Box-Simplex Games: Algorithms, Applications, and Algorithmic Graph Theory Exercises #1

Aaron Sidford (sidford@stanford.edu)

August 9, 2021

Problem #1: $\|\cdot\|_{\text{op},\infty}$?

- Part (a): prove that $\|\mathbf{A}\|_{op,\infty}$ is the maximum ℓ_1 -norm of a row of \mathbf{A} .
- Part (b): for all $\mathbf{A} \in \mathbb{R}^{m \times n}$ let $\|\mathbf{A}\|_{\text{op},1} \stackrel{\text{def}}{=} \max_{x \in \mathbb{R}^n | x \neq 0} \frac{\|\mathbf{A}x\|_1}{\|x\|_1}$. Prove that $\|\mathbf{A}\|_{\text{op},\infty} = \|\mathbf{A}^\top\|_{\text{op},1}$.
- Part (c): provide a method which given $b \in \mathbb{R}^n$ and $c \in \mathbb{R}^m$ compute points $(x, y) \in B^n_{\infty} \times \Delta^m$ that are an $2 \|\mathbf{A}\|_{\text{op},\infty}$ -approximate saddle point for any $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Problem #2: ℓ_1 -Regression

Provide an algorithm which given any $\mathbf{A} \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, and $\epsilon > 0$ computes an ϵ -additive approximation to the ℓ_1 -constrained ℓ_1 -minimization problem $\min_{x \in \mathbb{R}^n \mid ||x||_1 \le 1} ||\mathbf{A}x - b||_1$ in time $\tilde{O}(\operatorname{nnz}(\mathbf{A}) ||\mathbf{A}||_1/\epsilon)$.

Hint: see previous problem.

Note: this technique has been used for solving minimum cost transhipment. [2].

Problem #3: Optimal Transport

In the optimal transport problem we are given $p, q \in \Delta^n$ and cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ with $|[\mathbf{C}]_{ij}| \leq C_{\max}$ for all $i, j \in [n]$. The goal is to compute a mapping from p to q of minimum cost. Formally, we call \mathbf{X} a valid transport map if $\mathbf{X}\mathbf{I} = p$ and $\mathbf{X}^{\top}\mathbf{I} = q$ (\mathbf{X}_{ij} specifies how much of p_i is mapped to q_j). We call $\mathbf{X} \bullet \mathbf{C} = \sum_{i,j \in [n]} [\mathbf{X}_{ij}] \cdot [\mathbf{C}]_{ij}$ the cost of the transport map and let OPT denote the minimum cost achievable by a transport map. Provide an algorithm which computes a transport map of cost OPT + $\epsilon \cdot C_{\max}$ in time $\tilde{O}(n^2 \epsilon^{-1})$.

Hint: it may be helpful to view this as a type of perfect matching problem with general demands.

Note: the optimal transport problem is well-studied and has been the subject of extensive research. The approach taken here is closely related to [4, 2].

Problem #4: Width-dependent Packing LPs

For $\mathbf{A} \in \mathbb{R}_{>0}^{m \times n}$ we call the following linear program a *packing linear program*

$$OPT_{pack} = \max_{x \in \mathbb{R}^n_{\geq 0} \mid \mathbf{A}x \geq \vec{1}} \vec{1}^\top x$$

We call $x_{\epsilon} \in \mathbb{R}^{n}_{\geq 0}$ a $(1-\epsilon)$ -multiplicative approximate maximizer if $\mathbf{A}x_{\epsilon} \geq \vec{1}$ and $c^{\top}\vec{1} \geq (1-\epsilon)\mathrm{OPT}_{\mathrm{pack}}$. Provide an algorithm which computes a $(1-\epsilon)$ -approximate maximizer in time $\tilde{O}(\mathrm{nnz}(\mathbf{A})\mathrm{OPT}_{\mathrm{pack}}\|\mathbf{A}^{\top}\|_{\infty}\epsilon^{-1})$.

Hint: It may be helpful to solve multiple box-simplex problems. For a slightly easier problem, you may suppose that OPT_{pack} is known exactly.

Note: More broadly a packing linear program is typically defined as $\max_{x \in \mathbb{R}^n_{\geq 0} | \mathbf{A}x \geq b} c^\top x$ for $\mathbf{A} \in \mathbb{R}^n_{\geq 0}$, $b \in \mathbb{R}^n_{\geq 0}$, and $c \in \mathbb{R}^m_{\geq 0}$. This is reducible to the setting we consider by scaling and handling 0 entries, though this reduction it may change $\|\mathbf{A}\|_{op,\infty}$. Also, interestingly there are known, improved algorithms for solving this problem in $\tilde{O}(\max(\mathbf{A})\epsilon^{-1})$ [1] and broader generalizations to packing-covering linear programs [3].

References

- Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing and covering LP solvers achieving width-independence and -convergence. *Math. Program.*, 175(1-2):307–353, 2019.
- [2] Sepehr Assadi, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming bipartite matching in fewer passes and optimal space. arXiv preprint arXiv:2011.03495, 2021.
- [3] Digvijay Boob, Saurabh Sawlani, and Di Wang. Faster width-dependent algorithm for mixed packing and covering lps. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 15253–15262, 2019.
- [4] Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct tilde{O}(1/epsilon) iteration parallel algorithm for optimal transport. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 11355–11366, 2019.