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Recap

m Set N of n agents, Set M of m divisible items
m Agent i has a utility function u;: RY" = R over bundle of items

m Goal: fair and efficient allocation x = (x4, ..., X,;)

Fairness:
Envy-free (EF)
Proportionality (Prop)
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Recap

m Set N of n agents, Set M of m divisible items
m Agent i has a utility function u;: RY" = R over bundle of items
m Goal: fair and efficient allocation x = (x4, ..., X,;)

Fairness:

Envy-free (EF) Prop
Proportionality (Prop)

Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW)
= Competitive Equilibrium with Equal Incomes (CEEI)
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Today: Indivisible Items

m n agents, m indivisible items (like cell phone, painting, etc.)
m Agent i has a valuation function v; : 2" — R over subsets of items
m (Goal: fair and efficient allocation A = (44, ..., 4,)

Fairness:
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m Agent i has a valuation function v; : 2" — R over subsets of items
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Fairness Notions for Indivisible Items

m n agents, m indivisible items (like cell phone, painting, etc.)
m Agent i has a valuation function v; : 2" — R over subsets of items

m Goal: fair and efficient allocation

Fairness:
Envy-free (EF) EFl  EFX Lecture 3
Proportionality (Prop) MMS  Propl | cture 4
Efficiency:
Pareto optimal (PO)
Lecture 5
Maximum Nash Welfare (MNW) Guarantees

J. Garg (ADFOCS 2020)
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Envy-Freeness up to One Item (EF1) [B11]

m An allocation (44, ..., 4,) is EF1 if

vi(Ai) = Ui(Aj \g), g (S A], Vl,]

That 1s, agent i may envy agent j, but the envy can be eliminated 1f
we remove a single item from j’s bundle

J. Garg (ADFOCS 2020)
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Envy-Freeness up to One Item (EF1) [B11]

m An allocation (44, ..., 4,) is EF1 if

vi(Ai) = Ui(Aj \g), g (S A], Vl,]

That 1s, agent i may envy agent j, but the envy can be eliminated 1f
we remove a single item from j's bundle

m Existence? @ L
/

~
o W

J. Garg (ADFOCS 2020) 10
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Additive Valuations: v;(S) = ), jes Vij

J. Garg (ADFOCS 2020)
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Round Robin Algorithm (Additive)

m Fix an ordering of agents arbitrarily

m While there 1s an item unallocated

i: next agent in the round robin order

Allocate i her most valuable item among the unallocated ones

J. Garg (ADFOCS 2020)
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Round Robin Algorithm (Additive)

m Fix an ordering of agents arbitrarily
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i: next agent in the round robin order
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Round Robin Algorithm (Additive)

m Fix an ordering of agents arbitrarily

m While there 1s an item unallocated

i: next agent in the round robin order

Allocate i her most valuable item among the unallocated ones

Claim: The final allocation 1s EF1
Observe that intermediate (partial) allocation 1s also EF1

J. Garg (ADFOCS 2020)
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Envy-Cycle Procedure (General) [LMMS04]

m General Monotonic Valuations: v;(S) < v;(T), VSS€STC M
(M: Set of all items)

J. Garg (ADFOCS 2020)
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Envy-Cycle Procedure (General) [LMMS04]

m  General Monotonic Valuations: v;(S) < v;(T), VSS€ST S M

m Envy-graph of a partial allocation (44, ..., A,;) where U; A; € M
Vertices = Agents
Directed edge (i,)) if i envies j (i.e., v;(4;) < v;(4)))
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Envy-Cycle Procedure (General) [LMMS04]

m  General Monotonic Valuations: v;(S) < v;(T), VSS€ST S M

m Envy-graph of a partial allocation (44, ..., 4,) where U; A; € M
Vertices = Agents
Directed edge (i,j) if i envies j (i.e., v;(4;) < v;(4;))

m Suppose we have a partial EF1 allocation

m Then, we can assign one unallocated item j to a source i (in-
degree 0 agent) and the resulting allocation is still EF1!

No agent envies i if we remove j

J. Garg (ADFOCS 2020)
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m [f there 1s no source in envy-graph, then

1 there must be cycles
1 How to eliminate them?

J. Garg (ADFOCS 2020)
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m [f there 1s no source in envy-graph, then

1 there must be cycles
1 keep eliminating them by exchanging bundles along each cycle

m Terminate?
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m [f there 1s no source in envy-graph, then
there must be cycles
keep eliminating them by exchanging bundles along each cycle

m Terminate?

Number of edges decrease after each cycle 1s eliminated

m EF1?

Valuation of each agent?

J. Garg (ADFOCS 2020)

20



m [f there 1s no source in envy-graph, then
there must be cycles
keep eliminating them by exchanging bundles along each cycle

m Terminate?

Number of edges decrease after each cycle 1s eliminated

m EF1?

Valuation of each agent?
The bundles remain the same — We are only changing their owners!

J. Garg (ADFOCS 2020)

21



"
Envy-Cycle Procedure [LMMS04]

A< (0,..,0)

R <« M // unallocated items
While R # @

If envy-graph has no source, then there must be cycles
Keep removing cycles by exchanging bundles until there is a source
Pick a source, say i, and allocate one item g from R to i
(Aj «AjUg; R « R\ g)
Output A

m Running Time? | BeRosE )

J. Garg (ADFOCS 2020)
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How Good 1s an EF1 Allocation?

J. Garg (ADFOCS 2020)
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How Good 1s an EF1 Allocation?
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m [ssue: Many EF1 allocations!

m We want an algorithm that outputs a good EF1 allocation
1 Pareto optimal (PO)

J. Garg (ADFOCS 2020)
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m [ssue: Many EF1 allocations!

m We want an algorithm that outputs a good EF1 allocation
Pareto optimal (PO)

m Goal: EF1 + PO allocation

m Existence?
NO [CKMPS14] for general (subadditive) valuations
YES for additive valuations [CKMPS14]

@ submodular valuations

J. Garg (ADFOCS 2020)
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m [ssue: Many EF1 allocations!

m We want an algorithm that outputs a good EF1 allocation
Pareto optimal (PO)

m Goal: EF1 + PO allocation

m Existence?
NO [CKMPS14] for general (subadditive) valuations
YES for additive valuations [CKMPS14]  Computation?

(@Y submodular valuations

J. Garg (ADFOCS 2020)
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EF1+PO (Additive)

m Computation: pseudo-polynomial time algorithm [BKV18]

Complexity of finding an EF1+PO allocation

m Difficulty: Deciding if an allocation 1s PO is co-NP-hard [KBKZ09]

J. Garg (ADFOCS 2020) 28
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EF1+PO (Additive)

m Computation: pseudo-polynomial time algorithm [BKV18]

@ Complexity of finding an EF1+PO allocation

m Difficulty: Deciding if an allocation 1s PO is co-NP-hard [KBKZ09]

m Approach: Achieve EF1 while maintaining PO
PO certificate: competitive equilibrium!

J. Garg (ADFOCS 2020) 29
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Competitive Equilibrium (CE)

m m divisible items, n agents m Each agent has budget of B;

m Utility of agent i : Zj VijXij

B p;: price of item j, fij: money flow from agent i to item j
Equilibrium (p, f):
, Vij Vik
. Optimal bundle: f;; > 0= — = max—

4 j keM Dk
Maximum bang-per-buck (MBB) condition

2. Market clearing:
ZfisziJViEN and ZfLJ:pJ, V]EM

JEM iEN

J. Garg (ADFOCS 2020)
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EF1+PO (additive) [BKV18]

m Approach: Achieve EF1 while maintaining PO
m Starting allocation A = (44, ..., 4,,):
Each item j 1s assigned to an agent with the highest valuation

Set price of item j as p;= max v;;
l

m p(4;): total price of all items in A; = total valuation of i

J. Garg (ADFOCS 2020)
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EF1+PO (additive) [BKV18]

m Approach: Achieve EF1 while maintaining PO
m Starting allocation A = (44, ..., 4,,):
Each item j 1s assigned to an agent with the highest valuation

Set price of item j as p;= max v;;
l

m p(A;): total price of all items in A; = total valuation of i

Example: p
15
[15, 10, 20] {1

1,20, 10] @ 20

J. Garg (ADFOCS 2020)

32



" A
m  Consider the integral allocation A = (44, ..., 4,)

Each item j is assigned to an agent with the highest valuation

Set price of item j as p;= max v;;
l
m  p(4;): total price of all items in A; = total valuation of i
Claim: (4, p) is (integral) CE when agent i has p(4;) budget and
linear utility function . ; v;;x;;

p
Equilibrium (p, f): budget ﬁ 15

35 [15, 10, 20] @7
1. Optimal bundle (MBB): >< ﬁ 20
fij>0= 2 — max 2k L, 20, 19 @ ﬁZO

D; KEG Dy

2. Market clearing:
zfij =p(4;),Vi and Zfij =pj, Vj
J i

J. Garg (ADFOCS 2020) 33




Scaling Valuations with Prices

m Recall that envy-freeness 1s scale-free
m (4,p):CE
Pk

m Let’s scale v;; < v;; - min—
k Vik

— vij < p] andvl-j = p] lf_] EAl'

Prices can be treated as valuations at CE!

J. Garg (ADFOCS 2020)
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Price-Envy-Free [BKV18]

m (4,p): CE
m A is Envy-Free (EF) if
v;(4) = vi(4)),
vi(4) =p4)  p(4;) = vi(4)),

J. Garg (ADFOCS 2020)
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Price-Envy-Free [BKV18]

m (4,p): CE
m A is Envy-Free (EF) if
vi(4;) = vi(Aj);
vi(4) =p4)  p(4;) = vi(4)),
m A is Price-Envy-Free (pEF) 1f

p(4;) =p(4)), Vi, j

J. Garg (ADFOCS 2020)

Vi,
Vi, j

J
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Price-Envy-Free [BKV18]

m (A4,p):CE
m A is Envy-Free (EF) if
v (4;) = vi(4)), Vi, j
vi(A) =p(4)  p(4) =vi(4;), Vi)
m A is Price-Envy-Free (pEF) if
p(4;) = p(4)), vi,j
m pEF = EF + PO

J. Garg (ADFOCS 2020)
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Price-Envy-Free [BKV18]

m (4,p):CE
m A is Envy-Free (EF) if
v (4;) = vi(4)), Vi, j
vi(4) =p(4) p(4) =vi(4;), Vij
m A is Price-Envy-Free (pEF) if
p(4;) = p(4)), vi,j
m pEF = EF + PO

p
budget
N = BE
EF? 35 [15,10,20] £ — 1
35 =v1(41) = v1(4,) =10 ﬁ 20
20 [1,20, 10 @
20 = v,(4;) = v,(41) = 11 | | {5 20

J. Garg (ADFOCS 2020)

38



" J
Price-Envy-Free [BKV18]

m (4,p):CE
m A is Envy-Free (EF) if
v (4;) = vi(4)), Vi, j
vi(4) =p(4) p(4) =vi(4;), Vij
m A is Price-Envy-Free (pEF) if
p(4;) = p(4)), vi,j
m pEF = EF + PO

p
budget
15
pEF? 35 [15, 10, 20] @7 — ﬁ
35 =p(41) = p(4y) = 20 . {7 20
1,20, 10
20 = p(4z) <p(41) =35 1,20, 10] @ 4 20

J. Garg (ADFOCS 2020) 39



Price-Envy-Free [BKV18]

m (4,p):CE
m A is Envy-Free (EF) if
v;(4;) = vi(Aj);
vi(4) =p(4)  p(4;) =vi(4)),
m A is Price-Envy-Free (pEF) if
p(4;) = p(Aj);
m pEF = EF + PO

budget
pEF?

35 =p(4,) =p(4;) =20
20 = p(4;) <p(4;) =35

J. Garg (ADFOCS 2020)

35 [15, 10, 20] @f
20 (1,20, 10] @

Vi, j

@ \ \ //
™~

© 4

i) May not exist!

Vi, j

p

_ 1515
ﬁ_ 20
{5 20
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m (4,p): CE
m AisEFLif  v(A4) =vi(A;\g), ge€A4, Vij
vi(4) =p(4) p(4\g)=vi(4\g), ge€A4 Vij
m A is Price-EF1 (pEF1) if
p(A) =2p(4\g), g€A4;, Vij
m pEF1 = EF1 + PO

J. Garg (ADFOCS 2020)
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m (A,p):CE
m AisEFLif  v(4) =2vi(4;\g), geE4, Vij
vi(A) =p(4)  p(4\g) 2vi(4\g) gEA, Vij
m Ais Price-EF1 (pEF1) 1f
p(4) 2p(4\g), gEA, Vi
m pEF1 = EF1 + PO P
budget

15
pEF1? 35 [15, 10, 20]@7 — ﬁ
35 =p(4;) >p(4;\g2) =0 ﬁ 20
20 =p(4,) >p(A1\ g3) = 15 20 1,20, 10]@ ﬁ .

J. Garg (ADFOCS 2020) 42
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m (A,p):CE

m Ais EFIif vi(Ai) = vi(Aj \ g), g (S A', Vl,]

vi(4) =p4) p(4\g)=vi(4\g), gEA, Vij
m Ais Price-EF1 (pEF1) 1f
p(A)=p(4;\g), gE4,  Vij
m pEF1 = EF1 + PO P
budget

15
pEF1? 35 [15, 10, 20167 — ﬁ
35 =p(4;) >p(4;\g2) =0 ﬁ 2
20 = p(4;) >p(4;\ g3) =15 20 11,20, IO]@ ﬁ 20

Theorem [BKV18]: There exists a pseudo-polynomial time procedure
to find a pEF1 allocation

J. Garg (ADFOCS 2020) 43
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m (4,p): CE
m AispEFI 1if

p(4) = p(4\g), gEA4

m If minp(4;) = max min p(Aj \ g) then ?
l J YgEA;j
(least spender) (big spender)

J. Garg (ADFOCS 2020)
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Procedure [BKV18] ﬁ/ \ﬁ

While A 1s not pEF1 @
k < argminp(A4;) //least spender
l

T « Agents and items, k can reach in MBB residual network

J. Garg (ADFOCS 2020) 45



While A is not pEF1 © p

k < argminp(A;) //least spender
l

T « Agents and items, k can reach in MBB residual network
If k can reach [ in T such that p(4; \ g;) > p(4x)
Pick the nearest such [

P « Path from [ to k
A <« Reassign items along P until p((Aj Ugi+) \ gj) < p(Ag)

J. Garg (ADFOCS 2020)
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While A is not pEF1 ©
k < argminp(A;) //least spender ﬂ
l
T « Agents and items, k can reach in MBB residual network
If k can reach [ in T such that p(4; \ g;) > p(4x)
Pick the nearest such [

P « Path from [ to k
A <« Reassign items along P until p((Aj Ugi+) \ gj) < p(4g)

else increase prices of items in T by a same factor until
Event 1: new MBB edge
Event 2: k 1s not least spender anymore
Event 3: A becomes pEF1

J. Garg (ADFOCS 2020) 47
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miin p(4;) m]ax g&r} P(Aj \ g)

Lemma: The procedure converges to a pEF1 allocation in finite time!

!

Pseudo-polynomial time: Round v;;s to the nearest integer powers
of (1 + €) for a suitably small € > 0 and then run the procedure

@ Complexity of finding an EF14+PO allocation!

J. Garg (ADFOCS 2020)
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Analysis [BKV18] / NS
Lemma: minp(4;) ﬂ )
l
1)
Proof (sketch): pricesﬂ P ﬁ g
J
m p(A;) can only increase for agents not on P I
m For agents on P ™ @ 1]}
I p(4;\ g1) > p(4g) '
ﬁ 9j+1

j: p((4;Vgi+1)\gj) > p4y)

J. Garg (ADFOCS 2020) 49
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tf

: ' : bi d !
Lemma m]ax ‘(rJr&r}p(A] \ g) ﬂ, (big spender)

Proof (sketch)

0 m]aX gé{qr}l?(/lj \ g) > min p(4;)

m PricesT = No big spenderis in T

J. Garg (ADFOCS 2020) 50



Lemma: max min

J
Proof (sketch)

gEA;

B max min p(A]-

J 9EA4;

p(Aj \ g) ﬂ, (big spender)

\g)> miin p(4;)

O Pricesﬂ = No big spender is in T
m On path P:

ji p(4;\ g;) <p(4y)
p((4;Vg;41)\9g;) > p(4p)

p((A Vg1 \g)\gj+1) =p(4;\ g;) < p(4y)

J. Garg (ADFOCS 2020)
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Lemma: max min p(Aj \ g) ﬂ, (big spender)

J YgEA;
Proof (sketch)

0 m]aX g&r}l?(/lj \ g) > min p(4;)

O Pricesﬂ = No big spender is in T
m On path P:

ji p(4;\ g;) <p(4y)
p((4 U g;11)\g;) <p(4y)

J. Garg (ADFOCS 2020)
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J. Garg (ADFOCS 2020)

New Fairness Notions

EFX
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Envy-Freeness up to One Item (EF1)

m An allocation (44, ..., 4,) is EF1 if

vi(4) = vi(4\g) gEA4 Vi, j

That is, agent i may envy agent j, but the envy can be eliminated 1f
we remove a single item from j's bundle

J. Garg (ADFOCS 2020)
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Envy-Freeness up to Any Item (EFX) [CKMPS14]

m An allocation (44, ..., 4,,) is EFX if

v;(4;) = vi(Aj \ g), Vg € A, Vi, j

That is, agent i may envy agent j, but the envy can be eliminated 1f
we remove any single item from j's bundle

EF1 ? [15, 10, 20]

EFX? 1,20, 10]

J. Garg (ADFOCS 2020) 55
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EFX: Existence

m General Valuations [PR18§]
Identical Valuations
EXERCISE )

n = 2

m Additive Valuations
n = 3[CG.M20]

@ Additive (n > 3), General (n > 2)
“Fair division’s biggest problem” [P20]

J. Garg (ADFOCS 2020)
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Summary
Covered Not Covered
m EF1 (existence/polynomial- = EFX for 3 (additive) agents
time algorithm) m Partial EFX allocations
m EF1 + PO (existence/pseudo- Little Charity [CKMS20]
polynomial time algorithm) High Nash welfare [CGH19]
m EFX m  Chores

EF1 (existence/ polynomial-
time algorithm) EXERCISE >

Major Open Questions (additive valuations)
m EF1+PO: Polynomial-time algorithm
m EF1+PO: Existence for chores
m EFX : Existence

J. Garg (ADFOCS 2020) 57
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