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CONGEST Model

e Each process is located at a node of a network
modeled as an n-node graph (n = #processes) 7

* Each process has a unique ID in {1,...,n} 1

« Computation proceeds in synchronous rounds
during which every process:

1. Sends a message to each neighbor
LIMITED TO

2. Receives a message from each neighbor 3 bItS

3. Performs individual computation (same
algorithm for all nodes)

Typically, B = O(log n)



Non-local problems



All-Pairs Shortest Paths

Specification: Every node v aims at computing
distac(v,u) for every other node

General idea (for unweighted graphs):
- Every node u launches a signal performing BFS(u)

- Whenever v receives signal of BFS(u), it sets
distg(v,u) = #hops performed by the signal from u

Issue: Several signals may traverse the same edge at
the same round.

= The signals must be scheduled carefully.
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Linear time algorithm

Theorem [S. Holzer, R. Wattenhofer (2012)]
APSP can be solved in O(n) rounds in the CONGEST model.

Proof. Scheduling of the signals:
- Construct a BFS tree rooted a node with smallest |ID

- Perform a DFS traversal of the tree where, whenever reaching a
node u for the first time:

(1) wait 1 round,
(2) launch the BFS signal of u
(3) move to next DFS node.

See https://users.ics.aalto.fi/lsuomela/apsp/ Il




BFS Construction

Breadth First Search
Level 0
Level 1
Lemma BFS construction requires evel2
O(D) rounds in the CONGEST model Level 3
Level 4

Tree Edges
Horizontal Edges

Algorithm of node u Interlevel Edges

[ idmin « ID(U)
! repeat

| send idmin to Nneighbors, and receive IDs from neighbors
if 3 id € {IDs sent by neighbors} : id < idmin then

idmin — ld

parent(u) « 1D

where v is the neighbor which sentid |

(v)



Weighted Graphs

Cf. Cristoph Lenzen’s lecture!



Minimum Spanning Tree
(MST)

Input of node u : ID(u), w(e) for every e € E(u)
Output of node u : list of edges e € E(u) belonging to MST



Facts about MST

Let G = (V,E) be a connected weighted graph

« Without loss of generality, all weights can be
assumed distinct = for every e = {u,v} with
ID(u) > ID(v), replace w(e) by (w(e),ID(u),ID(v)).

e For every cut (S,V\S) in G, the edge of minimum
weight in the cut belongs to the MST.

e For every cycle C in G, the edge of maximum
weight in C does not belong to the MST
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MST Is a non-local problem
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Remark MST requires at least D rounds in the cycle.

Algorithms with round-complexity O(f(n)+D)
in N-node graphs of diameter D.

Objective: minimizing f(n)
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Boruvska’s algorithm (1926)

distributed version

Collection of subtrees
called « fragments »

A-A

A phase = fragments o
are merged Merges use the edge of minimum

weight going out of each fragment
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Fragments & Merging
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Round complexity

complexity of a phase = O(maxr diam(F))
diam(F) < n-1

Theorem The distributed version of Boruvska'’s
algorithm can be implemented in O(n log n) rounds in
the CONGEST model.

The bound is tight:

AAAAMAAAAAAMAAMAAAAAAALLALLL
MMMMMMMMMAMLMAMAM
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Matroid Algorithm (1)

Algorithm for a node u

K « E(U) edgesincident to node u
wait until having received an edge from each child
repeat
wow K« K u {received edges}
U + {edges previously sent to parent(u)}
emove R = {& € K\NU : U u {e} contains a cycle}
candidate G K\(U U R)
if C # @ then
send e € C with minimum weight to parent

receive edges from children
else terminate
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Proof of correctness

Theorem The Matroid algorithm performs in O(n + D) rounds in
the CONGEST model, and enables the root of the tree to
construct a MST.

Lemma 0 Let A and B be acyclic subsets of edges. If |A|>|B| then
there exists e e ANB such that B u {e} is acyclic. <—_ Thisis a

matroid axiom
Proof B is a forest {T4,...,T«}. Let ni = |V(Ti)|. We have |E(Ti)|=ni-1.

For every i, there are at most
) ni-1 edges of A connecting

nodes in Ti.

w [here is an edge in A whose

extremities do not belong to a
‘ ‘ same tree T;. W
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A node u is said active at phase t if it has not terminated at phase
t—1.

Let h(u) = height of u = length of longest path to a leaf of the
subtree T, rooted at u.

Lemma 1 For every active child v of a node u, the set C of
candidates for u at time t contains at least one edge sent by v to

u before time t. &> no premature termination

Proof Induction on h(u). Lemma holds for h(u)=0.
Assume lemma hold for all nodes at height < k.

Let u with h(u)=k+1, and v active child of u. Note h(v) < k.

Eu and Ey be edges sent by u to p(u), and by v to u=p(v) before
phase t.

Since h(v)<h(u) we have | Ev| > | Eu].

By Lemma 0, 3 e € E, \ Ey such that Eyu {e} is acyclic = e € C.
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Lemma 2
(a) If u sends e to p(u) at phase t then
1. all edges received by u at phase t-1 from its active
children were of weight > w(e), and
2. all edges to be received by u at phases >t will be
of weight > w(e).
(b) The weights of the edges sent by u to its parent are ~
=» it is legitimate
to remove edges
creating cycles

with previously
sent edges.

Proof True for height 0. Assume holds for height k.
(a.1) Let u with h(u) = k+1.

Let e’ be edge sent by child v at phase t-1.

Let €” € C whose existence follows from Lemma 1.
By induction, property (b) implies w(e”) < w(e’).
By the choice of the edge in C, we have w(e) < w(e”).

- \W(e’') > w(e).

(a.2) follows from (a.1) and by induction from (b).

(b) follows from (a.2) by the choice of the edge in C. ]
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Complexity

In n-node graphs, any set of
n edges includes a cycle

= cvery node sends < n-1 edges

w Hrounds <D +n-1
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Broadcasting the MST from
the root to all nodes

Pipelining the edges of
T ={e1,e2,...,en1} down
the BFS tree

w Hrounds <D +n- 1
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* Bortvska: O(n log n) rounds — this is because fragments can

have arbitrarily large diameter

e Matroid: O(D+n) rounds — this is because too many edges are
gathered at a single node.

* Combining Boruvska and Matroid:

control the diameter of the fragment, and stops when
fragments have too large diameter

carry on with matroid for computing the (few) edges
connecting the fragments already computed by Bordvska
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Tool

* D c Visadominating setif every u ¢ D has a
neighbor in D.

e Remarks:

- Every maximal independent set is a
dominating set.

- Every tree has a dominating set of size < n/2

* Objective: Distributed computing of a dominating
set of size < n/2 in consistently oriented trees.
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MIS In Rooted Trees

Every node has | |
pointer to its parent * Perform Cole and Vishkin

6 algorithm with parent

root

 When colors are on 3 bits,
every node pushes down its
color

* Performs 5 rounds to get all
colors in {1,2,3]}.

Complexity : O(log™n) rounds
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Computing small dominating
sets In rooted trees

root o X4 = {nodes at distance d from a leaf}
tree T e Y =V(T) N\ XouXquXo)

e letdbeMISINY (comput. in O(log*n) rounds)
e letD =J u X4

- D is adominating set
o Xq £ [Xo| = [Xa| £ V2 [Xo u X

< |(YuXo)Nd|= <2 |Y u Xy

w D] <n/2
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Bounding the diameter of
fragments
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Fast MST algorithm

Two stages:
1. Few phases of Boruvska

2. Completed by Matroid

N(t) = #frags after t phases
diam(t) = max diameter frags

Phase t costs

N(t) < N(t-1)/2 O(diam(t) log*n) rounds
= N(t) < n/2 T phases Borlvska costs
diam(t) < 3 diam(t-1) + 2 O(3r) rounds

—> diam(t) < 3t-1 Matroid completes in

O(D+N(T)) rounds

~S

3T = n/2T = #rounds = O(D + n0-6131)

'[heorem MST construction can be achieved in
O(D + +/n) rounds in the CONGEST model.
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L ocal problems



Cas-detection

H is a subgraph of G if V(H) ¢ V(G) and E(H) ¢ E(G)

G is H-free it G does not
contain H as a subgraph.
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Distributed decision

A distributed algorithm A decides ¢ if and only if:

* Gk ¢ = all nodes output accept
e G ¥ = atleast one node output reject

Theorem (Drucker, Kuhn & Oshman, 2014)
Deciding Cs-freeness can be done in O(:/n) rounds.



Algorithm

Algorithm 3 Cj-detection executed by node w.

— = =
i > el =

send ID(u) to all neighbors, and receive ID(v) from every neighbor v
send deg(u) to all neighbors, and receive deg(v) from every neighbor v
S(u) < {IDs of the min{v/2n, deg(u)} neighbors with largest degrees}
send S(u) to all neighbors, and receive S(v) from every neighbor v
if > ,cn(w) deg(v) > 2n+ 1 then
output reject
V1 u
else
if Jvi,v2 € N(u),Jw € S(v1) N S(v2) : w # u and v; # vy then
output reject C
else
output accept W Vo
end if Case 1: there exists a ‘large’ node w in C
: end if Case 2: all nodes of C are ‘small




| ower bound
techniques



Reduction to communication
complexity

)
(A,B)-coupe minimale
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Communication complexity

f:{0, 1N x{0,1]N = {0,1}

o Bob

ae{0,1N b e {0,1N
Alice & Bob must compute f(a,b)

How many bits need to be exchanged between them?



Equality

* Alice gets a € {O,1}N, and Bob gets a € {O,1}N
fla,p)=1«<=a=Db

Theorem CC(EQ) = Q(N).
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Set-disjointness

* Ground set S of size N

e Alice gets AC S, and Bob gets B € S
f(AB)=1<= AnB =28

Theorem CC(DISJ) = Q(N), even using randomization

(i.e., even if Alice and Bob have access to sources of
random bits).



Application 1

Q(y/n) \ovver bound for MST

weight 0 weight oo

Wi = 2 w'i =2 xi + 1 with x; € {0,1}
Lemma Transmitting k2 bits from ck to ¢+ takes Q(k2) rounds

Proof (simplified: no recombination)
* 3, Xjuses < k/2 of highway = Q(k * k/2) rounds

* Vi, Xiuses > k/2 of highway = Q((k? - k/2)/(k log n) rounds

N



Application 2

Deciding Cy-freeness

Theorem (Drucker, Kuhn & Oshman, 2014)
Deciding Cs-freeness required sending Q(y/n/log n)
bits between some neighbors

Reduction from Set-Disjointness.

Lemma There are Cas-free graphs Gn with n nodes
and m=0(n3%2) edges.



Reduction

Let A and B as in set-disjointness with N = m = ()(n37?)

Alice’s cop Bob’s copy
of Gn of Gn

e s - Alice keeps e € E(Gy)
iff e € A

- Bob keeps e € E(Gp)
iff e e B

Q(n32)/(n log n)
= Q(y/n/log n)




Open problem

deciding A—freeness

Alice Bob

Cs-free graph o
communication

complexity fails
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Distributed Property Testing

* Property testing: checking correctness of large data structure, by
performing small (sub-linear) amount of queries.

Graph queries (with nodes labeled from 1 to n):

- what is degree of node x?
- what is the ith neighbor of node x?

* Two relaxations:

- G is e-far from satisfying ¢ if removing/adding up to em
edges to/from G results in a graph which does not satisfy ¢.

- algorithm A tests ¢ if and only if:
» GE= ¢ = Pr[all nodes output accept] > %3

» G ¢ = Pr[at least one node outputs reject] > 73
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Testing I-freeness

Theorem For every tree T, there exists a 1-sided error
randomized algorithm performing in O(1) rounds in the
CONGEST model, which correctly detects if the given
iInput network contains T as a subgraph, with
probability at least %5.

Color coding:

Let T be a k-node
tree. Label the node
from k down to 1,
using BFS from
arbitrary root.




Algorithm 1 Randomized tree-detection, for a given tree T'. Algorithm executed by node u.

T e T e T e T e T e S = S =
IS A S A S al =

send ID(u) to all neighbors, and receive ID(v) from every neighbor v
let k = |V(T)|, and pick color(u) € [k] uniformly at random
send color(u) to all neighbors, and receive color(v) from every neighbor v
for every c € [1, k], let N.(u) = {v € N(u) | color(v) = ¢}
active(u) < false
forc=1to £k do
send active(u) to all neighbors, and receive active(v) from every neighbor v
compute A(u) = {v € N(u) | active(v) = true}
if color(u) = ¢ and (V¢ € child(c), Ny (u) N A(u) # 0) then
active(u) < true
end if
: end for .
. if color(u) = k and active(u) = true then Remark: does not
output reject use e-farness.
. else
output accept
. end if

Pr[detecting T] > (1/k)k

Perform O(kk) repetitions of Algorithm 1 to get
prob[detecting T] > %5
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Testing Ca-freeness

Algorithm of node u
Exchange IDs with neighbors
for every neighbor v do
pick a received ID u.a.r.
send that ID to v
if u receives ID(w) from v € N(u) with w e N(u) and v # w
then output reject
else output accept

Lemma 1 For any triangle A, Pr[A is detected] > 1/n

42



Analysis

Theorem Let € € ]0,1[. If G is e-far from being Cz-free, then
the algorithm detects a cycle with prob > 1-(1/e)&/3

Lemma 2 If G is e-far from being Cs-free, then G contains at
least em/3 edge-disjoint triangles.

Proof Let S={e1,ez,...,ex} be min #edges to remove for
making G triangle-free (k > em).

Repeat removing e from S, as well as all edges of a triangle
Ae CcONtaining e = at least k/3 steps.

All triangles Ae are edge-disjoint. I
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An a ‘ yS | S (continued)

Proof (of theorem)

* Pr[no A detected] < (1-1/n)emB3 < (1-1/n)en/3
* (1-1/n)n = 1/e

* Pr[no A detected] < (1/e)e/3

Repeat k times with k such that (1/e)ek/3 < 1/3

Thatis k > 3 In(3) / € = #rounds = O(1/g).
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Open problem

|s there a distributed

tester for Ks-freeness
running in O(1) rounds in
the CONGEST model?
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Distributed Verification



Acyclicness

3
7 e
4 @
on/2 le en/2 le
.n/2+1 n‘ ® n/2+1 n (]
® @
n-1 ° n

Non locally decidable!
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Acyclicness

if G is acyclic, then there is
2 2 an assignment of the counter
resulting in all nodes accept.

If G is has a cycle, then for
every assignment of the

counters, at least one node
rejects.

Algorithm of node u
J X+K

exchange counters with neighbors X+

if 31 veN(u) : cpt(v)=cpt(u)-1 and
v weN(u)\{v}, cpt(w)=cpt(u)+1

then accept

else reject
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Proof-Labeling Scheme

A distributed algorithm A verifies ¢ if and only if:
e GE® =3c:V(G) — {0,1}: all nodes accept (G,c)

e GK¥P =vc:V(G) = {0,1}" at least one node rejects (G,c)

The bit-string c(u) is called the certificate for u (cf. class NP)

Objective: Algorithms in O(1) rounds (ideally, just 1 round in LOCAL)

Examples:
* Acyclicness: c(u) = distg(u,r) 4//
* Spanning tree: c(u) = (dista(u,r),ID(r))

O(log n) bits

Measure of complexity: maxuev(a) |c(u)
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Application: Fault-lolerance

construction ﬁ
of correctness
Example: Self-stabilization

{i fault
system
state

current

/ state

Legal configurations

state \
lllegal configurations

initial

time
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Universal PLS

Theorem For any (decidable) graph property &, there

exists a PLS for ¢, with certificates of size O(n?) bits in n-
node graphs.

Proof c(u) = (M,x) where

« M = adjacency matrix of G

e X = table[1..n] with x(i) = ID(node with index i)
Veritication algorithm:

1. check local consistency of M using x
2. if no inconsistencies, check whether M satisfies ¢

exercice

G satisfies <= both tests are passed
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L ower bound

Theorem There exists a graph property for which any
PLS has certificates of size O(n2) bits.

Proof Graph automorphism = bijection :V(G)—V(G) such
that {u,v} € E(G) < {f(u),f(v)} € E(G)

Fact There are > 2°" graphs with no non-trivial auto.

It certificates on < €n2/3 bits, then 3 i#] such that the three
nodes © 00 have same certificates on Gi-Giand Gi-Gi.




|_ocal hierarchy

e Equivalent of, e.g., polynomial hierarchy in complexity theory
 {locally decidable properties} = >0 = Tlo
* {locally verifiable properties (with PLS)} = 2 1

Deciding graph property ¢ is in Y1 if and only if:
 GE¢ = 3callnodes accept (G,c)

« G ¥ = vc atleast one node rejects (G,c)

Deciding graph property & is in TT1 if and only if:
 GE¢® = vcallnodes accept (G,c)

« G ¥ = 3c atleast one node rejects (G,c)
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The hierarchy (2k,Tk)k=0

Deciding graph property ¢ is in Y2 if and only if:
 GE® = 3c1Vceall nodes accept (G,cq,c2)

 G¥d = Vvcqi3aceatleast one node rejects (G,c1,c2)

Deciding graph property ¢ is in T2 if and only if:
« GE® = vci3ceallnodes accept (G,c1,c2)

e G¥d = 3c1VCoatleast one node rejects (G,c1,c2)

Deciding graph property ¢ is in >k if and only if:
e GEd =3ci1vceedcs... Qcekall nodes accept (G,ct,...,Ck)

e G¥P =VvciaceVvcer... »Q ckat least one node rejects (G,cq,...,Ck)

Deciding graph property ¢ is in Tk if and only if:
e GE¢d =vcidcaves... Qcekall nodes accept (G,cy,...,Ck)

e« G¥P =3c1Vvceedcs... 7Q ck at least one node rejects (G, ci,...,Ck)
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Example: Minimum
Dominating Set

Decision problem MinDS:
- input = dominating set?2 (i.e., D(u)e{0,1})
- output = accept if [D| = mingom b |D|

Theorem MinDS € T]»

Proof

c1 encodes a dominating set, i.e., c1(u)e{0,1}

C2 encodes:
.~ a spanning tree Ter pointing to node u with error in c1 if any
. a spanning tree To for counting [2| (w/ same root)

. a spanning tree T4 for counting |c1| (w/ same root)

Algorithm:
- If root u ses |c1| < |D| with no error, it rejects, otherwise it accepts

- If any node detects inconsistencies in To, T1 or Ter it rejects,
otherwise it accepts. Il
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Randomized Protocols

[FKP, 2013]
e At most one selected (AMOS)

DO

e Decision algorlthm (2-S|ded):
- letp = (y5-1)/2 =0.61...
- If not selected then accept
- If selected then accept w/ prob p, and reject w/ prob 1-p

e |ssue with boosting! — But OK for 1-sided error



Distributed Interactive Protocols

KOS, 2018]

e Arthur-Merlin Phase
(no communication,
only interactions)

* Verification Phase
(only communications)

e Merlin has infinite
communication power
e Arthur is randomized

e K = #interactions
e dAMIK] or dMAJK]



Example: AMOS
@@@

In BPLD with success prob (/5-1)/2 = 0.61..
In 21LD(O(log n)) — Not in 21LD(o(log n))
Not in dMA(o(log n)) for success prob > 4/5

In dAM(k) with k random bits, and success prob 1-1/2k

- Arthur independently picks a k-bit index at each node u.a.r.

- Merlin answer L if no nodes selected, or the index of the
selected node



Sequential setting

For every k = 2, AM[k] = AM

MA ¢ AM because MA ¢ MAM = AM[3] = AM
MA € 20P nT12P

AM € NP

AM[ooly(n)] = IP = PSPACE



Known results

KOS 2018, NPY 2018]

Sym € dAM(n log n)
Sym € dMAM(log n)

Any dAM protocol for Sym requires Q(loglog n)-bit
certificates

-Sym € dAMAM(log n)

Other results on graph non-isomorphism



Parameters




Tradeoffs

CFP, 2019

e Theorem 1 For every c, there exists a Merlin-Arthur (dAMA)
protocol for triangle-freeness, using O(log n) bits of shared
randomness, with O(n/c)-bit certificates and O(c)-bit
messages between nodes.

* Theorem 2 There exists a graph property admitting a
proof-labeling scheme with certificates and messages on
O(n) bits, that cannot be solved by an Arthur-Merlin (dAM)
protocol with certificates on o(n) bits, for any fixed
number k = O of interactions between Arthur and Merlin,
even using shared randomness, and even with messages
of unbounded size.



Congested Clique



Definition

CONGEST model, but on a cligue!

Unicast variant Broadcast variant
® ®

O O ® O

potentially same
O ’ ® different O ’ O
messages

messages

O O O O

O O
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Graph Problems in the
Congested Clique

\NA A"/(
A‘:'D:"A :

L

WA




Lower bound In the

Broadcast Congested Clique

Theorem (Drucker, Kuhn & Oshman, 2014)
Deciding Cs-freeness required sending Q(:/n) bits

between some neighbors in the Broadcast
Congested Clique.

©(n2) links but
bandwidth O(n log n)




Lower bound In the
Unicast Congested Clique

To date, no lower bounds for this model are known...

Theorem (informal - Drucker, Kuhn & Oshman, 2014))

The unicast congested clique can « simulate »
« powerful » classes of bounded-depth circuits.

It follows that even slightly super-constant lower

bounds for the unicast congested clique would give
new lower bounds in circuit complexity.
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Concluding remarks



Open problems

Lower bound for the congested clique (hard!) —
first step: broadcast congested clique.

Ability to solve local problems (e.g., triangle
detection) in the CONGEST model.

Practical approach: how do the known results
scale with the bandwidth B of the link?

Congest algorithms for dynamic networks.
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Time vs. Space
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