
Fair Division

Jugal Garg and Ruta Mehta

24 - 28 August 2020

ADFOCS 2020



Goal: allocate fairly and efficiently.

Fair Division

And do it quickly!

Scares resources

R. Mehta (ADFOCS’20)
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UCLA Kidney Exchange Program.

R. Mehta (ADFOCS’20)



We plan to cover
Part 1: Divisible items (Ruta)

 Competitive equilibrium and Properties
 Computation: Fisher, Spending-restricted, Hylland-

Zeckhauser

Part 2: Indivisible items (Jugal)

 Envy-freeness: EF1, EFX 
 Proportionality: MMS, Prop1
 Nash welfare guarantees

And lots of open questions!

R. Mehta (ADFOCS’20)



Lecture 1: Competitive Equilibrium

Ruta Mehta
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Markets
One of the biggest real-life mechanism that  

enables (re)distribution of resources. 

And they seem to work!

Q: What? Why? And How?

R. Mehta (ADFOCS’20)



Markets

Competitive Equilibrium: 
Demand = Supply

Agents
(buyers)Goods

Buy optimal bundle

$10

$5 $25
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Fisher’s Model (1891)
 𝐴𝐴: set of 𝑛𝑛 agents 
 𝐺𝐺: set of 𝑚𝑚 divisible goods

 Each agent 𝑖𝑖 has 
 budget of 𝐵𝐵𝑖𝑖 dollars
 valuation function 𝑣𝑣𝑖𝑖:𝑅𝑅+𝑚𝑚 → 𝑅𝑅+ over bundle of goods

(non-decreasing, non-negative)

 Supply of every good is one

𝑅𝑅+𝑚𝑚

𝑣𝑣𝑖𝑖

R. Mehta (ADFOCS’20)



Competitive Equilibrium (CE)

Given prices 𝑝𝑝 = 𝑝𝑝1, … , 𝑝𝑝𝑚𝑚 of goods

 Agent 𝑖𝑖 demands an optimal bundle, i.e., affordable bundle 
that maximizes her utility

𝑥𝑥𝑖𝑖 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥: 𝑝𝑝⋅𝑥𝑥≤𝐵𝐵𝑖𝑖 𝑣𝑣𝑖𝑖 𝑥𝑥

 𝑝𝑝 is at competitive equilibrium (CE) if market clears
Demand = Supply

R. Mehta (ADFOCS’20)



CE: Linear Valuations

Optimal bundle: can spend at most 𝐵𝐵𝑖𝑖 dollars.

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 = �
𝑗𝑗∈𝑀𝑀

𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 𝑖𝑖 𝑗𝑗

⋮

⋮ ⋮

⋮

𝑣𝑣𝑖𝑖𝑖𝑖

Utility per unit

Intuitition
spend wisely: on goods that gives max. utility-per-dollar 

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗

𝑝𝑝1
⋮
𝑝𝑝𝑗𝑗

⋮
𝑝𝑝𝑚𝑚

R. Mehta (ADFOCS’20)



�
𝑗𝑗∈𝑀𝑀

𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 = �
𝑗𝑗

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗

𝑝𝑝𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

Optimal bundle: can spend at most 𝐵𝐵𝑖𝑖 dollars. 

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 = �
𝑗𝑗∈𝑀𝑀

𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 𝑖𝑖 𝑗𝑗

⋮

⋮ ⋮

⋮

𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝1
⋮
𝑝𝑝𝑗𝑗

⋮
𝑝𝑝𝑚𝑚Utility per unit

utility per dollar
(bang-per-buck)

($ spent)

≤ max
𝑘𝑘∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

�
𝑗𝑗

𝑝𝑝𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖≤ max
𝑘𝑘∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

𝐵𝐵𝑖𝑖
MBB

Maximum
bang-per-buck

CE: Linear Valuations

R. Mehta (ADFOCS’20)



�
𝑗𝑗∈𝑀𝑀

𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 = �
𝑗𝑗

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗

𝑝𝑝𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

Optimal bundle: can spend at most 𝐵𝐵𝑖𝑖 dollars. 

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 = �
𝑗𝑗∈𝑀𝑀

𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 𝑖𝑖 𝑗𝑗

⋮

⋮ ⋮

⋮

𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝1
⋮
𝑝𝑝𝑗𝑗

⋮
𝑝𝑝𝑚𝑚Utility per unit

utility per dollar
(bang-per-buck)

($ spent)

≤ max
𝑘𝑘∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

�
𝑗𝑗

𝑝𝑝𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖≤ max
𝑘𝑘∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

𝐵𝐵𝑖𝑖

1. Spends all of Bi.
𝑝𝑝. 𝑥𝑥𝑖𝑖 = 𝐵𝐵𝑖𝑖

2. Only on MBB goods
𝑥𝑥𝑖𝑖𝑖𝑖 > 0 ⇒

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗

= 𝑀𝑀𝑀𝑀𝑀𝑀

MBB
Maximum

bang-per-buck

CE: Linear Valuations

=
iff

R. Mehta (ADFOCS’20)



CE Characterization

Pirces 𝑝𝑝 = 𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
are at equilibrium iff

 Optimal bundle (OB): For each agent 𝑖𝑖
 𝑝𝑝 ⋅ 𝑥𝑥𝑖𝑖 = 𝐵𝐵𝑖𝑖
 𝑥𝑥𝑖𝑖𝑖𝑖 > 0 ⇒ 𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝𝑗𝑗
= max

𝑘𝑘∈𝑀𝑀
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

, for all good 𝑗𝑗

 Market clears: For each good 𝑗𝑗,

�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖 = 1.

R. Mehta (ADFOCS’20)



Example

 2 Buyers (     ,       ),   2 Items (     ,      ) with unit supply
 Each buyer has budget of $1 and a linear utility function

$3

$3

2

1

1
3

Prices

3

3

R. Mehta (ADFOCS’20)



Example

$3

$3

2

1

1
3

Prices

3

3

Not an Equilibrium!

Demand ≠ Supply

 2 Buyers (     ,       ),   2 Items (     ,      ) with unit supply
 Each buyer has budget of $1 and a linear utility function

MBB

R. Mehta (ADFOCS’20)



Example

Prices

2

4$3

$3

2

1

1
3

Prices

 2 Buyers (     ,       ),   2 Items (     ,      ) with unit supply
 Each buyer has budget of $1 and a linear utility function

R. Mehta (ADFOCS’20)



Example

Prices

2

Equilibrium!

Demand = Supply
4$3

$3

2

1

1
3

Prices

 2 Buyers (     ,       ),   2 Items (     ,      ) with unit supply
 Each buyer has budget of $1 and a linear utility function

MBB

R. Mehta (ADFOCS’20)



Existence? 
Many ways to prove. We will see one later.

Properties

R. Mehta (ADFOCS’20)



Efficiency: Pareto optimality

 An allocation 𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) Pareto dominates another 
allocation 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) if 
 𝑢𝑢𝑖𝑖 𝑦𝑦𝑖𝑖 ≥ 𝑢𝑢𝑖𝑖 𝑥𝑥𝑖𝑖 , for all buyers 𝑖𝑖 and  
 𝑢𝑢𝑘𝑘 𝑦𝑦𝑘𝑘 > 𝑢𝑢𝑘𝑘(𝑥𝑥𝑘𝑘) for some buyer 𝑘𝑘

R. Mehta (ADFOCS’20)



Efficiency: Pareto optimality

 An allocation 𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) Pareto dominates another 
allocation 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) if 
 𝑢𝑢𝑖𝑖 𝑦𝑦𝑖𝑖 ≥ 𝑢𝑢𝑖𝑖 𝑥𝑥𝑖𝑖 , for all buyers 𝑖𝑖 and  
 𝑢𝑢𝑘𝑘 𝑦𝑦𝑘𝑘 > 𝑢𝑢𝑘𝑘(𝑥𝑥𝑘𝑘) for some buyer 𝑘𝑘

 𝑋𝑋 is said to be Pareto optimal (PO) if there is no 𝑌𝑌 that Pareto 
dominates it

R. Mehta (ADFOCS’20)



First Welfare Theorem

Theorem: Competitive equilibrium outputs a PO allocation
Proof: (by contradiction)
 Let 𝑝𝑝,𝑋𝑋 be equilibrium prices and allocations
 Suppose 𝑌𝑌 Pareto dominates 𝑋𝑋. That is,
𝑣𝑣𝑖𝑖 𝑦𝑦𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 ,∀𝑖𝑖 ∈ 𝑁𝑁,  and  𝑣𝑣𝑘𝑘 𝑦𝑦𝑘𝑘 > 𝑣𝑣𝑘𝑘 𝑥𝑥𝑘𝑘 for some 𝑘𝑘

 Total cost of 𝑌𝑌 is ∑𝑖𝑖 𝑝𝑝 ⋅ 𝑦𝑦𝑖𝑖 ≤ ∑𝑗𝑗 𝑝𝑝𝑗𝑗

 k demands 𝑥𝑥𝑘𝑘 at prices 𝑝𝑝 and not 𝑦𝑦𝑘𝑘 , because?

 Money agent i needs to purchase 𝑦𝑦𝑖𝑖?
∎

= ∑𝑖𝑖 𝐵𝐵𝑖𝑖

R. Mehta (ADFOCS’20)



CEEI [Foley 1967, Varian 1974]

Competitive Equilibrium with Equal Income

Problem: Fairly allocate a set of goods among agents 
without involving money

 Give every agent (fake) $1 and compute competitive 
equilibrium! 

R. Mehta (ADFOCS’20)



Envy-Free (EF)

Allocation X is envy-free if every agent prefers her own bundle 
than anyone else’s. That is, for each agent 𝑖𝑖,

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝑥𝑥𝑘𝑘 ,∀𝑘𝑘 ∈ 𝐴𝐴

Theorem: CEEI is envy-free
Proof: Let (𝑝𝑝,𝑋𝑋) be a CEEI. 
 Since the budget of each agent 𝑖𝑖 is $1, 𝑝𝑝 ⋅ 𝑥𝑥𝑖𝑖 = 1.
 Can agent 𝑖𝑖 afford agent 𝑘𝑘’s bundle (𝑥𝑥𝑘𝑘)? 

YES
 But she demands 𝑥𝑥𝑖𝑖 instead. Why?

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝑥𝑥𝑘𝑘
∎

R. Mehta (ADFOS’20) R. Mehta (ADFOCS’20)



Proportionality

Allocation X is proportional if every agent gets at least the 
average of her total value of all goods. That is, for each agent 𝑖𝑖,

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐺𝐺
𝑛𝑛

Theorem: CEEI is envy-free
Proof: (EF ⇒ Proportional)
 Let 𝑝𝑝,𝑋𝑋 be a CEEI. 
 𝑋𝑋 is EF. That is, 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝑥𝑥𝑘𝑘 ,∀𝑘𝑘 ∈ 𝐴𝐴. Sum-up over all 𝑗𝑗

𝑛𝑛 ∗ 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ �
𝑘𝑘∈𝐴𝐴

𝑣𝑣𝑖𝑖 𝑥𝑥𝑘𝑘 = 𝑣𝑣𝑖𝑖 �
𝑘𝑘∈𝐴𝐴

𝑥𝑥𝑘𝑘 = 𝑣𝑣𝑖𝑖 𝐺𝐺

∎

R. Mehta (ADFOCS’20)



CEEI Properties: Summary

CEEI allocation is
 Pareto optimal (PO)
 Envy-free
 Proportional

$3

$3

2

1

1
3

CEEI
Prices

2

4

R. Mehta (ADFOCS’20)



CEEI Properties: Summary

CEEI allocation is
 Pareto optimal (PO)
 Envy-free
 Proportional

$3

$3

2

1

1
3

CEEI
Prices

2

4

CEEI Allocation:
𝑥𝑥1 = 1

4
, 1 , 𝑥𝑥2 = 3

4
, 0

𝑣𝑣1 𝑥𝑥1 = 3
2

, 𝑣𝑣2 𝑥𝑥2 = 9
4

𝑣𝑣1 𝑥𝑥2 = 3
2

, 𝑣𝑣2 𝑥𝑥1 = 7
4

Next…
 Nash welfare 

maximizing

R. Mehta (ADFOCS’20)



Social Welfare

�
𝑖𝑖∈𝐴𝐴

𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)

Utilitarian

Issues: May assign 0 value to some agents.
Not scale invariant!

R. Mehta (ADFOCS’20)



Nash Welfare

�
𝑖𝑖∈𝐴𝐴

𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)max:

s.t.    ∑𝑖𝑖∈𝐴𝐴 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, ∀𝑗𝑗 ∈ 𝐺𝐺
𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖,∀𝑗𝑗

Feasible allocations

R. Mehta (ADFOCS’20)



log �
𝑖𝑖∈𝐴𝐴

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖max:

s.t.    ∑𝑖𝑖∈𝐴𝐴 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, ∀𝑗𝑗 ∈ 𝐺𝐺
𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖,∀𝑗𝑗

Feasible allocations

Max Nash Welfare (MNW)

R. Mehta (ADFOCS’20)



�
𝑖𝑖∈𝐴𝐴

log 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)max:

s.t.    ∑𝑖𝑖∈𝐴𝐴 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, ∀𝑗𝑗 ∈ 𝐺𝐺
𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖,∀𝑗𝑗

Feasible allocations

Max Nash Welfare (MNW)

R. Mehta (ADFOCS’20)



Eisenberg-Gale Convex Program ‘59

�
𝑖𝑖∈𝐴𝐴

log 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)max:

s.t.    ∑𝑖𝑖∈𝐴𝐴 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, ∀𝑗𝑗 ∈ 𝐺𝐺
𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖,∀𝑗𝑗

Dual var.
𝑝𝑝𝑗𝑗

R. Mehta (ADFOCS’20)



Theorem. Solutions of EG convex program are 
exactly the CEEI 𝑝𝑝,𝑋𝑋 .
Proof.

Consequences: CEEI
• Exists
• Forms a convex set
• Can be computed in 

polynomial time
• MNW allocations = CEEI 

allocations

R. Mehta (ADFOCS’20)



Theorem. Solutions of EG convex program are 
exactly the CEEI 𝑝𝑝,𝑋𝑋 .
Proof. ⇒(Using KKT)

R. Mehta (ADFOCS’20)



Recall: CEEI Characterization

Pirces 𝑝𝑝 = 𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

 Optimal bundle: For each buyer 𝑖𝑖
 𝑝𝑝 ⋅ 𝑥𝑥𝑖𝑖 = 1

 𝑥𝑥𝑖𝑖𝑖𝑖 > 0 ⇒ 𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗

= max
𝑘𝑘∈𝑀𝑀

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

, for all good 𝑗𝑗

 Market clears: For each good 𝑗𝑗,

�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖 = 1.

R. Mehta (ADFOCS’20)



Proof. ⇒(Using KKT)

Theorem. Solutions of EG convex program are 
exactly the CEEI 𝑝𝑝,𝑋𝑋 .

max:�
𝑖𝑖∈𝐴𝐴

log 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)

s.t.    ∑𝑖𝑖∈𝐴𝐴 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, ∀𝑗𝑗 ∈ 𝐺𝐺
𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖,∀𝑗𝑗

Dual var.
𝑝𝑝𝑗𝑗

∀𝑗𝑗, 𝑝𝑝𝑗𝑗 > 0 ⇒ ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 = 1

𝑣𝑣𝑖𝑖𝑖𝑖
𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)

≤ 𝑝𝑝𝑗𝑗 ⇒
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗
≤ 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)

𝑥𝑥𝑖𝑖𝑖𝑖 > 0 ⇒
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗

= 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)

≥ 0

buy only MBB goods
⇒ 𝑝𝑝𝑗𝑗 > 0

∑𝑗𝑗 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 = ∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)
⇒ ∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 = 1

⇒ optimal bundle

⇒ market clears

Dual condition to 𝑥𝑥𝑖𝑖𝑖𝑖:

∑𝑗𝑗 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
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Generalizing to CE

Budget of each agent 𝑖𝑖 is 𝐵𝐵𝑖𝑖 (need not be 1)

CE Properties: Pareto-optimal

 Maximizes weighted NSW, Π𝑖𝑖𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖
𝐵𝐵𝑖𝑖

1/𝐵𝐵

 Weighted envy-free: 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖
𝐵𝐵𝑖𝑖

≥ 𝑣𝑣𝑖𝑖 𝑥𝑥𝑘𝑘
𝐵𝐵𝑘𝑘

,∀𝑖𝑖,𝑘𝑘

 Weighted proportional: 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 𝐵𝐵𝑖𝑖
𝐵𝐵
𝑣𝑣𝑖𝑖(𝐺𝐺),∀𝑖𝑖

max:�
𝑖𝑖∈𝐴𝐴

𝐵𝐵𝑖𝑖 log 𝑣𝑣𝑖𝑖(𝑥𝑥𝑖𝑖)

s.t.    ∑𝑖𝑖∈𝑁𝑁 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, ∀𝑗𝑗 ∈ 𝐺𝐺
𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖,∀𝑗𝑗

EG Formulation: Optimal solutions
exactly capture CE

𝐵𝐵 = �
𝑖𝑖

𝐵𝐵𝑖𝑖
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Efficient (Combinatorial) Algorithms

Polynomial time
 Flow based [DPSV’08]

 General exchange model (barter system) [DM’15, DGM’16, CM’18]

 Scaling + path following [GM.SV’13]

Strongly polynomial time
 Scaling + flow [Orlin10, Vegh16]

 Exchange model (barter system) [GV’19]

We will discuss some in the next lecture
R. Mehta (ADFOCS’20)



Generalizations
Spending Restricted [CG’18] (for MNW with indivisible goods.)

 CE where total money spent on good 𝑗𝑗 is at most 𝑐𝑐𝑗𝑗

Hylland-Zeckhauser (for PO and strategy-proof matching)

 𝑛𝑛 agents and 𝑛𝑛 goods
 Every agent has: (a) linear utilities, (b) unit budget, 

(c) wants at most one unit of total allocation

 HZ’79: Equilibrium exists, is PO, and is truthful at large. 
 For indivisible goods, think of allocation as a probabilities/time-share.

R. Mehta (ADFOCS’20)



Generalization: Valuation Functions

𝑣𝑣𝑖𝑖:ℝ𝑛𝑛 → ℝ

+ Linear

R. Mehta (ADFOCS’20)



Generalization: Valuation Functions

𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 = ∑𝑗𝑗 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝜌𝜌 1/𝜌𝜌

where 𝜌𝜌 ∈ (−∞, 1]

EG program works!

𝑣𝑣𝑖𝑖:ℝ𝑛𝑛 → ℝ

Linear

R. Mehta (ADFOCS’20)



Generalization: Valuation Functions

+

PPAD-complete [P’94, CT’09, VY’09].
Path-following algorithm 
(empirically fast) [GM.SV’12]

𝑣𝑣𝑖𝑖:ℝ𝑛𝑛 → ℝ

Linear

R. Mehta (ADFOCS’20)



Generalization: Valuation Functions

Linear
Irrational Eq.
FIXP-complete
[GM.VY’17]

𝑣𝑣𝑖𝑖:ℝ𝑛𝑛 → ℝ

R. Mehta (ADFOCS’20)



Generalization: Valuation Functions

Linear
Irrational Eq.
FIXP-complete
[EY’10]

𝑣𝑣𝑖𝑖:ℝ𝑛𝑛 → ℝ

R. Mehta (ADFOCS’20)



Tons of other works (we will not cover)

 More generalizations like utility-restriction 
[CDGJMVY’17, BGHM’17,…]

 Simplex-like path-following algorithms [E’76, 
GM.SV’12,GM.V’14]

 Auction based algorithms [GKV’04, GK’06, KMV’07, GHV’19]

 Dynamics [WZ’07, Z’11, BDX’11, CCT’18, CCD’19, BNM.’19 …]

 Hardness results [CT’09,VY’09, GM.VY’17,…]

 Strategization and Price-of-Anarchy [ABGM.S’10,CDZ’11, 
CDZZ’12, BCDF-RFZ’14, M.TVV’14, BGM.’18,…]

 …
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Tons of other works (we will not cover)

Cake Cutting

R. Mehta (ADFOCS’20)
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