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Example: Sponsored Content

• You want to pay an influencer to run 
a social media campaign

• Running a campaign requires effort 
• You are buying a costly service with 

uncertain outcome (# views, etc.)

    What/how should you pay the    
    influencer for their effort?



Contract Design

One of the pillars of microeconomic theory 
[Ross’73, Holmström’79]

“The 2016 Nobel Prize in Economics was awarded Monday to 
Oliver Hart and Bengt Holmström for their work in contract 
theory — developing a framework to understand agreements 
like insurance contracts, employer-employee relationships 
and property rights.”

HartHolmström

• As markets for services move online, they grow in scale and complexity
(freelance services, legal services, marketing services, etc.)

• An algorithmic / computational approach is timely and relevant



Algorithms and Incentives

[Nisan Ronen STOC’99]
[Lehmann Lehmann Nisan EC’01]

…
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Algorithmic Contract Design: 
an Emerging Frontier

• Simple vs optimal contracts: [Carroll AER’15], [Duetting Roughgarden & Talgam-Cohen EC’19], [Alon 
Duetting Li Talgam-Cohen EC’23]

• Combinatorial contracts: [Babaioff Feldman Nisan Winter ‘12 (EC’06)], [Lavi & Shamash EC’19], 
[Duetting Roughgarden & Talgam-Cohen SODA’20], [Duetting Ezra Feldman & Kesselheim FOCS’21], [Alon 
Lavi Shamash & Talgam-Cohen EC’21], [Duetting Ezra Feldman & Kesselheim STOC’23], [Castiglioni et al. 
EC’23], [Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman 
Schlesinger ITCS’24], [Cacciamani et al. EC’24]

• Learning contracts: [Ho Slivkins & Vaughn EC’14], [Cohen Deligkas & Koren SAGT’22], [Zhu et al. EC’23], 
[Duetting Guruganesh Schneider & Wang ICML’23], [Chen et al. EC’24]

• Typed contracts: [Guruganesh Schneider & Wang EC’21], [Alon Duetting & Talgam-Cohen EC’21], 
[Castiglioni et al. EC ‘21], [Castiglioni et al. EC ‘22], [Guruganesh Schneider & Wang EC’23]

• Contract design for social good: [Li Immorlica & Lucier WINE’21], [Ashlagi Li & Lo Management 
Science’23]

• Ambiguous contracts: [Duetting Feldman Peretz Samuelson EC’23]



The Algorithmic/Computational Lens

• The algorithmic lens has been traditionally useful

• Reveals structure

• Identifies tractability frontier 

• Informs the design of simple mechanisms

• Many examples in Algorithmic Mechanism Design

• E.g., greedy algorithms, substitutes as a frontier of tractability, 
submodularity as simplicity frontier, hardness of NE, …



Plan for this Talk

• Part 1: The Fundamentals
• The principal-agent model

• Optimal contracts

• Linear contracts

• Part 2: Combinatorial Contracts
• Multiple actions [Duetting Ezra Feldman Kesselheim FOCS’21] [Duetting Feldman Gal-Tzur 

SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman Schlesinger ITCS’24]

• Multiple agents [Babaioff Feldman Nisan Winter ‘12 (EC’06)] [Duetting Ezra Feldman & 
Kesselheim STOC’23]

• Combined problem [Duetting Ezra Feldman Kesselheim 2024]



The Principal-Agent Problem

Chooses action 𝑖 ∈ [𝑛]

Gets reward 𝑟𝑗 ∈ ℝ+ for outcome 𝑗 ∈ [𝑚] 

with probability 𝑓𝑖𝑗
Incurs cost 𝑐𝑖

Defines contract 𝑡 ∈ ℝ+
𝑚

Receives 𝑇𝑖

𝑅𝑖 − 𝑇𝑖 = σ𝑗∈[𝑚] 𝑓𝑖𝑗𝑟𝑗  - 𝑇𝑖 𝑇𝑖 − 𝑐𝑖

Defining features: hidden action, stochastic outcome, limited liability

Pays 𝑇𝑖 = σ𝑗∈[𝑚] 𝑓𝑖𝑗𝑡𝑗

Expected utility:

Expected payment:

agent
principal



Timing and Objective

timeKnown 
setting: 𝑓, 𝑐, 𝑟

Principal designs 
a contract 
(payment for 
every outcome)

Agent takes
unobserved 
costly actions

Agent’s actions 
produce an 
outcome, 
stochastically

Principal pays 
the agent based 
on observed 
outcome

Objective: maximize the expected utility of the principal



𝑐𝑖 𝑟0 = 0 𝑟1 = 2 𝑟2 = 2

Action 0 0 1 0 0

Action 1 ¼ ½ ½ 0

Action 2 ¼ ½ 0 ½ 

Action 3 1 0 ½ ½ 

Example

𝑅𝑖

0

1 

1 

2

Optimal contract: 
• Incentivize action 1
• Contract: 𝑡 = (0, 0.5, 0)
• Expected payment: 𝑇1 = 0.25
• Expected principal’s utility = 

𝑅1 − 𝑇1 = 1 − 0.25 = 0.75

Incentivizing action 3: 
• Incentivize action 3
• Contract: 𝑡 = (0, 1.5, 1.5)
• Expected payment: 𝑇3 = 1.5
• Expected principal’s utility = 

𝑅3 − 𝑇3 = 2 − 1.5 = 0.5



Example



Key Results: Optimal Contracts

Theorem (folklore): Optimal contract can be computed in 𝑝𝑜𝑙𝑦(𝑛, 𝑚) time 
through linear programming.

MIN-PAY problem
Input: Contract setting (𝑓, 𝑐, 𝑟); an action 𝑖
Output: Minimum 𝑇𝑖 that incentivizes action 𝑖

Observations:
• LP solvable 
• Optimal contract solvable via 

𝑛 MIN-PAY problems
min 𝑇𝑖

s.t. 𝑇𝑖 − ci ≥ 𝑇𝑖′ − 𝑐𝑖′  ∀𝑖′ ≠ 𝑖  (IC)



Key Results: Optimal Contracts

Theorem (folklore): Optimal contract can be computed in 𝑝𝑜𝑙𝑦(𝑛, 𝑚) time 
through linear programming.

But optimal contracts have been criticized:

• As solutions to LPs they are opaque, and lack structure
• They may be non-monotone

Important exception: With only two outcomes “success” and “failure”, Linear 
(comission-based) contracts that set 𝑡𝑗  =  𝛼 ∙  𝑟𝑗  for all 𝑗 ∈ [𝑚] are optimal



Example of Non-Monotonicity



Key Results: Linear Contracts

Theorem [Duetting Roughgarden Talgam-Cohen‘19]: Linear contracts 
achieve a Θ(𝑛) approximation to optimal contracts.

Theorem [Duetting Roughgarden Talgam-Cohen‘19]: Linear contracts are 
max-min optimal when only the expected rewards of the actions are 
known.

• Provides easy to interpret, ”robust optimization”-style analogue of [Carroll’15]
• In [Carroll’15] principal knows subset of actions, actual actions can be any superset 



Contract 𝛼

Agent’s 
utility

Tool: Upper Envelope (Agent’s Perspective)

Action 1 

Action 2 

Action 3 

𝛼𝑅𝑖 − 𝑐𝑖

agent



∅

Contract 𝛼

Agent’s 
utility

𝛼𝑅𝑖 − 𝑐𝑖

∅ Action 1 Action 2 Action 3 

Tool: Upper Envelope (Agent’s Perspective)



∅ Action 1 

Contract 𝛼

Principal’s 
utility

1 − 𝛼 𝑅𝑖

Action 2 Action 3 

Easy observation: Optimal linear contract occurs at critical 𝛼 

Tool: Upper Envelope (Principal’s Perspective)

principal



Rest of the Talk

• Part 1: The Fundamentals
• The principal-agent model

• Optimal contracts

• Linear contracts

• Part 2: Combinatorial Contracts
• Multiple actions [Duetting Ezra Feldman Kesselheim FOCS’21] [Duetting Feldman Gal-Tzur 

SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman Schlesinger ITCS’24]

• Multiple agents [Babaioff Feldman Nisan EC’12] [Duetting Ezra Feldman & Kesselheim STOC’23]

• Combined problem [Duetting Ezra Feldman Kesselheim 2024]



Sources of Complexity in Contract Design

Multiple agents

[Babaioff Feldman Nisan Winter ‘12 (EC’12)] 
[Duetting Ezra Feldman & Kesselheim STOC’23] [Ezra 
Feldman Schlesinger ITCS’24]

Multiple actions

[Duetting Ezra Feldman & Kesselheim FOCS’21] 
[Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo 
Vuong et al. SODA’24], [Ezra Feldman Schlesinger 
ITCS’24]



Single Agent, Many Actions [DEFK’21]

• 𝑛 actions 𝐴 =  {1, … , 𝑛}, agent chooses a set 𝑆

• c i ≥ 0: cost of action 𝑖
• c 𝑆 = σ𝑖 ∈ 𝑆 𝑐(𝑖)   [additive cost]

• Binary outcome: {0,1} (reward 1 for success)

• 𝑓: 2𝐴 → 0,1  success probability function
• 𝑓 𝑆 : success probability for actions 𝑆 ⊆ 𝐴

• Not necessarily additive

Unit 
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS



Single Agent, Many Actions [DEFK’21]

• 𝑛 actions 𝐴 =  {1, … , 𝑛}, agent chooses a set 𝑆

• c i ≥ 0: cost of action 𝑖
• c 𝑆 = σ𝑖 ∈ 𝑆 𝑐(𝑖)   [additive cost]

• Binary outcome: {0,1} (reward 1 for success)

• 𝑓: 2𝐴 → 0,1  success probability function

Submodular: for every 𝑆 ⊆ 𝑇, 𝑗 ∉ 𝑇,  𝑓 𝑗 𝑆 ≥ 𝑓(𝑗 ∣ 𝑇)
[decreasing marginal value]

Subadditive: for every 𝑆, 𝑇,   𝑓 𝑆 + 𝑓(𝑇) ≥ 𝑓(𝑆 ∪ 𝑇)

Unit 
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Single Agent, Many Actions [DEFK’21]

• 𝑛 actions 𝐴 =  {1, … , 𝑛}, agent chooses a set 𝑆

• c i ≥ 0: cost of action 𝑖
• c 𝑆 = σ𝑖 ∈ 𝑆 𝑐(𝑖)   [additive cost]

• Binary outcome: {0,1} (reward 1 for success)

• 𝑓: 2𝐴 → 0,1  success probability function

Demand set 𝐷 𝑓, 𝑝 : a set 𝑆 maximizing 𝑓 𝑆 − σ𝑖∈𝑆 𝑝𝑖

Gross substitutes: Suppose 𝑞 ≥ 𝑝. Then, for every 
𝑖 ∈ 𝐷 𝑓, 𝑝  s.t. 𝑝𝑖 = 𝑞𝑖, it holds that 𝑖 ∈ 𝐷(𝑓, 𝑞)  

Unit 
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS



Optimization Problem Unit 
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Optimal Contract Problem: 
Find 𝛼 that maximizes (1 − 𝛼)𝑓(𝑆𝛼) [principal’s utility]

where 𝑆𝛼 maximizes α𝑓 𝑆 − 𝑐(𝑆)  [agent’s utility]

• 𝑛 actions 𝐴 =  {1, … , 𝑛}, agent chooses a set 𝑆

• c i ≥ 0: cost of action 𝑖
• c 𝑆 = σ𝑖 ∈ 𝑆 𝑐(𝑖)   [additive cost]

• Binary outcome: {0,1} (reward 1 for success)

• 𝑓: 2𝐴 → 0,1  success probability function

Value Oracle: Receives 𝑆, returns 𝑓 𝑆 .



Oracle Access Unit 
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Optimal Contract Problem: 
Find 𝛼 that maximizes (1 − 𝛼)𝑓(𝑆𝛼) [principal’s utility]

where 𝑆𝛼 maximizes α𝑓 𝑆 − 𝑐(𝑆)  [agent’s utility]

Value Oracle: Receives 𝑆, returns 𝑓 𝑆 .

Demand Oracle: Given “prices” 𝑝1, … , 𝑝𝑛, return sets 𝑆 
maximizing 𝑓 𝑆 − Σ𝑖∈𝑆𝑝𝑖.



Main Results

Theorem [Duetting Ezra Feldman Kesselheim’21]:

• A polynomial-time algorithm for gross substitutes functions           
(with value oracle access to 𝑓)

• For submodular functions (i.e., decreasing marginal value), 
it is NP-hard to compute the optimal contract

Gross substitutes constitutes a frontier, similar to:

• Welfare maximization tractability in combinatorial auctions [Nisan Segal 2006]

• Market equilibrium existence [Kelso Crawford 1982, Gul Stacchetti 1999]



{ 1, 2, 3}∅ { 1} { 1, 2} { 1, 2, 3}

Contract 𝛼

{ 1, 2}
{ 1, 3}
{1 }
{ 2, 3}
{2 }
{3 }

∅

Upper-Envelope Approach

Agent’s 
utility

𝛼𝑓 𝑆 − 𝑐(𝑆)

[Figure is for additive 𝑓]



Upper-Envelope Approach

Agent’s 
utility

𝛼𝑓 𝑆 − 𝑐(𝑆)

[Figure is for gross substitutes 𝑓]



Idea for an Algorithm

• Recall: Can restrict attention to set of critical 𝛼’s

     (i.e., transition points of agent’s best response)

• Naïve algorithm: Go over all critical 𝛼’s and take the best; requires:

• computing agent’s best response 

• computing next critical 𝛼

• an upper bound on number of critical 𝛼′s

Theorem: For gross substitutes 𝑓, this yields a polynomial-time algorithm.  



The agent’s problem: given 𝛼,

find 𝑆 that maximizes α𝑓 𝑆 − 𝑐(𝑆)

  ⇔ 

find 𝑆 that maximizes 𝑓 𝑆 −
1

𝛼
𝑐(𝑆)

Demand set at

“prices” 𝑐/𝛼   

(in markets for goods) 

Step 0: The Agent’s Best Response Problem



The agent’s problem: given 𝛼,

find 𝑆 that maximizes α𝑓 𝑆 − 𝑐(𝑆)

  ⇔ 

find 𝑆 that maximizes 𝑓 𝑆 −
1

𝛼
𝑐(𝑆)

Step 0: The Agent’s Best Response Problem

• Demand set 𝐷 𝑓, 𝑝 : a set 𝑆 maximizing utility u S = 𝑓 𝑆 − σ𝑗∈𝑆 𝑝𝑗

• Key property of gross substitutes:

• GREEDY algorithm solves the demand set problem (add element with 
maximal marginal utility)    [e.g., Paes Leme 2017]



Step 1: Next Critical 𝛼

• Fixing tie-breaking, we get an ordered demand set 𝑆𝛼 = (𝑎1, 𝑎2, … , 𝑎𝑑)

• Let 𝑆𝛼 = (𝑎1, 𝑎2, … , 𝑎𝑑) and 𝑆𝛼′ be respective demand sets of 𝛼, 𝛼′

• Either: 𝑆𝛼 𝑖 ≠ 𝑆𝛼′ 𝑖  for some 𝑖 ≤ 𝑑, or |𝑆𝛼′| > 𝑑

• Suffices to consider poly-many potential values for 𝛼′ (for each action 
and index), and take the smallest one that is larger than 𝛼

𝛼 𝛼′

𝑆𝛼 𝑆𝛼′



Potential argument:

• Reorder actions: 𝑐 𝑎1 < ⋯ < 𝑐 𝑎𝑛

• Define 𝜙 𝑎𝑖 = 𝑖, 𝜙 𝑆 = σ𝑎∈𝑆 𝜙(𝑎)

• 𝜙 is an integer ≤ 𝑛(𝑛 + 1)/2, which 
increases at every critical 𝛼

• Conclusion: 𝑂(𝑛2) critical points for GS

• (this is tight)

Step 2: Poly-Many Critical 𝛼’s

The agent’s problem: given 𝛼,

find 𝑆 that maximizes α𝑓 𝑆 − 𝑐(𝑆)

  ⇔ 

find 𝑆 that maximizes 𝑓 𝑆 −
1

𝛼
𝑐(𝑆)

Key Lemma: at each critical point:
• an action is added to 𝑆, or
• an action from 𝑆 is replaced by one with 

higher cost 
(obtained by perturbing cost, so that GREEDY has at 
most one tie-breaking)

Agent’s 
utility

𝛼𝑓(𝑆) − 𝑐𝑆



Beyond Gross Substitutes Unit 
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Submodular: 𝑓 𝑖 𝑆 ≥ 𝑓(𝑖 ∣ 𝑇) for 𝑆 ⊆ 𝑇, 𝑗 ∉ 𝑇 
(decreasing marginal value)

XOS: maximum over additive 
(aka: fractionally subadditive)

Subadditive: 𝑓 𝑆 + 𝑓(𝑇) ≥ 𝑓(𝑆 ∪ 𝑇)



Beyond Gross Substitutes

Inapproximability results [Ezra F Schlesinger’24]: 

• No constant-approximation for submodular 
rewards with value queries (assuming P ≠ NP)

• No better than Ω(√𝑛) approximation for XOS 
rewards with value queries (assuming P ≠ NP)

With demand oracle access (given action “prices” 
𝑝1, … , 𝑝𝑛, return 𝑆 maximizing 𝑓 𝑆 − σ𝑖∈𝑆 𝑝𝑖):

• FPTAS for any 𝑓 [Duetting Ezra F Kesselheim ‘24]

• But not OPT [Duetting F Gal-Tzur Rubinstein ‘24]

Unit 
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS



Beyond Complement-Free

• Recall Naïve algorithm: Go over all critical 𝛼’s and take the best; 
requires:
• computing agent’s best response 

• computing next critical 𝛼

• an upper bound on number of critical 𝛼′s

Theorem: For supermodular 𝑓, this yields a polynomial-time algorithm.  



• Theorem [DFG’24]: For every 𝑓, 𝑐, a demand oracle (i.e., agent’s BR) is 
sufficient for enumerating all critical values

• Algorithm: For a segment [𝛼, 𝛽], use the oracle to get 𝑆𝛼 and 𝑆𝛽.
• If 𝑆𝛼 = 𝑆𝛽: the utility is linear in [𝛼, 𝛽]

• Otherwise, query again at 𝛾 =
𝑐(𝑆𝛼)−𝑐(𝑆𝛽)

𝑓(𝑆𝛼)−𝑓(𝑆𝛽)

• If 𝑆𝛾 = 𝑆𝛽: the utility is linear in [𝛼,𝛾) and in [𝛾,𝛽]

• Otherwise, there are more than 2 linear pieces;
solve recursively for [𝛼,𝛾] and [𝛾,𝛽]

• Proof: by induction on the number of critical values in the segment

• Upshot: For every monotone 𝑓, 𝑐, a demand oracle and poly-many 
critical values are sufficient to find the optimal contract 

𝑆𝛼

𝑆𝛽

𝛾

𝑆𝛾

Enumerating all Critical Values



The Agent’s Best Response Problem

• Agent’s utility function: uA 𝛼, 𝑆 = 𝛼𝑓(𝑆) − 𝑐(𝑆)

• If 𝑓 is supermodular, then uA 𝛼,⋅  is supermodular

• Maximizing uA 𝛼,⋅  is equivalent to minimizing −uA 𝛼,⋅  , which is 
submodular: known to admit a poly-time algorithm

• Note: this argument holds even if 𝑐 is submodular



Poly-Many Critical 𝛼’s



Multipe Actions: Overview

Dutting et al. 2021: Dutting Ezra Feldman Kesselheim. Combinatorial Contracts. FOCS’21
Dutting et al. 2024a: Dutting Ezra Feldman Kesselheim. Multi-Agent Combinatorial Contracts. Working paper
Dutting et al. 2024b: Dutting Feldman Gal-Tzur. Combinatorial Contracts Beyond Gross Substitutes. SODA’24 

Dutting et. al 2024c: Dutting Feldman Gal-Tzur Robinstein. The Query Complexity of Contracts. Working paper
Deo-Campo Vuong et al. 2024: D.-C. Vuong Dughmi Patel Prasad. On Supermpodular Contracts. SODA’24
Ezra. et al. 2024: Ezra Feldman Schlesinger. The (In)Approximability of Combinatorial Contracts. ITCS’24



• Key take-aways: 

• Gross substitutes is a “frontier of tractability” for combinatorial contracts

• Interesting connection to combinatorial auctions

• Open problems: 

• Tight bounds for submodular, XOS, and subadditive with value queries?

• Beyond binary outcome?

Multiple Actions: Summary



Sources of Complexity in Contract Design

Multiple agents

[Babaioff Feldman Nisan EC’12] [Duetting Ezra 
Feldman & Kesselheim STOC’23] [Ezra Feldman 
Schlesinger ITCS’24]

Combinatorial actions

[Duetting Ezra Feldman & Kesselheim FOCS’21] 
[Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo 
Vuong et al. SODA’24], [Ezra Feldman Schlesinger 
ITCS’24]



Combinatorial Agency Model

• 𝑛 agents

• Binary action: 𝐴𝑖 = 0,1  

   (0: no effort, 1: effort)

• Cost 𝑐𝑖: cost of effort (no effort = no cost)

• Binary outcome: {0,1} 

• Reward 1 for success, 0 for failure 

• Success probability function 𝑓: {0,1}𝑛→ 0,1

[Babaioff Feldman Nisan 2006, DEFK’23]



Contracts and Objective

• Optimal (=linear) contract: 𝛼 = 𝛼1, … , 𝛼𝑛   
• 𝛼𝑖 ≥ 0: payment to agent 𝑖 for success

• Agent’s perspective: Agent 𝑖 prefers to exert effort (in equilibrium) iff

                         𝛼𝑖𝑓 𝑆  − 𝑐𝑖  ≥  𝛼𝑖𝑓 𝑆 − 𝑖     

agent 𝑖’s utility 
under effort

agent 𝑖’s utility 
under no effort



Contracts and Objective

• Optimal (=linear) contract: 𝛼 = 𝛼1, … , 𝛼𝑛   
• 𝛼𝑖 ≥ 0: payment to agent 𝑖 for success

• Agent’s perspective: Agent 𝑖 prefers to exert effort (in equilibrium) iff

                         𝛼𝑖𝑓 𝑆  − 𝑐𝑖  ≥  𝛼𝑖𝑓 𝑆 − 𝑖     

 ⇒  𝛼𝑖=
𝑐𝑖

𝑓 𝑖 𝑆−{𝑖})
    is the best way to incentivize agent 𝑖

“margin” of 𝑖 w.r.t. S: 
𝑓 𝑖 𝑆 − 𝑖)
= 𝑓 𝑆 − 𝑓 𝑆 − 𝑖



Contracts and Objective

• Optimal (=linear) contract: 𝛼 = 𝛼1, … , 𝛼𝑛   
• 𝛼𝑖 ≥ 0: payment to agent 𝑖 for success

• Agent’s perspective: Agent 𝑖 prefers to exert effort (in equilibrium) iff

                         𝛼𝑖𝑓 𝑆  − 𝑐𝑖  ≥  𝛼𝑖𝑓 𝑆 − 𝑖     

 ⇒  𝛼𝑖=
𝑐𝑖

𝑓 𝑖 𝑆−{𝑖})
    is the best way to incentivize agent 𝑖

• Principal’s perspective: Find the set of agents 𝑆 that maximizes

    𝑔 𝑆 = 𝑓 𝑆 (1 − σ𝑖 ∈𝑆
𝑐𝑖

𝑓 𝑖 𝑆−{𝑖})
)

• Problem: Compute optimal contract for submodular/XOS/subadditive 𝑓 

• Challenge: Even if 𝑓 is highly structured, 𝑔 may be highly non-structured



Contracts and Objective
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Submodular/XOS/Subadditive 𝑓 Unit 
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Submodular: 𝑓 𝑖 𝑆 ≥ 𝑓(𝑖 ∣ 𝑇) for 𝑆 ⊆ 𝑇, 𝑗 ∉ 𝑇 
(decreasing marginal value)

XOS: maximum over additive 
(aka: fractionally subadditive)

Subadditive: 𝑓 𝑆 + 𝑓(𝑇) ≥ 𝑓(𝑆 ∪ 𝑇)



Coverage Function (submodular)

Agent Blue

Agent Red

Agent Green

𝑓(set of agents)  = 
      # tasks covered by these agents

e.g.: 
𝑓  =  2

𝑓  )  =  1

agents tasks



Agent Blue

Agent Red

Agent Green

𝑔 𝑆 = 𝑓 𝑆 (1 − ෍

𝑖 ∈𝑆

𝑐𝑖

𝑓 𝑖 𝑆 − {𝑖})
)

Principal’s objective:

Total # tasks 
covered by 𝑆

# tasks covered 
uniquely by agent 𝑖

Coverage Function (submodular)
agents tasks



Agent Blue

Agent Red

Agent Green

𝑔 𝑆 = 𝑓 𝑆 (1 − ෍

𝑖 ∈𝑆

𝑐𝑖

𝑓 𝑖 𝑆 − {𝑖})
)

Principal’s objective:

Total # tasks 
covered by 𝑆

# tasks covered 
uniquely by agent 𝑖

Coverage Function (submodular)
agents tasks

Unique coverage is hard to approximate within 
a constant factor [Demaine Feige Hajiaghayi 
Salavatipour 2006]



(+) There is a poly-time algorithm for finding a constant-approximation 
contract for submodular 𝑓, using value oracle, and for XOS 𝑓, using value 
and demand oracles [DEFK’23]

• For additive 𝑓, it is NP-hard to find the optimal contract, but there is a an 
FPTAS

• No better than Ω(√𝑛)-approximation for subadditive 𝑓 (even for 𝑓 constant 
close to submodular)

Main Results
 

(-) No better than constant-approximation, even for submodular 𝑓, 
and even with both value and demand oracles [DEFK’23, DEFK’24]
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Proof Sketch: constant approximation for XOS

𝑝𝑖

𝑐𝑖 Let 𝑇 be the demand set under 

prices 𝑝𝑖 =
1

2
𝑐𝑖𝑓 𝑆∗

Lemma 1: 𝑓 𝑇 ≥
1

2
𝑓 𝑆∗

By definition: 𝑓 𝑖 𝑇 − {𝑖} ≥ 𝑝𝑖 =
1

2
𝑐𝑖𝑓 𝑆∗

Lemma 2: For every set 𝑈, if 𝑓 𝑖 𝑈 − {i} ≥ 2𝑐𝑖𝑓(𝑈) ∀𝑖 ∈ 𝑈, then 𝑔 𝑈 ≥
1

2
𝑓 𝑈

we want:  
1

2
𝑐𝑖𝑓 𝑆∗ ≥ 2𝑐𝑖𝑓 𝑇

so that:⇒
𝑔 𝑇 ≥

1

2
𝑓 𝑇 ≥

1

4
𝑓 𝑆∗ ≥

1

4
𝑔 𝑆∗

Problem: 𝑓 𝑇  may be too large

Idea: remove agents from 𝑇 until inequality is satisfied

Problem: marginals may decrease (unlike submodular)

Theorem [scaling property of XOS]: for every set 𝑇 and every Ψ < 𝑓(𝑇), can compute a set 𝑈 ⊆ 𝑇 such that  
1

2
Ψ ≤ 𝑓 𝑈 ≤ Ψ    and   𝑓 𝑖 𝑈 − {𝑖} ≥

1

2
𝑓 𝑖 𝑇 − {𝑖}

Setting Ψ =
1

32
𝑓(𝑆∗) now gives 𝑓 𝑖 𝑈 − {i} ≥

1

4
𝑐𝑖𝑓 𝑆∗ ≥ 2𝑐𝑖𝑓(𝑈),  yielding:

Goal: Find a set 𝑈 satisfying 𝑔 𝑈 ≥ const ⋅ 𝑔(𝑆∗)

𝑔 𝑈 ≥
1

2
𝑓 𝑈 ≥ const ⋅ 𝑓 𝑆∗ ≥ const ⋅ 𝑔 𝑆∗



Multiple Agents: Overview

Dutting et al. 2023a: Dutting Ezra Feldman Kesselheim. Multi-Agent Contracts. FOCS’21
Dutting et al. 2024a: Dutting Ezra Feldman Kesselheim. Multi-Agent Combinatorial Contracts. Working paper

Deo-Campo Vuong et al. 2024: D.-C. Vuong Dughmi Patel Prasad. On Supermpodular Contracts. SODA’24
Ezra. et al. 2024: Ezra Feldman Schlesinger. The (In)Approximability of Combinatorial Contracts. ITCS’24



• Key take-aways: 

• Submodular as a frontier for poly-time constant-factor approximation

• Non-standard use of prices & demand queries

• New scaling property of XOS functions, that may be of independent interest

• Open problems: 

• Gap between upper and lower bounds for GS

• One of the few problems that is hard for GS

• Does it admit an (F)PTAS?

• Beyond binary outcome?

Multiple Agents: Summary



Multiple agents, each of which takes a set of actions [Duetting Ezra Feldman Kesselheim’24]: 

Provably very different from either of the special cases

• Constraints on the 𝛼𝑖’s incentivizing 𝑆 are 2-directional ⇒ No simple formula for the 𝛼𝑖’s 

• Equilibrium existence is non-trivial (requires potential function argument)

• Not all sets can be incentivized

• For submodular 𝑓 , if others do less, it might be beneficial to do less

• …

New: Multiple Agents & Multiple Actions

Main result (-): No PTAS for submodular, with value and demand queries

Main result (+): Poly-time O(1)-approximation for submodular with 
value and demand queries 

Results require very different tools than ones used in previous special cases



• Contract theory is a new frontier in AGT

• Complexity and approximation shed new light on 
contract design

• Interesting connections to combinatorial auctions 
and other combinatorial optimization problems

• E.g., gross substitutes as tractability frontier

• E.g., submodular as frontier for approximation

• Many fundamental problems still open

Main Take Aways

Thank You!



Resources

• EC’19 & STOC’22 Tutorials (Duetting and Talgam-Cohen]

• Forthcoming (FnTTCS): Algorithmic Contract Theory: 
A Survey (Duetting Feldman Talgam-Cohen)



24th Max Planck Advanced Course
on the Foundations of Computer Science

26 - 30 August 2024, Saarbrücken, Germany

Algorithmic Game Theory

Paul Duetting
Google Research, Zurich

Prophet Inequalities

Michal Feldman
Tel-Aviv University

Algorithmic Contract Theory

Elias Koutsoupias
University of Oxford

Mechanism Design

Bernhard von Stengel
London School of Economics and 
Political Science (LSE)

Equilibrium Computation in 
Games

Early registration deadline: July 31, 2024
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