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Lecture Plan

Today and Tomorrow Why?

* Box-simplex games * (Applications) Continuous and combinatorial.
* Their structure * (Tools) New optimization methods

* Applications * (Reinforce) Modifications of common methods
e Algorithms

Friday

* Interior point methods * Introduction of state-of-the-art method



The Problem

Input
Bounded in R™
- n-dimensional box: BE & {x € R" | ||x|lo < 1} — "

_ . o o . m dif m —
* m-dimensional Slmplex' AT = {y € ]RZO | ”ylll 1} Probability distributions

on m elements

Output:

* An approximate solution to

min max f(x,y) € yTAx +c'x— by

XEBL yeA™ / \

Box-Simplex Game £1-f, Game



 Box:BE ¥ {x € R"|||x]le <1}

Key Motivating Questions = e s = e s vl =1

min max f(x,y) ¥ yTAx +c'x—bTy
XEBL yeA™

Question #1
How can we design efficient methods for solving box-simplex games?

Question #2

How can we leverage box-simplex solvers to solve continuous and
combinatorial optimization problems?




Box: B & {x € R" | ||x]lc < 1}

Talk Plan (Today and Tomorrow) © Simplex: A7 =1y & Rep | llyll, = 1)

Part1
Structure of
box-simplex games

Part 2
Applications

Part 3
Algorithms

min max f(x,y) € yTAx+c'x—bTy
XEBIL yeA™

Primal and dual problems Friday
Approximate solutions Interior Point
Discuss state-of-the-art runtimes Methods

Box-constrained € ,-regression

Linear programming

Maximum cardinality bipartite matching
Undirected maximum flow

£ -Gradient Descent (constrained steepest descent)
£1-Mirror Descent (multiplicative weights)
Mirror prox and primal dual regularizers



 Box:BE ¥ {x € R"|||x]le <1}

Primal Problem | Simplex A7 [y € Rap | [l = 1
. rrelégyrrelg%(lf(x V) € yTAx+cTx—bTy

Lemma: max d ' x = max d; for all d € R™ and therefore

XEAM le[m]
frnax(X) & max f(x,y) =c'x + maX[Ax — b];
yeA™ ie[m]

Proof:

* Let i, € argmax;epm) d;. Note that 1 €A™,

-:>maxde>dT L =d;, —maxd
XEA™ i€[m]

*d; <d; andx; = 0forx € A and i € [m]

) T — ; < — —
:;relg%(ld X ;22%%216[ dxl_rrelg%gzle[ di x; =d; = lrél[aﬁd



 Box:BE ¥ {x € R"|||x]le <1}

Dual Problem | Simplex: &7 [y € Rap | [l = 1
* max rgég flx,y) L yTAx+c"x—bTy
Lemma: min d'x = —||d||; for alld € R™ and therefore
x€BL

frmin(y) & min f(x,y) = —b'y — A"y = blly

Proof:

e Let sign(d) € R™ with sign(d); as1ifd; > 0,—1ifd; < 0,and 0
othewise

= mllgn d"x < d7(—sign(d)) = — 2ienildil = —lldll4
xXe
* |x;| < 1forallx € B andi € [n]
. T — Al in — | = —
:ggllgn d'x = agrel}_’l??o Qiemnldillxi| = ;2113?10 2iemnldil = —lldll4



 Box:BE ¥ {x € R"|||x]le <1}

Primal Dual Relationship Simplex: A™ & {y € RZ, | [|y]l, = 1}

min max f(x,y) ¥ yTAx +c'x—bTy
XEBL yeA™

Primal Problem Dual Problem
* Inig frmax(x) = max f (x,y) " max fmin(¥) = min fxy)
* fnax(X) =cTx + max [Ax — D]; * fmin(®¥) = -b'y —l1ATy — bll,

Comparison

o Trivially: finax(x) = fiin (V) (weak duality)
* Interestingly: mligr%fmax(x) = max fmin () (strong duality)
XEB, yeEA™

We will prove algorithmically later



* Box:BE ¥ {x € R" | [|x]|l < 1}

Approximate Solutions AR T

e min max f(x,y) ¥ yTAx+c"'x—b'y
XEBIL yeA™

Primal Problem Dual Problem
* Inig frmax(x) = max f (x,y) " max fmin(¥) = min fxy)
* fnax(X) =cTx + max [Ax — D]; * fmin(®¥) = -b'y —l1ATy — bll,

Approximate Solutions

Let x, € argmin f,.x(x) and y, € argmax f,i,(y)
XEBY YyEAMyeA™

e-approximate primal solution: x, € B2 with f,..(x.) < frnax(X.) + €
e-approximate dual solution: y. € A™ with f,in(Ve) = finin (V) — €
e-approximate (primal-dual) saddle point (or equilibrium): (x.,y.) € BEXA™

fmax(xe) — fmin(:VE) <€




 Box:BE ¥ {x € R"|||x]le <1}

eofjeo L -
I b * Simplex: A™ & {y € RY, | ||yll; = 1}
EqUI I rlum . még nggxf(x,y)“:efyTAx+ch—bTy
XEBL yeA™

Primal Problem Dual Problem
* Inig frmax(x) = max f (x,y) " max fmin(¥) = min fxy)
* fnax(X) =cTx + max [Ax — D]; * fmin(®¥) = -b'y —l1ATy — bll,

c-approximate (primal-dual) saddle point (or equilibrium)

 Definition: (x.,y.) € BEXA™ and fiyax(Xe) — fmin(Ve) < €

e Duality gap: gap(xe,ye) = fmax(xe) - fmin(YG)
* Total f(x.,y.) change by best responses: = fi .. (xc) — f(xe, ¥e) + [f (X6, Ve) — finin (Ve)]
« Sum of x. and y, suboptimality: = fihax(Xc) — f(xe, Ve) + [f (Xe, Vo) = fnin Vel

Don’t need x, and y, to compute!



 Box:BE ¥ {x € R"|||x]le <1}

StatE'Of'thE'a rt * Simplex: A™ & {y € R% | ||y, = 1}
o yeam fO,y) L yTAx +c"x—bTy

Theorem: there is a method which can compute an e-approximate
saddle point in time O(nnz(A)IIAllop,oo/e)

Nearly linear time

algorithm
Notation
* nnz(A4) € n + m + number of nonzero entries in 4 size of the input
def lAx|lo ) )
* [|[Allop,co & sup———= = max ¥; norm of row of A £, operator norm
’ x%£0 ”x”°0 bounds up to constant how

» 0(-) hides logarithmic factors in nnz(A), [|Allop,e/€ oo Prma/ase soutions

which just optimize b and c are



* Box:BE ¥ {x € R" | [|x]|l < 1}

First-order method L omele S b€ B i =

e min max f(x,y) ¥ yTAx+c"'x—b'y
XEBIL yeA™

Theorem: there is a method which solves box-simplex games to
accuracy € in time O(rmz(A)llAllop,oo/e).

* First order method: only access objective by evaluating the function
and computing the gradient, Vf(x,y) = (A'y + ¢, Ax — b)
* Note: only need b, ¢, and matrix vector multiplies.
* Can compute in parallel 0(1) depth and 0(nnz(A)) work.
* The method for this theorem?

* First order method + matrix vector multiplies with |A]|
* Parallel with O(1) depth

Entrywise
absolute value



History and More State-of-the-art

First Order Methods Interior Point Methods
* 0(nnz(A)||Allope/€) * [CLS19,B20] O(max{m,n}®) where w < 2.373 is fast
e Firstin [S17] matrix multiplication constant

* Later variants (influencing this
presentation [JST19,CST21,AJJST21]
* Prior state of the art
* 0(nnz(A)||Al13p /€*) - folklore / [S13, ~ : _ p
KLOS14] (influencing this presentation) * [LS14,L815] O (nnz(A)/ min{m, n} + min{m, n}*>)

. é(nnZ(A)\/Tl||A||op,m/E) - AGD and
smoothing.

e [BLLSSSW21] O(mn + min{m, n}?>>)

e [ST18] alternative approach and
improvements in sparse case

w < 2.373 is current fast matrix multiplication (FMM) constant [W13]



Box: B & {x € R" | ||x]lc < 1}
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min max f(x,y) € yTAx+c'x—bTy
XEBIL yeA™
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Warm-up

Problem #1: Box-constrained £, -Regression

Box-constrained £, Regressioon
* Input: matrix A € R™*" and vector b € R™
* Problem: OPT,, = min ||4Ax — b||
xX€EBI

o0

* Goal: find e-additive approximation, i.e. x, € BL with ||Ax, — b||e < OPT, + €

Claim: can compute in ﬁ(nnz(A)llAllop,ooe_l)

Proof:

* [|[Ax — bllo = .rg[aﬁ[max{[Ax —bl;,—[Ax — b];}] = max y' (
legm

Ax — Db )
yEAZ™M

—(Ax — b)

* New matrix has same || - ||5),.0 and just double nnz



Problem #2: Linear Programming

Approximate Linear Programming
Input: A € R™", b € R™, c € R"* and¢,6,D =0

* Problem: OPTj, = min c'x
x€ER™ | Ax=b
. 1 . . 1
* Promise: 3x,” € argmin c¢"x with |[x,’|| <D
(0}

x€ER™ | Ax=b
Goal: find x, 5 with ¢ "x. s < OPTj, and Ax. s = b — 61

Notes

* One of many ways to formulate the problem.
 Key difficulty: how handle that constraint Ax = b?
e Recurring idea: penalty functions in the objective



Linear Programming

Approach
e p(x) & M- max{O, irél[%[b —Ax]i}
° — 1 T

OPT, xEIRT{|r|1|¥hooSR c'x+p(x)

Claim: For M = (e + 2||c||;R)6 ! any e-
approximate minimizer to OPT,, problem is
(€, §)-approximate linear program solution.

Theorem: Can compute (€, §)-approximate
linear program solution in

D||Allop,00

i 1DIICI|1
1) €

0 (nnz(A) :

Input: 4 € R™", pb € R™,c € R*, and¢,6,D =0

Problem: OPT),, = rnn'in cTx
x€R™ | Ax=b

. 1 : : 1
Promise: Elx*p € argmin cTx with Hxpo <D
XERM™ | Ax=b o

Goal: find x, s with ¢Tx < OPTj, and Ax = b — 51

Proof of Theorem from Claim

Can write penalized problem as box-simplex
« x=D"lxand ¢ = Dc

Z_(—DMA) db_(—Mb)
—\ oy /P T or

Penalized problem is the same as

min ¢'X + max _[Ax — b];
XEBL, ieE[m+1]

Note that |4, o = O(DM]|A] 1, o ) and
M/e = 0(5‘u01%ax{1, Dﬁlcllle‘uﬁ)' )



Linear Programming

Approach
e p(x) & M- max{O, irél[%[b —Ax]i}
* OPT, = min c'x+p(x)

XxER™|||x||co<R

Claim: For M = (e + 2||c||;R)6 ! any e-
approximate minimizer to OPT,, problem is

(€, §)-approximate linear program solution.

Theorem: Can compute (€, §)-approximate
linear program solution in

~ DI||A o Dllc
0<nnz(A)- | (LlOp’ max{l, ”6”1}>

Xy — Xe

Input: 4 € R™", pb € R™,c € R*, and¢,6,D =0

Problem: OPT),, = rnn'in cTx
x€R™ | Ax=b

. 1 : : 1
Promise: Elx*p € argmin cTx with Hxpo <D
XERM™ | Ax=b o

Goal: find x, s with ¢Tx < OPTj, and Ax = b — 51

Proof of Claim

Let x. be e-approximate minimizer

Since xip is feasible for penalized
problem, OPT, < OPTy,

c'xe + p(xc) < OPT, + € < OPT, + €

p(xe) < €+cT(xP —x,)

1 1
T (P = xe) < lelly [P — x|
1
< [P+ lxelles
(0] (0]




Problem #3: Bipartite Matching

Maximum Cardinality (Bipartite) Matching (MCM)
Input: undirected, bipartite graph G = (I/, E)
Matching: M € E suchthate; Ne, = @ foralle;,e, € M withe; # e,
Problem: compute matching M, of maximum cardinality | M, |
Goal: find (1 — €)-approximate MCM, i.e. matching M, with |M.| = (1 — €)|M,|

Matching M




M c M H iSto ry Fundamental, incredibly well-studied, notoriously difficult (to improve) problem.

Note: procedure will use 2020

| Year | Authos | Runtime 0()

1969-1973 Dinic, Karzanov, Hopcroft, Karp |E|,/|V|
1981 Ibarra, Moran |V]®
2013 Madry |E|0/7
) 11/8+0(1) Improvements since 1980s
2020 Liu, S |E| all use interior point
2020 Liu, Kathuria, S |E|4/3+o(1) methods which we may

discuss on Friday.
Brand, Lee, Nanongkai, Peng,

1.5
Saranurak, S, Song, Wang |E| + [V]

very little graph structure.

Result: can use box-simplex solver to compute (1 — €)-approximate MCM in O(|E|e~?) time and O (e~ 1) depth
Time matched by Dinic, Karzanov, Hopcroft, Karp and Allen-Zhu, Orecchia 2015

Unaware of alternative method that gets this parallelism and this time.

Alternative method either have large €, |E|, or |V | dependence

Also, implementable semi-streaming (Assadi, Jambulapati, Jin, S, Tian 2021)

w < 2.373 is current fast matrix multiplication (FMM) constant [W13]



* Input: undirected, bipartite graph ¢ = (V,E)
Matching: M € E;e; Ne, = Q@ foralle;,e, € M with e; # e,

ApproaCh * Problem: compute matching M, maximizing |M, |

_ * Goal: tching M. with |M_.| = (1 — €)|M,
N(a) & {b € V | {a, b} € E} denotes the neighbors of A oal: matching M with | Mc| = ( )IM.|

Fractional Matching: in the MCM problem f € ]R’go is a fractional
matching if for all a € V it is the case that X pen gy frapy < 1.

Theorem [GPST91]: There is an algorithm which given any fractional
matching f € RE, can compute an integral matching of cardinality at
least || f||; in time O(|E|) and depth O(1).

Corollary: The minimum £;-norm of a fractional matching is |M, | and it
suffices to compute a fractional matching of £1-norm = (1 — €)|M,|.



Linear Algebraic Representation

Unsigned (edge-vertex) Incidence Matrix: |B| € RE*V with

1 c€{a b}
B = » 77 for all €E €
1Bliap).c {0 otherwise = © ta, b} andc €V

Lemma: f € RE, is a fractional matching if and only if |B|Tf < 1.
Proof: [lBle]a — Z{b,c}EE f{b,c} |B|{a,b},c — ZbEN(a) f{a,b}

Upshot: it suffices to solve

2 T
max 17 f or equivalently min —1
f€R§0||B|TfST f fEREOIIBleST( ) f



In contrast to previous problem where we just solved
Penalt and Roundin approximately and bounded how infeasible, here we
y g add a penalty term that allows us to reason more
directly about obtaining a feasible solution.

Overflow (excess): overflow(f) & max{ﬁ, |IB|Tf — T} entrywise
Note: f € RE is a fractional matching if and only if overflow(f) = 0

Lemma: given f € RE, let f € RF be defined for all {a, b} € E with f{a by = 0if frgpy =0

and otherwise
3 [overflow(f)], [overflow(f)],
f{a'b}‘f{a’b}(l‘max{ [BITfl. ~ [IBI"fl, D

Then 0 < f < f, f is a fractional matching, and ||f _f”1 < |loverflow(f)]||;.

Proof: fi, p} - [OVE;?F‘}V]U Ja is the relative contribution of fia,p} to overflow

Upshot: —|M, | = min —1Tf + Y. qevloverflow(f)], and given any e-additive minimizer
can compute matcjiung of size > |M,| — € in time O(|E]).



h I o overflow(f) & max{0, |B|"f — 1}
T e Resu t * ¢€|M,| additive approximation to min —1Tf+2aev[overflow(f)] suffices

feRE,

Question #1: how to encode overflow(f)?
e Tool: max{0,a} == [a + |al] What is |[B|1? =211
* Suffices to compute €|M,| additive approximation to

1- 1 R
min —17f 4= 1T|B|Tf+ |V|+||~ |IB|Tf —1
feRE, 2

1
Question #2: how to put f in simplex?

* Suppose v = |M,], then suffices to work with x = (%f, 1 ——11/ ||f||1) e AIEI+1
* leth = (—ZT|E|, 0),andlet A =~ |B|T with 0 column added

* Suffices to compute €| M, | addltlve approximation to erllrllﬂ bTx + ||Ax — 1||

* Suffices to compute €| M, | additive approximation to max, . A|gl+1 —bTx — ||Ax — T”l

* Note that [|A]|op,c = v s0 can solve in 0 ( ||1v|1v|)'

Can also computing 2
* Get result by picking v as every power of 2 between 0 and 2|V|!

approximation by greedy.



Improvable?

Theorem: Given any algorithm which compute an e-approximate MCM for any

input € € (0,1) in time O(|E|e~9) for some fixed constant &, there is an algorithm
6

that computes exact MCM in time O (|E| - |V [t+9).

Proof

* Given any e-approximate MCM, there are at most €|M, | < €|V | more edges that
could be matched.

* Augmenting paths finds at least one more matched edge in time O(|E|)
« Total time: O(|E|e~% + €|E||V]) solving for & yields result

Implication: O(|E|e™1) time (1 — €)-approximate MCM yields O (|E|+/|V|) time exact MCM
Barrier to improving: only improvements known to date use interior point methods



Introduce more broadly
Natural family of problems in

Problem #4. FIOW PrOblemS combinatorial optimization.

What should we minimize?

° Graph G = (V, E) If instead of sending 1 unit of flow from
s to t, route arbitrary demand problem
* Vertices s, te V is called transshipment and is non-trivial
Shortest Path
- £ 111
O(lED)
t
Electric Flow
Laplacian System Solving £l
> O(lE])
[STO4]
Goal See Rasmus Kyng's talks
between s and t in the B minflE12/2 |E| - V(273 Congestion 1 Nl
“best” way possible. (min{|EJ*'% [E| - [V]%/) max |fe |

[K73,ET75,GR98] 33

No improvement until 2013,
will discuss Friday. Focus for today




Introduce maximum flow problem more formally

The Maximum Flow Problem s - ¢ Flow

flow in = flow out

Value of Flow

Graph G = (V; E) total flow leaving s or forallv & {s, t}
* n vertices V entering ¢

* medges E

Capacities

E Capacity Constraints
*uc€ {1, ,U} * Directed: f, € [0, u.]
* Undirected: f, € [—u,, u.]

Terminals
e Sources eV

. Flow
Sink¢ € V Goal f € RE where f, =

amount of flow on edge e

compute maximum s — t flow




Note: there are additional improvements with log(e™1).
Such results give exact directed flow algorithms.

Undirected Maxflow (1 - €)-Approximate Flow

feasible s — t flow of value > (1 — €)OPT

s
m Time for e-Approximate Undirected Flow | Capacitated (U # 1)
o ich : ) : :
s { [Kar98] 0(myne™1) Yes
[CKMST11] 0 (mnt/3e=11/3) Yes
¢ { [LRS13] 0(mn'/3¢=2/3 —
[S13,KLOS14] O(m”"(l)e‘z) Yes
’ [P16] 0(me™?) Yes
°° [S17] 0(me™1) Yes
[ST18] O(m + ymne™1) Yes
Step 1 (Combinatorial Advance) Step 2 (Optimization Advance) Note (Further Implications)
How? Build coarse £, -approximator Apply iterative method to boost Parallel optimal transport [JST19],
‘{')"Of';"gmi_d"et“'y i;‘ (e.g. oblivious routing or accuracy (e.g. gradient descent, streaming matching [JST20],
wr;]etehoudcsfor: b(:))a(_n congestion approximator) area-convex dual extrapolation, optimization methods [CST21]

simplex-like games. to change representation. mirror prox, coordinate descent)



t
1 — €)-Approximate Flow
Ta I k Pla n % feasible s — t flow of value > (1 — €)OPT
s

m Time for e-Approximate Undirected Flow | Capacitated (U # 1)

€y-ish { [Kar98] 0(myne™1) Yes
[CKMST11] 0 (mnt/3e=11/3) Yes

¢ { [LRS13] 0(mn'/3¢=2/3 —
[513,KLOS14] 0(miteMe-2) Yes

[P16] 0(me™?) Yes

fe [S17] O(me™1) Yes
[ST18] O(m + ymne™1) Yes

 Talk 1 & 2: Focus on O(me™1) runtime.
e Talk 3: Discuss state-of-the art small € results



Thank you

Questions?

Aaron Sidford

Contact Info:
* email: sidford@stanford.edu
* website: www.aaronsidford.com



