
ADFOCS ’21 Summer School: Adaptive Gradient Descent Algorithms

Alina Ene∗

1 Lecture I: Adaptive Gradient Descent
We consider the convex minimization problem minx∈K f(x) where f : Rd → R and K ⊆ Rd are convex. We assume
for simplicity that f is differentiable. Throughout, we use the `2-norm to measure distances, and we denote it by
‖·‖:

‖x‖ =

√√√√ d∑
i=1

x2
i

The projection of a point x ∈ Rd onto K is the unique point in K that is closest to x, i.e.,

ΠK(x) = arg min
u∈K
‖u− x‖2

We assume the following oracle access to f and K:

• Gradient oracle for f : given a vector x, it returns the gradient ∇f(x).

• Projection oracle for K: given x ∈ Rd, it returns ΠK(x).

Throughout, we let x∗ ∈ arg min f(x) be an optimal solution, which we assume it exists and it has finite value.

1.1 AdaGrad algorithm for (essentially) unconstrained optimization
We first consider the more basic setting where the problem is essentially unconstrained. For reasons that will
become clear later, we need to work with a feasible domain that has bounded diameter, which prevents us from
directly working with K = Rd. Thus we will consider the following setting, which is essentially unconstrained: we
assume we are given a finite value R such that maxx,y∈K ‖x− y‖ ≤ R and K contains a global minimum x∗ (i.e.,
we have x∗ ∈ K and ∇f(x∗) = 0). For example, K could be a ball of radius R that contains x∗.

AdaGrad algorithm We now present a version of gradient descent that adaptively sets the step size based on
the information observed (the gradients). The algorithm is a scalar version of the celebraded AdaGrad algorithm
[5, 10].

Algorithm 1 AdaGrad algorithm (scalar version) [5, 10].
Let x1 ∈ K, R ≥ maxx,y∈K ‖x− y‖
For t = 1, . . . , T :

ηt =
R√∑t

i=1 ‖∇f(xi)‖2

xt+1 = arg min
u∈K

{
〈∇f(xt), u− xt〉+

1

2ηt
‖u− xt‖2

}
Return xT = 1

T

∑T
t=1 xt

∗Department of Computer Science, Boston University. aene@bu.edu

1

Next, we present an analysis of the algorithm in both the non-smooth settings, and show that it achieves
convergence guarantees that are analogous to those of gradient descent. Crucially, the algorithm does so without
knowing whether the function is smooth or not or the smoothness parameter. These properties are very useful in
practice, and AdaGrad and other algorithms based on it are are some of the most popular optimization algorithms
in deep learning and beyond. We also note that practical implementations of AdaGrad such as those in Tensorflow
and Pytorch set R = 1, as K = Rd and finding a suitable upper bound R on the distance to the optimum requires
additional tuning.

The analysis we present here is based on the work [7].

Analysis for non-smooth functions We first consider the setting where f is non-smooth. As in the standard
gradient descent setting, we will need to assume that the gradients are bounded, i.e., we have ‖∇f(x)‖ ≤ G for all
x ∈ K. This is satisfied, for example, when f is G-Lipschitz, i.e., we have |f(x)− f(y)| ≤ G ‖x− y‖ for all x, y.

We use convexity twice1 and obtain:

f(xT)− f(x∗) ≤ 1

T

T∑
t=1

(f(xt)− f(x∗)) ≤ 1

T

T∑
t=1

〈∇f(xt), xt − x∗〉 (1)

Next, we upper bound the inner product terms 〈∇f(xt), xt − x∗〉. To this end, we apply the first-order optimality
condition2 for xt+1: 〈

∇f(xt) +
1

ηt
(xt+1 − xt) , xt+1 − x∗

〉
≤ 0

Rearranging and using the identity ab = 1
2 (a+ b)

2 − 1
2a

2 − 1
2b

2, we obtain

〈∇f(xt), xt+1 − x∗〉 ≤
1

ηt
〈xt − xt+1, xt+1 − x∗〉

=
1

2ηt

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2 − ‖xt − xt+1‖2

)
(2)

Note that the above bounds 〈∇f(xt), xt+1 − x∗〉 whereas what we are interested in is actually 〈∇f(xt), xt − x∗〉.
To address this discrepancy, we write

〈∇f(xt), xt − x∗〉 = 〈∇f(xt), xt+1 − x∗〉+ 〈∇f(xt), xt+1 − xt〉
(2)
≤ 1

2ηt
‖xt − x∗‖2 −

1

2ηt
‖xt+1 − x∗‖2 + 〈∇f(xt), xt+1 − xt〉 −

1

2ηt
‖xt − xt+1‖2 (3)

We furter bound the last two terms above using the Cauchy-Schwartz inequality and the inequality ab ≤ λ
2a

2 + 1
2λb

2

1The first inequality is via the definition of convexity:

f(xT) = f

(
1

T

T∑
t=1

xt

)
≤

1

T

T∑
t=1

f(xt)

The second inequality is via the first-order characterization of convexity:

f(x∗) ≥ f(xt) + 〈∇f(xt), x∗ − xt〉 ⇒ f(xt)− f(x∗) ≤ 〈∇f(xt), x∗ − xt〉

2Recall that the first-order optimality condition for x∗ ∈ argminx∈K φ(x) states that we have

〈∇φ(x∗), x− x∗〉 ≥ 0 ∀x ∈ K

In the unconstrained setting K = Rd, we recover the usual optimality condition ∇φ(x∗) = 0. In the constrained setting, we may have
∇φ(x∗) 6= 0 but none of the directions x − x∗ with x ∈ K is a descent direction. Indeed, if we have 〈∇φ(x∗), x− x∗〉 < 0 for some
x ∈ K, then we can make a small step η ∈ (0, 1] in the direction x− x∗ and improve the objective value:

φ(x∗ + η(x− x∗)) ≈ φ(x∗) + η 〈∇φ(x∗), x− x∗〉 < φ(x∗)

2

which holds for any λ > 0:3

〈∇f(xt), xt+1 − xt〉 −
1

2ηt
‖xt − xt+1‖2 ≤ ‖∇f(xt)‖ ‖xt+1 − xt‖ −

1

2ηt
‖xt − xt+1‖2

≤ ηt
2
‖∇f(xt)‖2 +

1

2ηt
‖xt+1 − xt‖2 −

1

2ηt
‖xt − xt+1‖2

=
ηt
2
‖∇f(xt)‖2 (4)

We plug in (4) into (3):

〈∇f(xt), xt − x∗〉 ≤
1

2ηt
‖xt − x∗‖2 −

1

2ηt
‖xt+1 − x∗‖2 +

ηt
2
‖∇f(xt)‖2 (5)

Summing up and collecting terms:

T∑
t=1

〈∇f(xt), xt − x∗〉 ≤
T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
‖xt − x∗‖2︸ ︷︷ ︸
≤R2

+
1

2η1
‖x2 − x∗‖2︸ ︷︷ ︸
≤R2

+

T∑
t=1

ηt
2
‖∇f(xt)‖2

≤ R2

2ηT
+

T∑
t=1

ηt
2
‖∇f(xt)‖2 (6)

Above, we crucially relied on our assumption that K has bounded diameter in order to telescope the sums.
Finally, we analyze the two terms above. By the definition of the step sizes, we have

R2

ηT
= R

√√√√ T∑
t=1

‖∇f(xt)‖2 (7)

T∑
t=1

ηt ‖∇f(xt)‖2 = R

T∑
t=1

‖∇f(xt)‖2√∑t
i=1 ‖∇f(xi)‖2

(8)

We can bound the last sum using the following result (we defer the proof of these inequalities to the exercises4).
For any positive scalars a1, a2, . . . , an > 0, we have√√√√ n∑

i=1

ai ≤
n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai

Thus we obtain
T∑
t=1

‖∇f(xt)‖2√∑t
i=1 ‖∇f(xi)‖2

≤ 2

√√√√ T∑
t=1

‖∇f(xt)‖2 (9)

Combining (6), (7), (8), (9):
T∑
t=1

〈∇f(xt), xt − x∗〉 ≤
3

2
R

√√√√ T∑
t=1

‖∇f(xt)‖2 (10)

Note that the above result holds for any function f (either non-smooth or smooth). To complete the analysis for
non-smooth functions, we use our assumption that the gradients are bounded (‖∇f(x)‖ ≤ G for all x), and obtain√√√√ T∑

t=1

‖∇f(xt)‖2 ≤ G
√
T (11)

3We can show the last inequality as follows. For λ > 0, we can write

ab =
(√

λa
)(1
√
λ
b

)
≤

1

2

(√
λa
)2

+
1

2

(
1
√
λ
b

)2

=
1

2
λa2 +

1

2λ
b2

4The idea is to replace the sum by an integral. Think of ai√∑i
j=1 aj

as dx√
x
and recall that

∫
dx√
x
=
√
x.

3

Plugging in (11) into (1) gives our final convergence guarantee:

f(xT)− f(x∗) ≤ O
(
RG√
T

)

Analysis for smooth functions If f is smooth, we can strengthen the above analysis and obtain an 1
T conver-

gence. We will use the following result which we will prove in the exercises. Let f be a convex function that is
β-smooth, i.e., we have ‖∇f(x)−∇f(y)‖ ≤ β ‖x− y‖ for all x, y. We have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2β
‖∇f(y)−∇f(x)‖2 ∀x, y

Note that the above can be viewed as a stronger version of the inequality we obtain from convexity:

f(y) ≥ f(x) + 〈∇f(x), y − x〉︸ ︷︷ ︸
convexity inequality

+
1

2β
‖∇f(y)−∇f(x)‖2︸ ︷︷ ︸

extra term (from smoothness)

We can use the above result to strengthen (1) and gain an extra term proportional to the gradient. Setting y = xt
and x = x∗ in the above inequality and using that ∇f(x∗) = 0, we obtain

f(xt)− f(x∗) ≤ 〈∇f(xt), xt − x∗〉 −
1

2β
‖∇f(xt)‖2

Thus

f(xT)− f(x∗) ≤ 1

T

T∑
t=1

(f(xt)− f(x∗)) ≤ 1

T


T∑
t=1

〈∇f(xt), xt − x∗〉 −
1

2β

T∑
t=1

‖∇f(xt)‖2︸ ︷︷ ︸
gain

 (12)

As we have shown in (10), we have

T∑
t=1

〈∇f(xt), xt − x∗〉 ≤
3

2
R

√√√√ T∑
t=1

‖∇f(xt)‖2︸ ︷︷ ︸
loss

Crucially, we can use the gain term to cancel most of the loss. Indeed, letting z =
√∑T

t=1 ‖∇f(xt)‖2, note that
the gain is proportional to z2 whereas the loss is proportional to z. Thus, once z grows large enough, the gain will
overpower the loss. More precisely,

T∑
t=1

〈∇f(xt), xt − x∗〉 −
1

2β

T∑
t=1

‖∇f(xt)‖2 ≤
3

2
R

√√√√ T∑
t=1

‖∇f(xt)‖2 −
1

2β

T∑
t=1

‖∇f(xt)‖2

≤ max
z≥0

{
3

2
Rz − 1

2β
z2

}
= O

(
βR2

)
(13)

On the last line, we used the fact that φ(z) = az − bz2 with a, b > 0 is concave and it is maximized at z∗ = a2

4b .
Plugging in (13) into (12) gives our final convergence guarantee:

f(xT)− f(x∗) ≤ O
(
βR2

T

)

4

1.2 AdaGrad+ algorithm for constrained optimization
The algorithm and the analysis above strongly relied on the fact that we had ∇f(x∗) = 0 at a point x∗ in the
feasible domain, i.e., the domain contained a global minimum. For general constraints, we have ∇f(x∗) 6= 0, and
we need a different choice of step sizes. The reason for this is that the norm of the gradients ‖∇f(xt)‖ does not
necessarily go down as we approach the optimum. Thus the step sizes ηt ∝ 1√∑t

i=1‖∇f(xt)‖2
may become too small,

which is problematic in the smooth setting where we want the steps to be constant.
One approach we can take here is to set the step sizes based on the iterate movement ‖xt − xt−1‖2 instead;

whereas the gradient may not decrease, we intuitively expect that the movement does decrease as we approach the
optimum. This brings us to the following extension of AdaGrad to the constrained setting:

Algorithm 2 AdaGrad+ algorithm (scalar version) [7].
Let x1 ∈ K, η1 > 0, R ≥ maxx,y∈K ‖x− y‖
For t = 1, . . . , T :

xt+1 = arg min
u∈K

{
〈∇f(xt), u− xt〉+

1

2ηt
‖u− xt‖2

}
1

η2
t+1

=
1

η2
t

(
1 +
‖xt+1 − xt‖2

R2

)

Return xT = 1
T

∑T
t=1 xt

The main update scales the movement ‖xt+1 − xt‖2 by R2 to ensure that the step sizes do not decrease too fast,
i.e., we have ηt+1 = Θ(ηt).

By unrolling the recurrence in the step size update, we can see that the step sizes have the following closed-form:

ηt =
R√

R2

η21
+
∑t−1
i=1

‖xi+1−xi‖2
η2i

In the unconstrained setting K = Rd, we have xi+1 = xi − ηi∇f(xi) and thus the steps become

ηt =
R√

R2

η21
+
∑t−1
i=1 ‖∇f(xi)‖2

which closely mirror the AdaGrad step sizes, with the following two differences: the additional term R2

η21
and the

fact that the step is “off-by-one,” i.e., it does not include the latest gradient ‖∇f(xt)‖2 . The additional term can
be made as small as we would like and it is beneficial to have for numerical stability. Practical implementations
of AdaGrad such as those in Tensorflow and Pytorch add a small additional term, typically set to 10−10. The
off-by-one iterate is unavoidable in the constrained setting, since knowing the latest iterate movement ‖xt+1 − xt‖2
requires first computing xt+1. The off-by-one iterate introduces additional complications in the analysis, and the
convergence bounds shown in [7] have additional logarithmic factors compared to the analysis above (the non-
smooth bound is sub-optimal by a

√
lnT factor and the smooth bound by a lnβ factor). We refer the interested

reader to [7] for the analysis.
In Lecture III, we will see a different approach for setting the step sizes that removes these difficulties and

achieves optimal convergence.

2 Lecture II: Adaptive Accelerated Gradient Descent
In the previous lecture, we introduced the AdaGrad algorithm that achieves the optimal 1√

T
convergence in the

non-smooth setting and the 1
T convergence in the smooth setting, analogously to standard gradient descent. The 1

T
convergence is not optimal for smooth functions, and several algorithms have been developed that achieve a faster
1
T 2 convergence, which is optimal. The first such algorithm was developed by Nesterov, called accelerated gradient
descent (AGD). Many different variants of AGD have been developed since (we refer the reader to, e.g., [11, 2]). In

5

this lecture, we will see one such variant (AGD+) due to [8, 3] and an adaptive version of AGD+ (AdaAGD+) due
to [7]. The analysis we present here is based on the works [3, 7].

As before, we consider the problem minx∈K f(x). Here we focus on the case where f is β-smooth. We note
that, analogously to AdaGrad, AdaAGD+ automatically adapts to the problem structure. The interested reader
can find an analysis of AdaAGD+ for non-smooth functions in [7].

Acceleration via better lower bounds In the primer lectures, we saw that the main driving forces behind the
standard gradient descent algorithm and its analysis are suitable upper and lower bounds on the function. Indeed,
if xt is the current iterate, smoothness gives us a quadratic upper bound:

f(x) ≤ f(xt) + 〈∇f(xt), x− xt〉+
1

β
‖x− xt‖2︸ ︷︷ ︸

quadratic function of x

∀x

The upper bound allows us to make large steps without overshooting: if we let xt+1 be the minimizer of the upper
bound, we are guaranteed that f(xt+1) ≤ f(xt).

Convexity gives us an affine lower bound on the function:

f(x) ≥ f(xt) + 〈∇f(xt), x− xt〉︸ ︷︷ ︸
affine function of x

∀x

This affine lower bound is exploited both in the algorithm and the analysis. In the algorithm, we use it as part of
the update:

xt+1 = arg min
x∈K

f(xt) + 〈∇f(xt), x− xt〉︸ ︷︷ ︸
affine lower bound

+
1

2ηt
‖x− xt‖2︸ ︷︷ ︸

proximity term


In the analysis, we apply the lower bound with x = x∗ and obtain an upper bound on the sub-optimality of the
current iterate.

In the basic gradient descent algorithm, we always use the current iterate to construct our upper and lower
bounds. In this lecture, we will depart from this approach and aim to construct much better lower bounds on the
function. Indeed, suppose we have queried the gradient at the points x1, . . . , xt. Thus we have learned the following
lower bounds on the optimum via convexity:

f(x∗) ≥ f(xi) + 〈∇f(xi), x
∗ − xi〉 ∀i ∈ [t] (14)

The maximum of these lower bounds gives us the maximum amount of information about f(x∗). However, this is
a complicated piece-wise affine function that is difficult to work with. Instead, we can take a convex combination
of these affine lower bounds, which is simpler than the maximum since it is affine. More precisely, let us choose
any non-negative weights a1, . . . , at ≥ 0. Let At =

∑t
i=1 ai. By combining the inequalities (14) using weights

a1, . . . , at ≥ 0, we obtain:

f(x∗) ≥ 1

At

t∑
i=1

(aif(xi) + ai 〈∇f(xi), x
∗ − xi〉)

Following the gradient descent paradigm, our main update will minimize the lower bound plus a proximity term.
A particularly simple choice of proximity term is given by the distance to the initial solution, which we will adopt
here. Finally, we make one more key modification to the GD approach: we will separate the sequence {xt} at which
we query gradients from the sequence that we will use to obtain our solutions, which we will denote by {zt}. Thus
our approach so far can be summarized as follows. We will design a sequence {xt} at which to query the gradients.
Using the queried gradients, we update a sequence {zt} which minimizes the lower bound plus the distance to the
initial solution:

zt = arg min
x∈K

{
1

At

t∑
i=1

(
aif(xi) + ai 〈∇f(xi), x− xi〉+

1

2ηt
‖x− z0‖2

)}

= arg min
x∈K

{
t∑
i=1

ai 〈∇f(xi), x〉+
1

2ηt
‖x− z0‖2

}

6

Following standard GD, we will output a convex combination of {zt}. A natural choice is to use the convex
combination given by the weights {at}, i.e., our output is

zT :=

T∑
t=1

at
AT

zt

Let us now discuss how to choose {xt}. Naturally, xt should be set based on the z iterates that we have observed
so far, namely z1, . . . , zt−1. Once again, we use a convex combination based on the weights {at}, but with a twist:

xt =

∑t−1
i=1 aizi + atzt−1

At

Ideally, we would want xt to be a convex combination of z1, . . . , zt, but of course we have a chicken-and-egg problem
since we need xt to compute zt. The workaround is to use zt−1 as a proxy for zt. The intuition for this is that the
proximity term encourages the iterates not to move too much, and thus we hope that zt is close to zt−1. The choice
of xt above will also follow organically from the analysis, as we will see.

The right choice of weights {at} will also follow organically from the analysis. Thus it only remains to discuss
how to choose the step sizes {ηt}. In the non-adaptive setting, we follow the gradient descent approach and set
ηt = 1

β .
Putting everything together, we have the following algorithm:

Algorithm 3 AGD+ [8, 4].

Let z0 ∈ K, η1 > 0, at = t
2 , At =

∑t
i=1 ai = t(t+1)

4 , R ≥ maxx,y∈K ‖x− y‖.
For t = 1, . . . , T :

ηt =
1

β

xt =

∑t−1
i=1 aizi + atzt−1

At

zt = arg min
x∈K

{
t∑
i=1

ai 〈∇f(xi), x− xi〉+
1

2ηt
‖x− z0‖2

}

Return zT :=
∑T
t=1

at
AT
zt

Analysis Let

zt :=

t∑
i=1

ai
At
zi

{zt} is our main solution sequence, and thus we are interested in upper bounding the optimality gap f(zt)− f(x∗).
To this end, we need to lower bound f(x∗). We follow the approach described above and lower bound f(x∗) as
follows. Let x1, . . . , xt be the query points we have chosen so far. By convexity, we have

f(x∗) ≥ f(xi) + 〈∇f(xi), x
∗ − xi〉 ∀i ∈ [t]

We combine these lower bounds with weights ai ≥ 0 and obtain

Atf(x∗) ≥
t∑
i=1

aif(xi) +

t∑
i=1

ai 〈∇f(xi), x
∗ − xi〉

Now, a crucial step is to connect the RHS above to the main update:

zt = arg min
x∈K

{
t∑
i=1

ai 〈∇f(xi), x〉+
1

2ηt
‖x− z0‖2

}

= arg min
x∈K

{
t∑
i=1

ai 〈∇f(xi), x− xi〉+
1

2ηt
‖x− z0‖2

}

7

We can do so as follows:

Atf(x∗) ≥
t∑
i=1

aif(xi) +

t∑
i=1

ai 〈∇f(xi), x
∗ − xi〉

=

t∑
i=1

aif(xi)−
1

2ηt
‖x∗ − z0‖2 +

t∑
i=1

ai 〈∇f(xi), x
∗ − xi〉+

1

2ηt
‖x∗ − z0‖2

≥
t∑
i=1

aif(xi)−
1

2ηt
‖x∗ − z0‖2 + min

x∈K

{
t∑
i=1

ai 〈∇f(xi), x− xi〉+
1

2ηt
‖x− z0‖2

}

=

t∑
i=1

aif(xi)−
1

2ηt
‖x∗ − z0‖2 +

t∑
i=1

ai 〈∇f(xi), zt − xi〉+
1

2ηt
‖zt − z0‖2

Thus we have obtained the following lower bound on f(x∗):

f(x∗) ≥ 1

At

(
t∑
i=1

aif(xi)−
1

2ηt
‖x∗ − z0‖2 +

t∑
i=1

ai 〈∇f(xi), zt − xi〉+
1

2ηt
‖zt − z0‖2

)
︸ ︷︷ ︸

:=Lt

and thus
f(zt)− f(x∗) ≤ f(zt)− Lt

Thus we can focus on upper bounding f(zt)− Lt. To this end, we analyze how the lower bounds are evolving. We
have

At−1Lt−1 −AtLt = −atf(xt)− at 〈∇f(xt), zt − xt〉

+

t−1∑
i=1

ai 〈∇f(xi), zt−1 − zt〉

+

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2

+
1

2ηt−1
‖zt−1 − z0‖2 −

1

2ηt
‖zt − z0‖2 (15)

By looking at the term
∑t−1
i=1 ai 〈∇f(xi), zt−1 − zt〉, we see an opportunity to leverage the optimality condition:

zt−1 = arg min
x∈K

{
t−1∑
i=1

ai 〈∇f(xi), x〉+
1

2ηt−1
‖x− z0‖2

}

The optimality condition for zt−1 (applied with x = zt) gives us〈
t−1∑
i=1

ai∇f(xi) +
1

ηt−1
(zt−1 − z0) , zt−1 − zt

〉
≤ 0

By rearranging and using the identity ab = 1
2 (a+ b)

2 − 1
2a

2 − 1
2b

2, we obtain

t−1∑
i=1

ai 〈∇f(xi), zt−1 − zt〉 ≤
1

ηt−1
〈z0 − zt−1, zt−1 − zt〉

=
1

2ηt−1

(
‖z0 − zt‖2 − ‖z0 − zt−1‖2 − ‖zt−1 − zt‖2

)
(16)

8

Plugging in (16) into (15), we obtain

At−1Lt−1 −AtLt ≤ −atf(xt)− at 〈∇f(xt), zt − xt〉

+
1

2ηt−1
‖z0 − zt‖2 −

1

2ηt−1
‖z0 − zt−1‖2 −

1

2ηt−1
‖zt−1 − zt‖2

+

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2

+
1

2ηt−1
‖zt−1 − z0‖2 −

1

2ηt
‖zt − z0‖2

= −atf(xt)− at 〈∇f(xt), zt − xt〉

+

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2 −

(
1

2ηt
− 1

2ηt−1

)
‖z0 − zt‖2 −

1

2ηt−1
‖zt−1 − zt‖2 (17)

Using the above inequality, we can now analyze how much At (f(zt)− Lt) changed in the current iteration. We
have

At (f(zt)− Lt)−At−1 (f(zt−1)− Lt−1)

= Atf(zt)−At−1f(zt−1) +At−1Lt−1 −AtLt
(17)
≤ Atf(zt)−At−1f(zt−1)− atf(xt)− at 〈∇f(xt), zt − xt〉

+

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2 −

(
1

2ηt
− 1

2ηt−1

)
‖z0 − zt‖2 −

1

2ηt−1
‖zt−1 − zt‖2 (18)

We further bound the first terms above as follows:

Atf(zt)−At−1f(zt−1)− atf(xt)

= Atf(zt)−At−1f(zt−1)− (At −At−1) f(xt)

= At (f(zt)− f(xt))︸ ︷︷ ︸
smoothness

−At−1 (f(zt−1)− f(xt))︸ ︷︷ ︸
convexity

≤ At
(
〈∇f(xt), zt − xt〉+

β

2
‖zt − xt‖2

)
−At−1 〈∇f(xt), zt−1 − xt〉 (19)

We plug in (19) into (18) and collect terms:

At (f(zt)− Lt)−At−1 (f(zt−1)− Lt−1)

≤ 〈∇f(xt), At (zt − xt)−At−1 (zt−1 − xt)− at (zt − xt)〉+At
β

2
‖zt − xt‖2

+

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2 −

(
1

2ηt
− 1

2ηt−1

)
‖z0 − zt‖2 −

1

2ηt−1
‖zt−1 − zt‖2

=

〈
∇f(xt), Atzt −At−1zt−1 − atzt︸ ︷︷ ︸

=0

〉
+At

β

2
‖yt − xt‖2

+

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2 −

(
1

2ηt
− 1

2ηt−1

)
‖z0 − zt‖2 −

1

2ηt−1
‖zt−1 − zt‖2

= At
β

2
‖zt − xt‖2 +

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2 −

(
1

2ηt
− 1

2ηt−1

)
‖z0 − zt‖2 −

1

2ηt−1
‖zt−1 − zt‖2 (20)

Let us now inspect the distance terms above:

At
β

2
‖zt − xt‖2 −

1

2ηt−1
‖zt−1 − zt‖2︸ ︷︷ ︸

want it to be small

+

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2︸ ︷︷ ︸

telescopes

−
(

1

2ηt
− 1

2ηt−1

)
‖z0 − zt‖2︸ ︷︷ ︸

≤0

The ideal scenario is when the second distance term 1
2ηt−1

‖zt−1 − zt‖2 is at least as big as the first distance term

At
β
2 ‖zt − xt‖

2. A moment’s thought reveales that we can choose xt to try to make this happen. Consider setting

9

xt so that zt − xt is a scalar multiple of zt − zt−1:

zt − xt = λt (zt − zt−1)

⇒ xt = zt + λt (zt−1 − zt)

=
At−1zt−1 + atzt

At
+ λt (zt−1 − zt)

=
At−1zt−1 +Atλtzt−1 + (at −Atλt) zt

At

We need to compute xt without access to zt, so we need to set

at −Atλt = 0⇒ λt =
at
At

Thus we have arrived at the following choice for xt:

xt =
At−1zt−1 + atzt−1

At
=

∑t−1
i=1 aizi + atzt−1

At

Therefore we obtain
zt − xt =

at
At

(zt − zt−1) (21)

Plugging (21) into (20), we obtain

At (f(zt)− Lt)−At−1 (f(zt−1)− Lt−1)

≤
(
β

2

a2
t

At
− 1

2ηt−1

)
‖zt − zt−1‖2 +

(
1

2ηt
− 1

2ηt−1

)
‖x∗ − z0‖2 −

(
1

2ηt
− 1

2ηt−1

)
‖z0 − zt‖2 (22)

Plugging in ηt = 1
β into (22), we obtain

At (f(zt)− Lt)−At−1 (f(zt−1)− Lt−1) ≤ β

2

(
a2
t

At
− 1

)
‖zt − zt−1‖2 (23)

Naturally, the ideal scenario is when the RHS is non-positive. A moment’s thought reveals that we can choose the
weights {at} to make this happen. Indeed, we need

a2
t

At
− 1 ≤ 0⇔ a2

t ≤
t∑
i=1

ai

Since
∑t
i=1 i = Θ(t2), a simple choice is to set at = ct for some constant c. We have At = c

∑t
i=1 i = c t(t+1)

2 . Thus
the inequality c2t2 ≤ c t(t+1)

2 holds if we set c = 1
2 . This gives the choice at = t

2 that we stated in the algorithm.5
Plugging in our choice of at = t

2 into (23), we obtain

At (f(zt)− Lt)−At−1 (f(zt−1)− Lt−1) ≤ 0 (24)

Summing up over all iterations and using that a1 = A1 = 1
2 and x1 = z0, we obtain

AT (f(zT)− LT) ≤ A1 (f(z1)− L1)

=
1

2

β ‖x∗ − z0‖2 + f(z1)− f(x1)− 〈∇f(x1), z1 − x1〉︸ ︷︷ ︸
≤ β2 ‖z1−x1‖2 by smoothness

−β ‖z1 − x1‖2


≤ β ‖x∗ − z0‖2

2

Finally, since AT = Θ(T 2), we have obtained the following convergence guarantee:

f(zT)− f(x∗) ≤ f(zT)− LT ≤ Θ

(
β ‖x∗ − z0‖2

T 2

)
5Another choice is the following. Instead of making the coefficient non-positive, we can try to make it equal to 0. Thus we want

that a2t =
∑t

i=1 ai for all t ≥ 1. Rearranging, we want a2t − at − a2t−1 = 0, which is a quadratic equation in at. Solving the quadratic

equation and picking the positive solution, we obtain the recurrence at = 1
2

(
1 +

√
4a2t−1 + 1

)
for all t ≥ 1 and a0 = 0.

10

Adaptive step sizes Similarly to Adagrad, we can make the algorithm adaptive by setting the step sizes pro-
portional to the movement of the main iterate sequence {zt}. We can show that the algorithm convergences at the
rate O

(
R2β ln β
T 2

)
[7].

Algorithm 4 AdaAGD+ (scalar version) [7] algorithms.

Let z0 ∈ K, η1 > 0, at = t
2 , At =

∑t
i=1 ai = t(t+1)

4 , R ≥ maxx,y∈K ‖x− y‖.
For t = 1, . . . , T :

1

η2
t

=
1

η2
t−1

(
1 +
‖zt−1 − zt−2‖2

R2

)
∀t ≥ 2

xt =

∑t−1
i=1 aizi + atzt−1

At

zt = arg min
x∈K

{
t∑
i=1

ai 〈∇f(xi), x− xi〉+
1

2ηt
‖x− z0‖2

}

Return zT :=
∑T
t=1

at
AT
zt

3 Lecture III: Adaptive Extra-Gradient for Variational Inequalities
Variational (VI) are a general framework that capture several optimization of interest. Two important examples
of optimization problems that fit into this framework are the problem of minimizing a function on which we have
focused so far and the problem of finding a Nash equilibrium in a 2-player game.

Here we have a feasible domain K ⊆ Rd and a vector-valued function F : K → Rd; F is often referred to as an
operator. The variational inequality problem asks for a strong solution, which is a point x∗ ∈ K satisfying

〈F (x∗), x∗ − x〉 ≤ 0 ∀x ∈ K (25)

The above condition may remind the reader of the optimality condition we used extensively in our study of convex
minimization. Indeed, this is not a coincidence. If we let F (x) = ∇f(x), we can see that the variational inequality
problem captures the problem minx∈K f(x).

The operator analogue of convexity is monotonicity. An operator F is monotone if it satisfies

〈F (x)− F (y), x− y〉 ≥ 0 ∀x, y ∈ K (26)

In the exercises, we will show that f is convex if and only if ∇f is a monotone operator.
The operator analogue of smoothness is Lipschitzness. An operator F is β-Lipschitz if it satisfies

‖F (x)− F (y)‖ ≤ β ‖x− y‖ ∀x, y ∈ K (27)

In this lecture, we consider the problem of finding a strong solution to a VI problem. We will assume throughout
that F is a monotone operator and K is a convex set with finite diameter.

2-player games and min-max optimization We have seen above that convex minimization is a special case of
monotone VI. We now discuss another important class of optimization problems that are special cases of monotone
VI: finding Nash equilibria of 2-player zero-sum games and more generally, min-max optimization. In 2-player
zero-sum games, we have two players, Alice and Bob, that are playing a game such as rock-paper-scissors. In this
game, each player simultaneously selects a a strategy to play: either rock, paper, or scissors. Rock beats scissors,
scissors beats paper, and paper beats rock. We can give this game an optimization perspective by writing down
a payoff matrix A ∈ R3×3 that encodes whether Alice wins or not. The rows of A correspond to Alice’s strategies
(rock, paper, or scissors) and the columns of A correspond to Bob’s strategies (rock, paper, or scissors). The entries
of A associate a payoff (e.g., the loser pays the winner $1):

A =

 0 −1 1
1 0 −1
−1 1 0


11

Bob’s payoff matrix is −A, and the game is called zero-sum since the players’ payoffs sum up to 0. We will
allow the players to use randomness to choose their strategies, i.e., each player chooses a probability distribution
p = (p1, p2, p3) ∈ ∆3 over the strategies (these are called mixed strategies, and the deterministic strategies such
as picking rock (p = (1, 0, 0)) are called pure strategies). If Alice chooses p ∈ ∆3 and Bob chooses q ∈ ∆3, the
expected payoff to Alice is f(p, q) := p>Aq. Alice wants to maximize this expected payoff, whereas Bob wants to
minimize it since it is a zero-sum game. If the players play optimally, the players can even play sequentially and
it does not matter which player goes first. In other words, we have the following fundamental result (the minimax
theorem, due to Von Neumann, which follows from LP duality):

max
p∈∆3

min
q∈∆3

f(p, q) = min
q∈∆3

max
p∈∆3

f(p, q)

where maxp∈∆3 minq∈∆3 f(p, q) means that Bob goes first and Alice goes second.
An important solution concept for zero-sum games is a Nash equilibrium. A pair of mixed strategies (p∗, q∗)

is a mixed Nash equilibrium if neither player can strictly improve their expected payoff by switching to a different
strategy given that the other player’s strategy remains the same., i.e., we have

f(p, q∗) ≤ f(p∗, q∗) ≤ f(p∗, q) ∀p, q ∈ ∆3

Another fundamental result, due to Nash, states that a mixed Nash equilibrium always exists (the interested reader
can derive a proof of this result using the minimax theorem above).

The problem of finding a mixed Nash equilibrium is a special case of the variational inequality problem. The
corresponding operator F : R6 → R6 is given by

F ((p, q)) = (−∇pf(p, q),∇qf(p, q)) = (−Aq,Ap)

The reader can readily verify that a strong solution (p∗, q∗) to the resulting variational inequality is a mixed Nash
equilibrium.

More generally, we can consider the min-max optimization problem minu∈U maxv∈V f(u, v) where f(u, v) is
convex in u and concave in v. Analogously to the games setting, the corresponding monotone operator is F ((u, v)) =
(∇uf(u, v),−∇vf(u, v)).

We now turn our attention to designing algorithms for solving monotone VIs.

Gradient descent does not converge As we have seen, for convex minimization, the operator corresponds to
the gradient. Thus it is very natural to consider the gradient descent approach for variational inequalities as well:

xt+1 = arg min
x∈K

{
〈F (xt), x− xt〉+

1

2η
‖x− xt‖2

}
A moment’s thought reveals that, unfortunately, the above algorithm fails to converge even for very simple min-max
optimization problems. Indeed, consider the problem minu∈Rd maxv∈Rd f(u, v) where f(u, v) = u>v, i.e., a 2-player
game objective with identity payoff matrix. The Nash equilibrium is (0, 0). The operator is F ((u, v)) = (v,−u) and
it is 1-Lipschitz. The gradient descent iterates xt = (ut, vt) evolve as follows:(

ut+1

vt+1

)
=

(
ut − ηvt
vt + ηut

)
As we can observe from Figure 3, the iterates do not converge to the Nash equilibrium (0, 0).

Extra-gradient algorithm We now introduce a different approach for solving variational inequalities, shown in
the following algorithm. In the non-adaptive setting, we choose the step sizes similarly to gradient descent.

Algorithm 5 Extra-gradient algorithm [9].
Let z0 ∈ K.
For t = 1, . . . , T , update:

xt = arg min
u∈K

{
〈F (zt−1), u〉+

1

2ηt
‖u− zt−1‖2

}
zt = arg min

u∈K

{
〈F (xt), u〉+

1

2ηt
‖u− zt−1‖2

}
Return xT = 1

T

∑T
t=1 xt.

12

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
u

−2

−1

0

1

2

v
start

η=0.1

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
u

−8

−6

−4

−2

0

2

4

6

8

v

start

η=0.5

−30 −20 −10 0 10
u

−10

−5

0

5

10

15

20

25

30

v

start

η=1

Figure 1: The gradient descent iterates for minu∈R maxv∈R uv. The initial solution is (u0, v0) = (1, 1).

To gain a bit more insight into the algorithm, let us consider our more familiar unconstrained convex minimiza-
tion problem: K = Rd and F = ∇f . We have

xt+1 = zt − ηt∇f(zt)

zt+1 = zt − ηt∇f(xt+1)

Thus the algorithm is looking ahead to see what the gradient looks like after performing the GD update from
zt, and uses this extrapolated gradient ∇f(zt − ηt∇f(zt)) instead of the current gradient ∇f(zt).

Analysis of extra-gradient We will analyze the convergence of the algorithm via the error function, which is
defined as follows.

Err(x) := sup
y∈K
〈F (y), x− y〉 (28)

The error function measures convergence to a weak solution, i.e., a point x ∈ K satisfying

〈F (y), x− y〉 ≤ 0 ∀y ∈ K (29)

If F is monotone and continuous, a weak solution is a strong solution and vice-versa.
Using the definition of the error function (28), the definition of xT = 1

T

∑T
t=1 xt, and the monotonicity of F

(26), we obtain

Err(xT) = sup
y∈K
〈F (y), xT − y〉

= sup
y∈K

(
1

T

T∑
t=1

〈F (y), xt − y〉

)

≤ sup
y∈K

(
1

T

T∑
t=1

〈F (xt), xt − y〉

)
(30)

We fix an arbitrary point y ∈ K, and we analyze
∑T
t=1 〈F (xt), xt − y〉. A key step is to split each inner product as

follows:
〈F (xt), xt − y〉 = 〈F (xt), zt − y〉+ 〈F (zt−1), xt − zt〉+ 〈F (xt)− F (zt−1), xt − zt〉 (31)

The intuition behind the split is that we can upper bound the first two terms using the optimality conditions for zt
and xt respectively. The third term is a loss term that will be offset by the gains that we will obtain from the first
two terms.

By the optimality condition for zt, we have〈
F (xt) +

1

ηt−1
(zt − zt−1) , zt − y

〉
≤ 0

Rearranging and using the identity ab = 1
2 (a+ b)

2 − 1
2a

2 − 1
2b

2, we obtain

〈F (xt), zt − y〉 ≤
1

ηt−1
〈zt−1 − zt, zt − y〉

=
1

2ηt−1

(
‖zt−1 − y‖2 − ‖zt − y‖2 − ‖zt−1 − zt‖2

)

13

Similarly, by the optimality condition for xt, we have

〈F (zt−1), xt − zt〉 ≤
1

ηt−1
〈zt−1 − xt, xt − zt〉

=
1

2ηt−1

(
‖zt−1 − zt‖2 − ‖xt − zt−1‖2 − ‖xt − zt‖2

)
Plugging into (31), we obtain

〈F (xt), xt − y〉 ≤
1

2ηt−1

(
‖zt−1 − y‖2 − ‖zt − y‖2

)
+ 〈F (xt)− F (zt−1), xt − zt〉 −

1

2ηt−1

(
‖xt − zt−1‖2 + ‖xt − zt‖2

)
The first two terms telescope for uniform step sizes ηt = η. When the step sizes are non-uniform, as it is the case
for the adaptive algorithms described below, the assumption that K has bounded diameter allows us to telescope
the sums as follows:

1

2ηt−1

(
‖zt−1 − y‖2 − ‖zt − y‖2

)
=

1

2ηt−1
‖zt−1 − y‖2 −

1

2ηt
‖zt − y‖2 +

(
1

2ηt
− 1

2ηt−1

)
‖zt − y‖2︸ ︷︷ ︸
≤R2

≤ 1

2ηt−1
‖zt−1 − y‖2 −

1

2ηt
‖zt − y‖2︸ ︷︷ ︸

telescopes

+

(
1

2ηt
− 1

2ηt−1

)
︸ ︷︷ ︸

telescopes

R2

Thus we have obtained

〈F (xt), xt − y〉 ≤
1

2ηt−1
‖zt−1 − y‖2 −

1

2ηt
‖zt − y‖2︸ ︷︷ ︸

telescopes

+

(
1

2ηt
− 1

2ηt−1

)
︸ ︷︷ ︸

telescopes

R2

+ 〈F (xt)− F (zt−1), xt − zt〉︸ ︷︷ ︸
loss

− 1

2ηt−1

(
‖xt − zt−1‖2 + ‖xt − zt‖2

)
︸ ︷︷ ︸

gain

(32)

The final step is to upper bound the net loss. We do so separately for “non-smooth” (i.e., non-Lipschitz) and
“smooth” (i.e., Lipschitz) operators.

Non-smooth setting As in the convex minimization setting, we will need to assume that the operator norms
are bounded, i.e., we have ‖F (x)‖ ≤ G for all x ∈ K. We proceed similarly to the gradient descent analysis. As in
the primer lecture, we will use a uniform step size ηt = η where η will follow from the analysis.

Using Cauchy-Schwartz, the triangle inequality, the bounded operator assumption, and the inequality ab ≤
λ
2a

2 + 1
2λb

2, we obtain

〈F (xt)− F (zt−1), xt − zt〉 ≤ ‖F (xt)− F (zt−1)‖ ‖xt − zt‖
≤ (‖F (xt)‖+ ‖F (zt−1)‖) ‖xt − zt‖
≤ 2G ‖xt − zt‖

≤ 2ηG2 +
1

2η
‖xt − zt‖2

Plugging into (32) and summing over all iterations, we obtain

T∑
t=1

〈F (xt), xt − y〉 ≤
1

2η
‖z0 − y‖2 + 2ηG2T

We set η to balance the two terms:

η =
‖z0 − y‖
2G
√
T

14

and obtain
T∑
t=1

〈F (xt), xt − y〉 ≤ 2G ‖z0 − y‖
√
T

≤ 2GR
√
T

where we have let R ≥ maxx,y∈K ‖x− y‖.
Plugging into (30) gives our convergence guarantee:

Err(xT) ≤ O
(
GR√
T

)
Smooth setting We now consider the setting where F is β-Lipschitz. As in the primer lecture, we will use a

uniform step size ηt = η where η will follow from the analysis. Using Cauchy-Schwartz and the Lipschitz property,
we obtain

〈F (xt)− F (zt−1), xt − zt〉 ≤ ‖F (xt)− F (zt−1)‖ ‖xt − zt‖
≤ β ‖xt − zt−1‖ ‖xt − zt‖

≤ β

2
‖xt − zt−1‖2 +

β

2
‖xt − zt‖2

Plugging into (32), we obtain

〈F (xt), xt − y〉 ≤
1

2η

(
‖zt−1 − y‖2 − ‖zt − y‖2

)
+
β

2
‖xt − zt−1‖2 +

β

2
‖xt − zt‖2 −

1

2η

(
‖xt − zt−1‖2 + ‖xt − zt‖2

)
We set η = 1

β so that the terms cancel, and obtain

T∑
t=1

〈F (xt), xt − y〉 ≤
β

2
‖z0 − y‖2 ≤

βR2

2

Plugging into (30) gives our convergence guarantee:

Err(xT) ≤ O
(
βR2

T

)
In contrast to smooth convex minimization, the above convergence rate is optimal for variational inequalities with
Lipschitz operators.

Adaptive algorithm I Similarly to the AdaGrad+ algorithm, we can make the algorithm adaptive by setting
the step sizes based on the iterate movement. Specifically, we can use the distances appearing in the gain term in
(32), since those are precisely the terms that will offset the loss. This leads us to the following algorithm, where
once again we have normalized the update so that the step sizes change by at most a constant factor.

Algorithm 6 Adaptive extra-gradient algorithm with steps based on the iterate movement [1].
Let z0 ∈ K, η0 > 0.
For t = 1, . . . , T , update:

xt = arg min
u∈K

{
〈F (zt−1), u〉+

1

2ηt−1
‖u− zt−1‖2

}
zt = arg min

u∈K

{
〈F (xt), u〉+

1

2ηt−1
‖u− zt−1‖2

}
1

η2
t

=
1

η2
t−1

(
1 +
‖xt − zt−1‖2 + ‖xt − zt‖2

2R2

)

Return xT = 1
T

∑T
t=1 xt.

15

We can show that the above algorithm converges at a rate of O
(
GR
√

ln(GT/R)
T

)
for non-Lipschitz operators

and O
(
β ln βR2

T

)
. We refer the reader to [1, 7] for more details.

Adaptive algorithm II We now introduce a different approach for setting the step sizes that uses the norm of
the operator differences ‖F (xt)− F (zt−1)‖2. We also added an extra term to the update for zt; this term helps
improve the constants, and it can be safely omitted without affecting the asymptotic convergence.

Algorithm 7 Adaptive extra-gradient algorithm with steps based on the operator differences [6].
Let z0 ∈ K, η0 > 0.
For t = 1, . . . , T , update:

xt = arg min
u∈K

{
〈F (zt−1), u〉+

1

2ηt−1
‖u− zt−1‖2

}
ηt =

R√∑t
s=1 ‖F (xs)− F (zs−1)‖2

zt = arg min
u∈K

{
〈F (xt), u〉+

1

2ηt−1
‖u− zt−1‖2

}
Return xT = 1

T

∑T
t=1 xt.

We can show that the algorithm converges at the rate O
(
RG√
T

)
for non-Lipschitz operators and O

(
βR2

T

)
for

Lipschitz operators [6]. Both rates are optimal for variational inequalities.

16

References
[1] Francis Bach and Kfir Y. Levy. A universal algorithm for variational inequalities adaptive to smoothness and

noise. In Conference on Learning Theory (COLT), volume 99 of Proceedings of Machine Learning Research,
pages 164–194. PMLR, 2019.

[2] Nikhil Bansal and Anupam Gupta. Potential-function proofs for first-order methods. CoRR, abs/1712.04581,
2017.

[3] Michael Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. On acceleration with noise-corrupted gradients.
In International Conference of Machine Learning (ICML), volume 80 of Proceedings of Machine Learning
Research, pages 1018–1027. PMLR, 2018.

[4] Michael B Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. On acceleration with noise-corrupted gradients.
arXiv preprint arXiv:1805.12591, 2018.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

[6] Alina Ene and Huy L. Nguyen. Adaptive and universal algorithms for variational inequalities with optimal
convergence. CoRR, abs/2010.07799, 2020.

[7] Alina Ene, Huy L Nguyen, and Adrian Vladu. Adaptive gradient methods for constrained convex optimization.
In AAAI Conference on Artificial Intelligence (AAAI), 2021.

[8] Alexander Vladimirovich Gasnikov and Yu E Nesterov. Universal method for stochastic composite optimization
problems. Computational Mathematics and Mathematical Physics, 58(1):48–64, 2018.

[9] G.M. Korpelevich. The extragradient method for finding saddle points and other problems. Ekonomika i
Matematicheskie Metody, 12:747–756, 1976.

[10] H. Brendan McMahan and Matthew J. Streeter. Adaptive bound optimization for online convex optimization.
In Conference on Learning Theory (COLT), pages 244–256. Omnipress, 2010.

[11] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture notes, 3(4):5,
1998.

17

