with error in c_1 if any
- a spanning tree T_0 for counting $|\mathcal{D}|$ (w/ same root)
- a spanning tree T₁ for counting |c₁| (w/ same root)

Algorithm:

- If root u ses $|c_1| < |\mathcal{D}|$ with no error, it rejects, otherwise it accepts
- If any node detects inconsistencies in T₀, T₁ or T_{err} it rejects, otherwise it accepts.

Randomized Protocols

[FKP, 2013]

• At most one selected (AMOS)

- Decision algorithm (2-sided):
 - let $p = (\sqrt{5}-1)/2 = 0.61...$
 - If not selected then accept
 - If selected then accept w/ prob p, and reject w/ prob 1-p
- Issue with boosting! But OK for 1-sided error

Distributed Interactive Protocols

- Arthur-Merlin Phase (no communication, only interactions)
- Verification Phase (only communications)
- Merlin has infinite communication power
- Arthur is randomized
- k = #interactions
- dAM[k] or dMA[k]

- In BPLD with success prob $(\sqrt{5}-1)/2 = 0.61...$
- In $\Sigma_1 LD(O(\log n))$ Not in $\Sigma_1 LD(o(\log n))$
- Not in dMA(o(log n)) for success prob > 4/5
- In dAM(k) with k random bits, and success prob 1-1/2^k
 - Arthur independently picks a k-bit index at each node u.a.r.
 - Merlin answer \perp if no nodes selected, or the index of the selected node

Sequential setting

- For every $k \ge 2$, AM[k] = AM
- $MA \subseteq AM$ because $MA \subseteq MAM = AM[3] = AM$
- $MA \in \Sigma_2 P \cap \Pi_2 P$
- $AM \in \Pi_2 P$
- AM[po/y(n)] = IP = PSPACE

Known results

[KOS 2018, NPY 2018]

- Sym \in dAM(n log n)
- Sym \in dMAM(log n)
- Any dAM protocol for Sym requires Ω(loglog n)-bit certificates
- \neg Sym \in dAMAM(log n)
- Other results on graph non-isomorphism

Parameters

Number of interactions between

- Number of random
- Shared vs distributed

Tradeoffs [CFP, 2019]

- Theorem 1 For every c, there exists a Merlin-Arthur (dMA) protocol for *triangle-freeness*, using O(log n) bits of shared randomness, with Õ(n/c)-bit certificates and Õ(c)-bit messages between nodes.
- Theorem 2 There exists a graph property admitting a proof-labeling scheme with certificates and messages on O(n) bits, that cannot be solved by an Arthur-Merlin (dAM) protocol with certificates on O(n) bits, for any fixed number k ≥ 0 of interactions between Arthur and Merlin, even using shared randomness, and even with messages of unbounded size.

Congested Clique

Graph Problems in the Congested Clique

Lower bound in the Broadcast Congested Clique

Theorem (Drucker, Kuhn & Oshman, 2014) Deciding C₄-freeness required sending $\Omega(\sqrt{n})$ bits between some neighbors in the Broadcast Congested Clique.

 $\Theta(n^2)$ links but bandwidth $\Theta(n \log n)$

Lower bound in the Unicast Congested Clique

To date, no lower bounds for this model are known...

Theorem (*informal* - Drucker, Kuhn & Oshman, 2014)) The unicast congested clique can « *simulate* » « *powerful* » classes of bounded-depth circuits.

It follows that even slightly super-constant lower bounds for the unicast congested clique would give new lower bounds in circuit complexity.

Concluding remarks

Open problems

- Lower bound for the congested clique (hard!) first step: broadcast congested clique.
- Ability to **solve local problems** (e.g., triangle detection) in the CONGEST model.
- Practical approach: how do the known results
 scale with the bandwidth B of the link?
- Congest algorithms for **dynamic networks**.

Time vs. Space

