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Distributed Property Testing

* Property testing: checking correctness of large data structure, by
performing small (sub-linear) amount of queries.

Graph queries (with nodes labeled from 1 to n):

- what is degree of node x?
- what is the ith neighbor of node x?

* Two relaxations:

- G is e-far from satisfying ¢ if removing/adding up to em
edges to/from G results in a graph which does not satisfy ¢.

- algorithm A tests ¢ if and only if:
» GE= ¢ = Pr[all nodes output accept] > %3

» G ¢ = Pr[at least one node outputs reject] > 73
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Question 1. Design a randomized algorithm which
detects any triangle with probability > 1/n.



Testing Ca-freeness

Algorithm of node u
Exchange IDs with neighbors
for every neighbor v do
pick a received ID u.a.r.
send that ID to v
if u receives ID(w) from v € N(u) with w e N(u) and v # w
then output reject
else output accept

Lemma 1 For any triangle A, Pr[A is detected] > 1/n
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Question 2 Show that if G is e-far from being Cs-free,
then G contains at least em/3 edge-disjoint triangles.



Analysis

Lemma 2 If G is e-far from being Cs-free, then G
contains at least em/3 edge-disjoint triangles.

Proof Let S={e1,e2,...,ex} be min #edges to remove for
making G triangle-free (k > em).

Repeat removing e from S, as well as all edges of a
triangle Ae containing e = at least k/3 steps.

All triangles Ae¢ are edge-disjoint.
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Question 3 Let € € ]0,1[. Show that if G is e-far from

being Cs-free, then a constant number of repetition of
the algorithm detects a cycle with probabillity at least
1-(1/e)el3



An a ‘ yS | S (continued)

Theorem Let € € J0,1[. If G is e-tfar from being

Cs-free, then a constant number of repletion of the
algorithm detects a cycle with probability > 1-(1/e)&?

Proof (of theorem)

 Pr[no A detected] < (1-1/n)em3 < (1-1/n)en/3
e (1-1/n)n = 1/e

 Pr[no A detected] < (1/e)e/3

Repeat k times with k such that (1/e)ek3 < 1/3
Thatis k >3 1In(3) / € = #rounds = O(1/¢e).
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Cycle-freeness

Question 1. Show that cycle-freeness cannot
be decided locally.
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Cycle-freeness

3
2 — 2
o O | 4
on/2 le en/2 Lo
.n/2+1 n‘ ® n/2+1 n.
@ I @]
n-1 - n-1

13

en/2

en/2+1



Certifying cycle-freeness

if G is acyclic, then there is
2 2 an assignment of the counter
resulting in all nodes accept.

If G is has a cycle, then for
every assignment of the

counters, at least one node
rejects.

Algorithm of node u
J X+K

exchange counters with neighbors X+

if 31 veN(u) : cpt(v)=cpt(u)-1 and
v weN(u)\{v}, cpt(w)=cpt(u)+1

then accept

else reject
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Proof-Labeling Scheme

A distributed algorithm A verifies ¢ if and only if:
e GE® =3c:V(G) — {0,1}: all nodes accept (G,c)

e GK¥P =vc:V(G) = {0,1}" at least one node rejects (G,c)

The bit-string c(u) is called the certificate for u (cf. class NP)

Objective: Algorithms in O(1) rounds (ideally, just 1 round in LOCAL)

Examples:
* Cycle-freeness: c(u) = distg(u,r) <//
* Spanning tree: c(u) = (dista(u,r),ID(r))

O(log n) bits

Measure of complexity: maxuev(a) |c(u)
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Application: Fault-lolerance

construction ﬁ
of correctness
Example: Self-stabilization
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Universal PLS

Question 2. Show that, for any (decidable) graph
poroperty &, there exists a PLS for ¢, with certificates
of size O(n2) bits in n-node graphs.
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Universal PLS

Theorem For any (decidable) graph property &, there

exists a PLS for ¢, with certificates of size O(n?) bits in n-
node graphs.

Proof c(u) = (M,x) where
« M = adjacency matrix of G
e X = table[1..n] with x(i) = ID(node with index i)

Veritication algorithm:
1. check local consistency of M using x
2. if no inconsistencies, check whether M satisfies ¢

G satisfies <= both tests are passed
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L ower bound

Question 3. Show that there exists a graph property for
which any PLS has certificates of size ()(n2) bits.



L ower bound

Theorem There exists a graph property for which any
PLS has certificates of size O(n2) bits.

Proof Graph automorphism = bijection :V(G)—V(G) such
that {u,v} € E(G) < {f(u),f(v)} € E(G)

Fact There are > 2°" graphs with no non-trivial auto.

It certificates on < €n2/3 bits, then 3 i#] such that the three
nodes © 00 have same certificates on Gi-Giand Gi-Gi.




|_ocal hierarchy

e Equivalent of, e.g., polynomial hierarchy in complexity theory
 {locally decidable properties} = >0 = Tlo
* {locally verifiable properties (with PLS)} = 2 1

Deciding graph property ¢ is in Y1 if and only if:
 GE¢ = 3callnodes accept (G,c)

« G ¥ = vc atleast one node rejects (G,c)

Deciding graph property & is in TT1 if and only if:
 GE¢® = vcallnodes accept (G,c)

« G ¥ = 3c atleast one node rejects (G,c)
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The hierarchy (2k,Tk)k=0

Deciding graph property ¢ is in Y2 if and only if:
 GE® = 3c1Vceall nodes accept (G,cq,c2)

 G¥d = Vvcqi3aceatleast one node rejects (G,c1,c2)

Deciding graph property ¢ is in T2 if and only if:
« GE® = vci3ceallnodes accept (G,c1,c2)

e G¥d = 3c1VCoatleast one node rejects (G,c1,c2)

Deciding graph property ¢ is in >k if and only if:
e GEd =3ci1vceedcs... Qcekall nodes accept (G,ct,...,Ck)

e G¥P =VvciaceVvcer... »Q ckat least one node rejects (G,cq,...,Ck)

Deciding graph property ¢ is in Tk if and only if:
e GE¢d =vcidcaves... Qcekall nodes accept (G,cy,...,Ck)

e« G¥P =3c1Vvceedcs... 7Q ck at least one node rejects (G, ci,...,Ck)
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Example: Minimum
Dominating Set

Decision problem MinDS:
- input = dominating set?2 (i.e., D(u)e{0,1})
- output = accept if |D| = mingom b |D|

Question 4. Show that MinDS e T]»

23



Example: Minimum
Dominating Set

Decision problem MinDS:
- input = dominating set?2 (i.e., D(u)e{0,1})
- output = accept if [D| = mingom b |D|

Theorem MinDS € T]»

Proof

c1 encodes a dominating set, i.e., c1(u)e{0,1}

C2 encodes:
.~ a spanning tree Ter pointing to node u with error in c1 if any
. a spanning tree To for counting [2| (w/ same root)

. a spanning tree T4 for counting |c1| (w/ same root)

Algorithm:
- If root u ses |c1| < |D| with no error, it rejects, otherwise it accepts

- If any node detects inconsistencies in To, T1 or Ter it rejects,
otherwise it accepts. Il
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Exercice 3



Randomized Protocols

[FKP, 2013]
e At most one selected (AMOS)

DO

* Question 1. Show that there exists a randomized algorithm

performing in a constant number of rounds for deciding
AMOS.




Randomized Protocols

[FKP, 2013]
e At most one selected (AMOS)

DO

e Decision algorlthm (2-S|ded):
- letp = (y5-1)/2 =0.61...
- If not selected then accept
- If selected then accept w/ prob p, and reject w/ prob 1-p

e |ssue with boosting! — But OK for 1-sided error



Distributed Interactive Protocols

KOS, 2018]

e Arthur-Merlin Phase
(no communication,
only interactions)

* Verification Phase
(only communications)

e Merlin has infinite
communication power
e Arthur is randomized

e K = #interactions
e dAMIK] or dMAJK]



Example: AMOS

PUY

In BPLD with success prob (,/5-1)/2 = 0.61...

In 21LD(O(log n)) — Not in 21LD(o(log n))
Not in dMA(o(log n)) for success prob > 4/5

Question 2. Show that AMQOS is in dAM(k) with k random
bits, and success prob 1-1/2k



Example: AMOS
@@@

In BPLD with success prob (/5-1)/2 = 0.61..
In 21LD(O(log n)) — Not in 21LD(o(log n))
Not in dMA(o(log n)) for success prob > 4/5

In dAM(K) with k random bits, and success prob 1-1/2k

- Arthur independently picks a k-bit index at each node u.a.r.

- Merlin answer L if no nodes selected, or the index of the
selected node



Sequential setting

For every k = 2, AM[k] = AM

MA ¢ AM because MA ¢ MAM = AM[3] = AM
MA € 20P nT12P

AM € NP

AM[ooly(n)] = IP = PSPACE



Known results

KOS 2018, NPY 2018]

Sym € dAM(n log n)
Sym € dMAM(log n)

Any dAM protocol for Sym requires Q(loglog n)-bit
certificates

-Sym € dAMAM(log n)

Other results on graph non-isomorphism



Parameters




Tradeoffs

CFP, 2019

e Theorem 1 For every c, there exists a Merlin-Arthur (dAMA)
protocol for triangle-freeness, using O(log n) bits of shared
randomness, with O(n/c)-bit certificates and O(c)-bit
messages between nodes.

* Theorem 2 There exists a graph property admitting a
proof-labeling scheme with certificates and messages on
O(n) bits, that cannot be solved by an Arthur-Merlin (dAM)
protocol with certificates on o(n) bits, for any fixed
number k = O of interactions between Arthur and Merlin,
even using shared randomness, and even with messages
of unbounded size.



