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Ambiguous Contracts

• In many contractual relations, contracts are “ambiguous”. E.g., 
• “We’ll grade one question in each problem set” (professors)

• “we’ll compensate good drivers” (insurance companies)

• “you’ll get promoted if you perform well” (companies/academic faculty)

• Motivating question: Why are ambiguous contracts so common?

• We study the power of ambiguity in contract design
• Lots of work in economic and algorithmic design on ambiguity as a constraint

• We study ambiguity as a tool --- namely, the deliberate infusion of ambiguity 
into the design of contracts (inspired by [Di Tillio et al. REStud 2017] who 
study ambiguity in auction design) 



Ambiguous 
contracts



Ambiguous Contracts

• An ambiguous contract is a set of classic contracts 𝜏 = 𝑡1, … , 𝑡𝑘

• 𝑡𝑖 = (𝑡1
𝑖 , … , 𝑡𝑚

𝑖 )  for every 𝑖

• Agent is ambiguity averse: selects an action, 𝑖∗(𝜏), whose minimal 
expected utility across all contracts t ∈ τ is the highest

• Consistency: principal is indifferent between all contracts 𝑡 ∈ 𝜏 w.r.t.
action 𝑖∗(𝜏), i.e., for any two contracts 𝑡𝑗 , 𝑡𝑙 ∈ 𝜏:

𝑈𝑃 𝑖∗ 𝜏 , 𝑡𝑗 = 𝑈𝑃(𝑖
∗ 𝜏 , 𝑡𝑙)

(also implies same payment and same agent’s utility for any two contracts in 𝜏)

𝑖∗(𝜏) ∈ argmax
𝑖∈[𝑛]

min
𝑡∈𝜏

𝑈𝐴(𝑖, 𝑡) [breaking ties in favor of principal] 

𝑈𝐴 𝑖, 𝜏



Timeline

timeKnown setting
Ԧ𝑐; Ԧ𝑟; 𝑝1, … , 𝑝𝑛

Principal designs an 
ambiguous  contract 𝜏, 
and commits to a 
contracts 𝑡 ∈ 𝜏
(unknown to agent)

Agent takes
unobserved 
costly action

Agent’s action 
produces reward 𝑟𝑗

Principal pays 
the agent 𝑡𝑗



Example

Best classic contract:
• Incentivize action 1
• 𝑡 = ( Τ1 2 , 0)

• Expected payment = 
𝟏

𝟒

Let 𝜏 = (𝑡1, 𝑡2) be ambiguous with 
𝑡1 = 2,0 and 𝑡2 = (0,2)
• Action 1 gives agent’s utility -1/4 (under 𝑡2)
• Action 2 gives agent’s utility -1/4 (under 𝑡1)
• Action 3 gives agent’s utility 0 (expected 

payment of 1/2 ∗ 2 = 𝟏 under both contracts)

Cost 𝑟1 = 2 𝑟2 = 2

Action 1 1/4 1/2 0

Action 2 1/4 0 1/2

Action 3 1 1/2 1/2

Principal’s 
utility = 
1-1/4 = 3/4

Principal’s 
utility = 
2-1 = 1



Best classic contract:
• Incentivize action 1
• 𝑡 = ( Τ1 2 , 0)

• Expected payment = 
𝟏

𝟒

Let 𝜏 = (𝑡1, 𝑡2) be ambiguous with 
𝑡1 = 2,0 and 𝑡2 = (0,2)
• Action 1 gives agent’s utility -1/4 (under 𝑡2)
• Action 2 gives agent’s utility -1/4 (under 𝑡1)
• Action 3 gives agent’s utility 0 (expected 

payment of 1/2 ∗ 2 = 𝟏 under both contracts)

Cost 𝑟1 = 2 𝑟2 = 2

Action 1 1/4 1/2 0

Action 2 1/4 0 1/2

Action 3 1 1/2 1/2

Principal’s 
utility = 
1-1/4 = 3/4

Principal’s 
utility = 
2-1 = 1

Upshot: principal can gain by employing  ambiguous contracts



Many Questions Arise…

• Can ambiguous contracts benefit both the principal and the agent?

• What’s the structure of the optimal ambiguous contract?

• What’s the computational hardness of computing the optimal 
ambiguous contract?

• Are there classes of contracts that are “ambiguity-proof”?

• How much can the principal gain by employing ambiguous contracts? 

• What is the effect of mixed strategies by the agent?



Ambiguity can Benefit both Principal and Agent



Structure and computation

What’s the structure and computational hardness of the optimal ambiguous contract?



Single-outcome-payment (SOP) contracts

Definition: an SOP contract is one that pays only for a single outcome, 
e.g., 𝑡 = (0,0,4,0)

Theorem (informal): For any ambiguous contract 𝜏 there’s an “equivalent” ambiguous 
contract 𝜏′ composed of SOP contracts

Theorem (formal): For any ambiguous contract 𝜏 there’s an ambiguous contract Ƹ𝜏
composed of at most min{𝑛 − 1,𝑚} SOP contracts such that:

• 𝑖∗ 𝜏 = 𝑖∗ ො𝜏 [𝜏 and Ƹ𝜏 incentivize the same action]

• T𝑖∗ 𝜏 𝜏 = T𝑖∗ 𝜏 Ƹ𝜏 [they do so for the same expected payment]

Remark: an analogous theorem for monotone contracts, with step contracts instead of SOPs



Proof Idea

For every action 𝑖 ≠ 𝑖∗, there exists a contract 𝑡𝑖 ∈ 𝜏 such that

𝑈𝐴 𝑖, 𝑡𝑖 ≤ 𝑈𝐴 𝑖∗, 𝑡𝑖 = 𝑈𝐴 𝑖∗, 𝜏

Plan: modify 𝑡𝑖 to an SOP contract Ƹ𝑡𝑖 such that:

• 𝑇𝑖∗ Ƹ𝑡𝑖 = 𝑇𝑖∗ 𝜏 (action 𝑖∗ has the same E[payment] in Ƹ𝑡𝑖 as in 𝜏)

• 𝑇𝑖 Ƹ𝑡𝑖 ≤ 𝑇𝑖 𝑡
𝑖 (action 𝑖 has E[payment] in Ƹ𝑡𝑖 at most as in 𝑡𝑖)

We get: 𝑈𝐴 𝑖, Ƹ𝑡𝑖 ≤ 𝑈𝐴 𝑖, 𝑡𝑖 ≤ 𝑈𝐴 𝑖∗, 𝜏 = 𝑈𝐴 𝑖∗, Ƹ𝜏 (so 𝑖∗ is incentivized)

Constructing Ƹ𝑡𝑖: Set Ƹ𝑡𝑗𝑚𝑎𝑥

𝑖 =
𝑇𝑖∗(𝜏)

𝑝𝑖∗,𝑗𝑚𝑎𝑥

and Ƹ𝑡𝑗
𝑖 = 0 for all 𝑗 ≠ 𝑗𝑚𝑎𝑥, 

where 𝑗𝑚𝑎𝑥 ∈ argmax
𝑗∈𝑚

𝑝𝑖∗,𝑗

𝑝𝑖,𝑗



Theorem: There exists an algorithm that computes the optimal ambiguous contract in 
time 𝑂 𝑛2𝑚

Proof idea:

Fix action 𝑖.

Lemma 1: If there exists an action 𝑖′ ≠ 𝑖 such that 𝑝𝑖′ = 𝑝𝑖 and 𝑐𝑖′ < 𝑐𝑖 , then action 𝑖
is not implementable by an ambiguous contract

Lemma 2: Else, action 𝑖 is implementable, and the optimal ambiguous contract 
implementing it can be found in time 𝑂 𝑛𝑚

Remark: note characterization for implementability by ambiguous contracts

Optimal Ambiguous Contract Computation



Theorem: Action 𝑖 is implementable with a classic contract if and only if there does not 
exist a convex combination 𝜆𝑖′ ∈ 0,1 of the actions 𝑖′ ≠ 𝑖 that yields the same 
distribution over rewards Σ𝑖′≠𝑖𝜆𝑖′𝑝𝑖′𝑗 = 𝑝𝑖𝑗 for all 𝑗 but at a strictly lower cost 
Σ𝑖′≠𝑖𝜆𝑖′𝑐𝑖′ < 𝑐𝑖

Theorem: Action 𝑖 is implementable with an ambiguous contract if and only if there is 
no other action 𝑖′ ≠ 𝑖 such that 𝑝𝑖′ = 𝑝𝑖 but 𝑐𝑖′ < 𝑐𝑖

Example: action 4 can’t be implemented by a classic contract, but can be implemented 
by an ambiguous contracts

Detour: Characterization of Implementable Actions

Ambiguous contract incentivizing action 4:

𝜏 = (𝑡1, 𝑡2) with
𝑡1 = 0,6,0 and 𝑡2 = (0,0,6)



Lemma 2: Else (for every action 𝑖′ with 𝑐𝑖′ < 𝑐𝑖 it holds that 𝑝𝑖′ ≠ 𝑝𝑖), action 𝑖 is 
implementable, and the optimal ambiguous contract implementing it can be found in 
time 𝑂 𝑛𝑚

Proof: Algorithm for implementable action 𝑖:  

Let 𝐴 = 𝑖′ ≠ 𝑖 ∣ 𝑝𝑖′ ≠ 𝑝𝑖 . (assume 𝐴 ≠ ∅, else pay 0)

For each 𝑖′ ∈ 𝐴, let 𝑗(𝑖′) be a maximizer of 
𝑝
𝑖𝑗(𝑖′)

𝑝𝑖′𝑗(𝑖′)
.

Let  

For each 𝑖′ ∈ 𝐴, Let 𝑡𝑖
′
= (0,… , 𝑇/𝑝𝑖𝑗 𝑖′ , 0, … , 0) [positive payment in index 𝑗(𝑖′)]

Claim 1: Ambiguous contract 𝜏 = 𝑡𝑖
′

𝑖′∈𝐴
implements action 𝑖.

Claim 2: This contract is the optimal ambiguous contract implementing action 𝑖.

Optimal Ambiguous Contract Computation

Proof in exercise session



Ambiguity Proofness

Are there classes of contracts that are “immune to ambiguous contracts”?



Definition: A class of contracts 𝒯 is ambiguity-proof if for any instance, 
any action 𝑖, and any ambiguous contract  𝜏 ∈ 𝒯,  𝜏 cannot incentivize 
action 𝑖 at a strictly lower cost than any single contract in 𝒯

Ambiguity Proofness



Best classic contract:
• Incentivize action 1

• 𝑡 = (
1

2
, 0)

• Expected payment = 
𝟏

𝟒

Let 𝜏 = (𝑡1, 𝑡2) be ambiguous with 
𝑡1 = 2,0 and 𝑡2 = (0,2)
• Action 1 gives agent’s utility -1/4 (under 𝑡2)
• Action 2 gives agent’s utility -1/4 (under 𝑡1)
• Action 3 gives agent’s utility 0 (expected 

payment of 1/2 ∗ 2 = 𝟏 under both contracts)

Cost 𝑟1 = 2 𝑟2 = 2

Action 1 1/4 1/2 0

Action 2 1/4 0 1/2

Action 3 1 1/2 1/2

Principal’s 
utility = 
1-1/4  = 3/4

Principal’s 
utility = 
2-1 = 1

Recall example



Definition: A class of contracts 𝒯 is ambiguity-proof if for any instance, 
any action 𝑖, and any ambiguous contract  𝜏 ∈ 𝒯,  𝜏 cannot incentivize 
action 𝑖 at a strictly lower cost than any single contract in 𝒯

Definition: A class of contracts 𝒯 is ordered iff for any two contracts 
𝑡, 𝑡′ ∈ 𝒯 it holds that:

Theorem: A class of contracts 𝒯 is ambiguity-proof iff it is ordered.

𝑡 𝑥 ≥ 𝑡′(𝑥) for all 𝑥 ∈ ℛ+ OR   𝑡 𝑥 ≤ 𝑡′(𝑥) for all 𝑥 ∈ ℛ+

Ambiguity Proofness



Proof of direction 1: oderedness implies ambiguity proofness

Suppose 𝒯 is ordered, and let 𝜏 = (𝑡1, … , 𝑡𝑘) be a consistent ambiguous 
contract incentivizing action 𝑖∗

We show: there exists a single contract incentivizing 𝑖∗ at same payment

By orderedness, wlog, 𝑡𝑗
1 ≤ 𝑡𝑗 for all outcomes 𝑗 and all contracts 𝑡 ∈ 𝜏

• Thus, for all actions 𝑖:
• So: 𝑖∗ 𝑡1 = 𝑖∗(𝜏)
• By consistency: 𝑈𝑃 𝑖∗ 𝑡1 , 𝑡1 = 𝑈𝑃(𝑖

∗ 𝜏 , 𝜏)
• Thus, the classic contract 𝑡1 incentivizes action 𝑖∗ at the same payment as 𝜏
• So: 𝒯 is ambiguity proof

𝑈𝐴 𝑖, 𝑡1 = 𝑈𝐴(𝑖, 𝜏)

Ambiguity Proofness



Corollary: The class of linear contracts is ambiguity proof

A linear contract pays the agent a fixed share of the reward, namely:

𝑡𝑗 = 𝛼𝑟𝑗 for some 𝛼 ∈ 0,1

Linear Contracts



Corollary: The class of linear contracts is ambiguity proof

This provides another piece in a long-standing puzzle, asking why simple, 
sub-optimal contract formats, like linear, are so ubiquitous

Other pieces are provided by robust optimality of linear contracts 
[Carroll’15] [Duetting Talgam-Cohen Roughgarden’19]

Linear Contracts

“It is probably the great robustness of [linear contracts] that accounts for 
their popularity. 
That point is not made as effectively as we would like by our model; we 
suspect that it cannot be made effectively in any traditional […] model.”

[Holmström & Milgrom’87]



Mixing Hedges Against Ambiguity

• A mixed action 𝜎 is a convex combination over pure actions
• 𝜎𝑖 is the probability the agent plays action 𝑖

• Expected reward of 𝜎 is 𝑅𝜎 = Σ𝑖𝜎𝑖𝑅𝑖
• Expected payment of 𝜎 under contract 𝑡 is 𝑇𝜎 𝑡 = Σ𝑖𝜎𝑖𝑇𝑖 𝑡
• Agent’s expected utility for 𝜎 under contract 𝑡 is 𝑈𝐴 𝜎, 𝑡 = Σ𝑖𝜎𝑖𝑈𝐴 𝑖, 𝑡
• Agent’s expected utility for 𝜎 under ambiguous contract 𝜏 is 𝑈𝐴 𝜎, 𝜏 = min𝑡∈𝜏 𝑈𝐴(𝜎, 𝜏)



Mixing Hedges Against Ambiguity

Cost 𝑟1 = 2 𝑟2 = 2

Action 1 1/4 1/2 0

Action 2 1/4 0 1/2

Action 3 1 1/2 1/2

Recall: under the ambiguous contract 𝜏 = ( 2,0 , 0,2 ), 𝑢𝐴 1, 𝜏 = 𝑢𝐴 2, 𝜏 = −1/4
• Consider mixed strategy 𝜎, mixing between actions 1 and 2 with probability 0.5 each
• For any contract 𝑡:    𝑈𝐴 𝜎, 𝑡 = 0.5 𝑈𝐴 1, 𝑡 + 0.5 𝑈𝐴(2, 𝑡)
• Agent’s utility under ambiguous contract 𝜏 is 𝑈𝐴 𝜎, 𝜏 = min

𝑡∈𝜏
𝑈𝐴(𝜎, 𝑡)

• In our example: 𝑈𝐴 𝜎, 2,0 = 0.5 𝑈𝐴 1, 2,0 + 0.5 𝑈𝐴 2, 2,0 = 0.5 ∗
3

4
− 0.5 ∗

1

4
=

1

4
> 0

• Same for contract (0,2). So, 𝑈𝐴 𝜎, 𝜏 = 1/4, strictly better than 𝑈𝐴 for action 3
• Note: a mixed strategy may give a strictly higher utility than any of its pure strategies



Theorem (informal): mixed strategies eliminate the power of ambiguity altogether
Theorem (formal): Suppose ambiguous contract 𝜏 incentivizes a mixed action 𝜎 with 
corresponding utilities 𝑈𝐴 𝜎, 𝜏 and 𝑈𝑃 𝜎, 𝜏 . Then, there exists a classic contract 𝑡
incentivizing 𝜎 with the same utilities
Proof idea: Consider a 0-sum game between the agent and principal:

Mixing Hedges Against Ambiguity

𝒕𝟏 𝒕𝟐

𝜎1

𝜎2

𝑈𝐴(𝜎𝑖 , 𝑡
𝑗)

al
l m

ix
ed

 a
ct

io
n

s

𝑇: All classic contracts preserving payoff 𝑈𝑃 𝜎, 𝜏 under σ • 𝑈𝐴 𝜎, T = 𝑈𝐴(𝜎, 𝜏) (by def of 𝑇)
• Claim: 𝑈𝐴(𝜎, 𝜏) is the value of the game
• Let 𝑡 be the classic contract realizing the 

minmax value
• By min-max thm: no mixed action gives 

the agent against 𝑡 more than maxmin = 
𝑈𝐴 𝜎, 𝜏

• By construction, action 𝜎 gives this utility 
against 𝑡

• So 𝑡 is the desired classic contract



How much can the principal gain by ambiguous contracts? 

Ambiguity gap



𝜌 𝑐, 𝑟, 𝑝 =
max
𝜏

𝑈𝑝(𝑖
∗ 𝜏 , 𝜏)

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

≤
max
𝑖∈[𝑛]

𝑊𝑖

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

maximal principal’s utility 
using a single contract 

maximal principal’s utility 
using an ambiguous contract 

Ambiguity gap

Ambiguity gap of an instance 𝑐, 𝑟, 𝑝 :



𝜌 𝑐, 𝑟, 𝑝 =
max
𝜏

𝑈𝑝(𝑖
∗ 𝜏 , 𝜏)

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

≤
max
𝑖∈[𝑛]

𝑊𝑖

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

𝜌 𝒞 = sup
(𝑐,𝑟,𝑝)∈𝒞

𝜌 𝑐, 𝑟, 𝑝

maximal principal’s utility 
using a single contract 

maximal principal’s utility 
using an ambiguous contract 

Max ambiguity gap over all 
instances in class 𝒞

Ambiguity gap

Ambiguity gap of an instance 𝑐, 𝑟, 𝑝 :

Ambiguity gap of a class of instances 𝒞: 



𝜌 𝑐, 𝑟, 𝑝 =
max
𝜏

𝑈𝑝(𝑖
∗ 𝜏 , 𝜏)

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

≤
max
𝑖∈[𝑛]

𝑊𝑖

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

𝜌 𝒞 = sup
(𝑐,𝑟,𝑝)∈𝒞

𝜌 𝑐, 𝑟, 𝑝

maximal principal’s utility 
using a single contract 

maximal principal’s utility 
using an ambiguous contract 

Max ambiguity gap over all 
instances in class 𝒞

Ambiguity gap

Ambiguity gap of an instance 𝑐, 𝑟, 𝑝 :

Ambiguity gap of a class of instances 𝒞: 

maximal welfare of an action 



Theorem: The ambiguity gap of the class of instances with 𝑛 actions is 𝑛 − 1

Note: upper bound follows from [Duetting et al. 19], who showed that this 
upper bound holds even with respect to optimal welfare, and even by a 
linear contract

Lower bound
• An instance with 𝑛 + 1 actions and 3 outcomes having a gap of 𝑛
• Optimal welfare (from action 𝑛 + 1) is roughly 𝑛
• Optimal principal’s utility is roughly 1

Main Result



Summary

• Algorithmic contract design is a new frontier in AGT

• Many interesting directions waiting to be explored

• Ambiguity can be used by the principal to gain higher utility

• Optimal ambiguous contracts have simple structure (SOP, step)

• Computing the optimal ambiguous contract is feasible

• Linear contracts are ambiguity-proof

• The ambiguity gap is roughly the number of actions

• Mixing hedges against ambiguity



Coming soon..

Survey on Algorithmic Contract Theory

[Duetting Feldman and Talgam-Cohen, to appear (FnTTCS)]

• Optimal and linear contracts

• Simple vs. optimal contracts

• Combinatorial contracts

• Contracts and types agents

• Date-driven contracts

• Contracts and incentive-aware machine learning

• Ambiguous contracts

• Contract design for social good

• Incentivizing effort beyond contracts Thank you!
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