Exercise 1.

Let \(L \) be the Laplacian of a connected, weighted, undirected graph \(G \), and let \(B \in \mathbb{R}^E \) be the associated edge-vertex incidence matrix. Let \(d \in \mathbb{R}^V, d \perp 1 \) be a demand vector.

The goal of this exercise is to prove that

\[
\max_{x \in \mathbb{R}^V} x^\top d - \frac{1}{2} x^\top L x = \min_{f \in \mathbb{R}^E} \frac{1}{2} \sum_e r(e) f(e)^2 \\
\text{s.t. } B f = d.
\]

We’ll break that down into a few steps.

Let \(f \in \mathbb{R}^E \) be an arbitrary flow that satisfies \(B f = d \), i.e. it routes the demand \(d \). Let \(x \in \mathbb{R}^V \) be arbitrary voltages, i.e. not necessarily electrical voltages associated with the demand.

(i) Prove that

\[
\frac{1}{2} \sum_e r(e) f(e)^2 = x^\top d - \left(\sum_{(u,v) \in E} (x(u) - x(v))(f(u,v)) - \frac{1}{2} r(u,v)f(u,v)^2 \right)
\]

Hint: use that \(x^\top (B f - d) = 0 \).

(ii) Prove that

\[
(x(u) - x(v))(f(u,v)) - \frac{1}{2} r(u,v)f(u,v)^2 \leq \frac{1}{2} \frac{(x(u) - x(v))^2}{r(u,v)}.
\]

(iii) Conclude that \(\frac{1}{2} f^\top R f \geq x^\top d - \frac{1}{2} x^\top L x \).

(iv) Assume we are given \(\tilde{x} \) and \(\tilde{f} \) such that

\[
L \tilde{x} = d \text{ and } \tilde{f} = R^{-1} B^\top \tilde{x}
\]

Prove that \(B \tilde{f} = d \) and

\[
\tilde{x}^\top d - \frac{1}{2} \tilde{x}^\top L \tilde{x} = \frac{1}{2} \tilde{f}^\top R \tilde{f}.
\]

(v) Show

\[
\tilde{x} \in \arg \max_{x \in \mathbb{R}^V} x^\top d - \frac{1}{2} x^\top L x
\]

and

\[
\tilde{f} \in \arg \min_{f \in \mathbb{R}^E} \frac{1}{2} \sum_e r(e) f(e)^2 \\
\text{s.t. } B f = d.
\]
Exercise 2.

Consider the edge samples as defined in Lecture 1.

- We have a graph \(G = (V, E, w) \) with \(|V| = n \) and \(|E| = m \), and with Laplacian \(L = \sum_e w(e)b_e b_e^\top \).
- We define a matrix function \(\Phi : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n} \) by
 \[
 \Phi(M) = L^{+/2} M L^{+/2}.
 \]
- We introduce a set of independent random matrices \(Y_e \), one for each edge \(e \), with a probability \(p_e = \min(1, \alpha \|\Phi(w(e)b_e b_e^\top)\|) \) associated with the edge. We let
 \[
 Y_e = \begin{cases}
 \frac{w(e)}{p_e} b_e b_e^\top & \text{with probability } p_e \\
 0 & \text{otherwise}.
 \end{cases}
 \]
- This way, \(\tilde{L} = \sum_e Y_e \) is our random, hopefully sparse, approximation of \(L \). Let \(\tilde{G} \) be the graph associated with \(\tilde{L} \).
- Let us define
 \[
 X_e = \Phi(Y_e) - \mathbb{E}[\Phi(Y_e)] \quad \text{and} \quad X = \sum_e X_e
 \]

1. Prove that for any two matrices \(A, B \succeq 0, \|A - B\| \leq \max(\|A\|, \|B\|) \). (We skipped this step when proving \(\|X_e\| \leq \frac{1}{\alpha} \).

2. Prove that \(\|\sum_e \mathbb{E}[X_e^2]\| \leq \frac{1}{\alpha} \).

3. Conclude that there is an \(\alpha = O(\log(n/\delta)) \) s.t. \(\tilde{G} \) is a spectral sparsifier of \(G \) with probability at least \(1 - \delta/2 \).

4. Explain how we can use a scalar Chernoff bound to prove that \(|\tilde{E}| \leq O(\epsilon^{-2} \log(n/\delta)n) \) with probability at least \(1 - \delta/2 \). You may pick any constant that suits you to establish the \(O(\cdot) \) bound.

Exercise 3.

Recall the Matrix Bernstein theorem from class:

Theorem (A Bernstein Matrix Concentration Bound (Tropp 2011)). Suppose \(X_1, \ldots, X_k \in \mathbb{R}^{n \times n} \) are independent, symmetric matrix-valued random variables. Assume each \(X_i \) is zero-mean, i.e. \(\mathbb{E}[X_i] = 0_{n \times n} \), and that \(\|X_i\| \leq R \) always. Let \(X = \sum_i X_i \), and \(\sigma^2 = \text{Var}[X] = \sum_i \mathbb{E}[X_i^2] \), then for \(\epsilon > 0 \)

\[
\Pr[\|X\| \geq t] \leq 2n \exp\left(\frac{-t^2}{2Rt + 4\sigma^2}\right).
\]
Recall that in Lecture 1, we sketched a proof that for all $0 < \theta \leq 1/R$,
\[
\Pr[\|X\| \geq t] \leq 2 \exp(-\theta t) \text{Tr} \exp(\theta^2 \sigma^2 I).
\]

1. Prove that $\log(\exp(\theta \mathbb{E}[X_i])) \lesssim \theta^2 \mathbb{E}[X_i^2]$, when $0 < \theta \leq 1/R$.
2. Finish the proof of Matrix Bernstein by finding a suitable choice of θ.

Exercise 4

In Lecture 1, we discussed a lemma which allows us to prove that a cut sparsifier of an expander is also a spectral sparsifier of that expander.

Lemma (Cut Approximation Implies Spectral Approximation in Expanders). Suppose $G = (V, E, w)$ is a ϕ-expander. Let H be a K-factor cut approximator of G, i.e.
\[
\frac{1}{K+1} G \preceq \text{cut } H \preceq \text{cut } (K+1) G.
\]

Then $H \approx_{\text{poly}(K\phi^{-1})} G$, i.e. H is also a spectral approximation of G.

- Prove that when H and G have $\text{wdeg}_G(u) = \text{wdeg}_H(u)$ for all $u \in V$ then $H \preceq \text{poly}(K\phi^{-1}) G$. *Hint: Use expansion and Cheeger’s inequality. Be careful about the kernels of the matrices involved.*
- Prove the full lemma. *Hint: you can add self-loops to enforce degrees being equal. Cheeger’s inequality applies to graphs with self-loops.*

Exercise 5

Consider an unweighted graph $G = (V, E)$ with

1. Use the Expander Decomposition Theorem by Saranurak and Wang to decompose the graph into (overlapping) expanders with expansion $\phi = 1/\text{polylog } n$.
2. Sparsify the expanders using Benczur-Karger cut sparsification. Note the output is a weighted graph.
3. Use the sparsified expanders to construct a (weighted) graph $H = (V, F, w_H)$ s.t. $|F| = |V| \text{polylog}(|V|)$ and $H \approx_{\text{polylog } n} G$.
4. Bonus: Can you extend the approach to weighted graphs where the weights lie between 1 and $\text{poly}(|V|)$?
Bonus Questions

For those of you who want more, here are some extra questions. I probably won’t have time to discuss how to solve them.

Exercise 6.

The bound obtained in Cheeger’s inequality is indeed tight. Prove that:

1. Let G be the graph consisting of two vertices connected by a single edge of unit weight. Prove that $\phi(G) = \lambda_2(N)/2$ and therefore that the lower bound of Cheeger’s inequality is tight.

2. To show that the line graph proves that the upper bound of Cheeger’s Inequality is asymptotically tight (i.e. up to constant factors).

Exercise 7.

Sparse Expanders: In random graph theory, the graph over n vertices where each edge between two endpoints is present independently with probability p is denoted $G(n,p)$.

Show that for $p = \Omega(\log n/n)$, that $G(n,p)$ is a $\Omega(1)$-expander with high probability (it is up to you to fix large constants). Take the following steps:

1. Prove that with high probability, $\deg(u) = \Theta(pn)$ for all vertices $u \in V(G(n,p))$.

2. For each set S of $k \leq n/2$ vertices, argue that

$$\Pr[|E(S,V \setminus S)| = \Theta(kpn)] > 1 - n^{-c-k}$$

for any large constant $c > 0$.

3. Observe that there are at most $\binom{n}{k}$ sets of vertices S of size k. Conclude that $G(n,p)$ is with high probability a $\Omega(1)$-expander.
Reading list

The following is a very haphazard of list of papers that I mentioned during class. It is very much against the advice of none mentioned, none forgotten.

- Code: https://github.com/danspielman/Laplacians.jl/
- Solving Laplacian linear equations: [ST04, KS16, JS21] and many more.
- Graph sparsification: [BK96, SS11].
- Matrix concentration: [Tro12].
- Semi-supervised learning using graphs: [ZGL03].
- Structured linear equation solvers beyond Laplacians: [DS07, DS08, KLP+16, CKP+17, CKK+18, KPSZ18, AJSS19].
- Scalar elliptic partial differential equations: [BHV08].
- Maximum flow: [DS08, CKM+10, Mad13, Mad16, KLS20].
- Minimum cost flow: [LS14, CMSV17, AMV20, vdBLL+21].
- Fine-grained complexity for spectral graph theory: [KZ20], http://rasmuskyng.com/papers/LPto2CF.pdf
- Heuristic solvers for Laplacians: [MV77, BD79, Bra00].
- Expander decomposition: [ST04, SW19].

References

