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Fair Division

Scares resources

Goal: allocate fairly and efficiently.
And do it quickly!
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We plan to cover

Part 1: Divisible items (Ruta)
Competitive equilibrium and Properties

Computation: Fisher, Spending-restricted, Hylland-
Zeckhauser

Part 2: Indivisible 1tems (Jugal)
Envy-freeness: EF1, EFX
Proportionality: MMS, Propl

Nash welfare guarantees

And lots of open questions!
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Markets

One of the biggest real-life mechanism that

enables (re)distribution of resources.

And they seem to work!

Q: What? Why? And How?
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Markets

Competitive Equilibrium:
Demand = Supply

Goods (buyers)

Buy optimal bundle
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Fisher’s Model (1891)

A: set of n agents
G: set of m divisible goods

Each agent i has
budget of B; dollars

valuation function v;: RI* — R, over bundle of goods

(non-decreasing, non-negative)

Supply of every good 1s one

Ry



Competitive Equilibrium (CE)

Given prices p = (pq, ..., Prm) of goods

m Agent i demands an optimal bundle, 1.e., affordable bundle
that maximizes her utility
X; € argmax,. ,..<p, v;(x)

m p is at competitive equilibrium (CE) 1f market clears

Demand = Supply



CE: Linear Valuations

,
:
| 2

vi(x;) = E Vijfij i Wi
JEM ] ;Q
Utility per unit B

Optimal bundle: can spend at most B; dollars.

Intuitition

spend wisely: on goods that gives max. utility-per-dollar —

O P1
- : ‘
L—Q Dj
O rn
vij

bj



CE: Linear Valuations

@@% O P1

. . — . . j Vij : . |
v; (x;) E Vijkij ivi———Qj p
Utility per unit LAC O

Optimal bundle: can spend at most B; dollars.

1k
z VijXij = l )] B;
e MBB
utility per dollar Maximum

(bang-per-buck) bang-per-buck



CE: Linear Valuations

% O P1

(x:) = E W Loy A
vi(x;) = Vijiis ivs———0Oj p;
JEM — ;Q : '

Utility per unit B O

Optimal bundle: can spend at most B; dollars.

_ Vik
VijXij < | max— | B;
kea Pk

JEM _
iff
1. Spends all of B;.
(p-x;) = B;

2. Only on MBB goods

Yij _
xij>0 = = MBB
Dj



CE Characterization

Pirces p = (p4, ..., P;y) and allocation X = (x4, ...

are at equilibrium 1ff

m Optimal bundle (OB): For each agent i
p-x; =Db;
Vik

Vi .
x;; > 0 = — = max—, for all good j
pj  kEM Dk

m Market clears: For each good j,

inj = 1.

[

) Xn)
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Example

), 2 Items (O, ‘) with unit supply

‘!'/
)y
12

m Each buyer has budget of $1 and a linear utility function

Prices




Example

), 2 Items (O, ‘) with unit supply
m Each buyer has budget of $1 and a linear utility function

Prices

Demand # Supply

Not an Equilibrium!
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), 2 Items (O, ‘) with unit supply
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m Each buyer has budget of $1 and a linear utility function

Prices




Example

), 2 Items (O, ‘) with unit supply

‘!'/
)y
12

m Each buyer has budget of $1 and a linear utility function

. S
Prices ‘/ A4 ) </' / 0)

Demand = Supply

Equilibrium!



Existence?

Many ways to prove. We will see one later.

Properties
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Efficiency: Pareto optimality

m An allocation Y = (y4,y,, ..., ¥,) Pareto dominates another
allocation X = (x4, x5, ..., x) if
u; (y;) = u;(x;), for all buyers i and
uy, (yi) > ug (x;) for some buyer k



" J
Efficiency: Pareto optimality

m An allocation Y = (y4,y,, ..., ¥,) Pareto dominates another
allocation X = (x4, x5, ..., x) if
u; (y;) = u;(x;), for all buyers i and
uy, (yi) > ug (x;) for some buyer k

m X is said to be Pareto optimal (PO) if there is no Y that Pareto
dominates it



First Welfare Theorem

Theorem: Competitive equilibrium outputs a PO allocation
Proof: (by contradiction)
m Let (p, X) be equilibrium prices and allocations
m Suppose Y Pareto dominates X. That is,
v;(y;) = v;(x;),Vi € N, and vy (yy) > vy (x;) for some k

m Total costof Yis ¥;(p - y;) < Xipj=Y; B;
m &k demands x; at prices p and not y;, because?

m Money agent i needs to purchase y;?
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CEEI [Foley 1967, Varian 1974]

Competitive Equilibrium with Equal Income

Problem: Fairly allocate a set of goods among agents
without involving money

m Give every agent (fake) $1 and compute competitive
equilibrium!



Envy-Free (EF)

Allocation X 1s envy-free if every agent prefers her own bundle
than anyone else’s. That 1s, for each agent i,

vi(xl-) = vi(xk),‘v’k e A

Theorem: CEEI 1s envy-free
Proof: Let (p, X) be a CEEIL
m Since the budget of each agent i is $1, (p - x;) = 1.
m Can agent i afford agent k’s bundle (x)?
YES

m But she demands x; instead. Why?
vi(x;) = v (xg)



Proportionality

Allocation X 1s proportional if every agent gets at least the
average of her total value of all goods. That 1s, for each agent i,

v;i(G)

v;(x;) = "

Theorem: CEEI is envy-free

Proof: (EF = Proportional)

m Let (p,X) be a CEEI

m X is EF. That is, v;(x;) = v;(x;),Vk € A. Sum-up over all j

nxv;(x;) = z vi(xg) = vy (Z xk) = v;(G)

keA keA



CEEI Properties: Summary -

CEEI allocation 1s
m Pareto optimal (PO)
m Envy-free

m Proportional



CEEI Properties: Summary

CEEI
Prices
. . 4
CEEI allocation 1s
m Pareto optimal (PO) )
m Envy-free
m Proportional
CEEI Allocation:
1 3
o= ()= (0
Next... () 3 ( )_9
m Nash welfare Vi) =y ) Ty
max1imizing vy () =2, vp(x;) =+



" A
Social Welftare
z v; (x;)
icA
Utilitarian

[ssues: May assign 0 value to some agents.
Not scale mnvariant!



Nash Welfare

max: 1_[ v; (X;)

LEA
4 )
S.1. ZiEA Xij < 1, VJ €EG
xij = O, Vi, Vj
\ Y,

Feasible allocations



Max Nash Weltare (MNW)
max: 08 (l_[ Vi (XL))
i€
f D
S.t. ZiEA Xij < 1, VJ €EG
xij = O, Vi, Vj
N\ y,

Feasible allocations
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Max Nash Weltare (MNW)

max: z log v;(x;)

IEA
(- )
S.t. ZiEA Xij < 1, VJ €EG
xij = O, Vi, Vj
\ J

Feasible allocations
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Eisenberg-Gale Convex Program ‘59

max: z log v;(x;)

i€A
Dual var.



Theorem. Solutions of EG convex program are
exactly the CEEI (p, X).
Proof.

Consequences: CEEI

e Exists
e Forms a convex set

* Can be computed 1n
polynomial time

« MNW allocations = CEEI
allocations




Theorem. Solutions of EG convex program are
exactly the CEEI (p, X).

Proof. =(Using KKT)



Recall: CEEI Characterization

Pirces p = (p4, ..., P;y) and allocation X = (x4, ...

m Optimal bundle: For each buyer i
p-x;=1
Vik

v..
x;; > 0 = — = max—, for all good j
pj  keM Dk

m Market clears: For each good j,

inj = 1.

]



Theorem. Solutions of EG convex program are

exactly the CEEI (p, X).
Proof. (Using KKT)
Vj, Dj > 0 ﬁzixij =1

[

Dual condition to x;;:

>y v
max: 2 log(v;(x;)) Tty

. Dual var.
i€EA

S.t. ZieAxijSI, VjEG — ijO

xij = O, Vi, Vj

Vij p; = Y < v;(x;) = p; > 0= market clears
buy only MBB goods

vi(xi) Dj

Y ivijxi; = (X pjxi)vi(x;)
= 2jpjXij =1

—

— = optimal bundle




Generalizing to CE

Budget of each agent i 1s B; (need not be 1)

max: Z B;log v;(x;)

‘ ] timal solution
EG Formulation: L4 | . Op solutions
st. Xien¥ij <1, VJEG exactly capture CE
xij =2 0, Vi, Vj

CE Properties: Pareto-optimal

o 2.\1/B
m Maximizes weighted NSW, (l'[,;vl-(xl-) l)

w) S v o B=) B,
B; By

m Weighted envy-free:

m Weighted proportional: v;(x;) = %vi(G), Vi



Efficient (Combinatorial) Algorithms

Polynomial time

m Flow based [ppsv’0s]

General exchange model (barter system) [pm’15, DGM’16, CM’18]

m Scaling + path following [GMm.sv’13]

Strongly polynomial time

m Scaling + flow [Orlin10, Veghl6]
Exchange model (barter system) [GV’19]

We will discuss some in the next lecture
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Generalizations

Spending Restricted [cG 18] (for MNW with indivisible goods.)

m CE where total money spent on good j 1s at most ¢;

Hylland-Zeckhauser (for PO and strategy-proof matching)
m n agents and n goods
m Every agent has: (a) linear utilities, (b) unit budget,

(c) wants at most one unit of total allocation

m HZ’79: Equilibrium exists, 1s PO, and 1s truthful at large.

For indivisible goods, think of allocation as a probabilities/time-share.



Generalization: Valuation Functions

@C]i)@
SEB

vi:R" > R




Generalization: Valuation Functions

EG program works!

@@b
B
vi:R" > R
&

1/p
vi(x;) = (Zj Uijxipj)

where p € (—o0, 1]



Generalization:

@C]i)@
SEB

vi:R" > R

Valuation Functions

PPAD-complete [p>94, CT°09, VY*09)].
Path-following algorithm
(empirically fast) [Gm.sv’12]

SPLC

(Separable
Piecewise
Linear

Concave)



Generalization: Valuation Functions

@C]i)@
SEB

vi: R" - R

SPLC

(Separable
Piecewise
Linear

Concave)

Irrational Eq.
FIXP-complete

[GM.VY’17]



Generalization: Valuation Functions

S
o Y
$ &B SPLC
v;: ]R{n SR (Separable

Piecewise
Linear

Concave)

Irrational Eq.
FIXP-complete

[EY’10]




Tons of other works (we will not cover)

m More generalizations like utility-restriction
[CDGIMVY’17, BGHM’17,...]

m Simplex-like path-following algorithms (E-7e,
GM.SV’12,GM.V’14]

m Auction based algorithms [Gkv 04, GK’06, KMV°07, GHV’19]
m Dynamics [Wz07, 2’11, BDX’11, CCT’18, CCD’19, BNM.’19 ... ]
m Hardness results [cT°09,vY?09, GM.VY’17,...]

m Strategization and Price-of-Anarchy (aBoM.s°10,cDZ°11,
CDZZ’12, BCDF-RFZ’14, M.TVV’14, BGM.’18,...]



Tons of other works (we will not cover)

Cake Cutting
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