CONTRACT

Algorithmic Contract Design

Michal Feldman Tel Aviv University

MPI Summer School August 26, 2024 Saarbrücken, Germany

Example: Sponsored Content

- You want to pay an influencer to run a social media campaign
- Running a campaign requires effort
- You are buying a costly service with uncertain outcome (# views, etc.)

What/how should you pay the influencer for their effort?

Contract Design

One of the pillars of microeconomic theory [Ross'73, Holmström'79]

"The 2016 Nobel Prize in Economics was awarded Monday to Oliver Hart and Bengt Holmström for their work in contract theory — developing a framework to understand agreements like insurance contracts, employer-employee relationships and property rights."

- As markets for services move online, they grow in scale and complexity (freelance services, legal services, marketing services, etc.)
- An algorithmic / computational approach is timely and relevant

Algorithms and Incentives

Algorithmic Contract Design: an Emerging Frontier

- Simple vs optimal contracts: [Carroll AER'15], [Duetting Roughgarden & Talgam-Cohen EC'19], [Alon Duetting Li Talgam-Cohen EC'23]
- Combinatorial contracts: [Babaioff Feldman Nisan Winter '12 (EC'06)], [Lavi & Shamash EC'19], [Duetting Roughgarden & Talgam-Cohen SODA'20], [Duetting Ezra Feldman & Kesselheim FOCS'21], [Alon Lavi Shamash & Talgam-Cohen EC'21], [Duetting Ezra Feldman & Kesselheim STOC'23], [Castiglioni et al. EC'23], [Duetting Feldman & Gal-Tzur SODA'24], [Deo-Campo Vuong et al. SODA'24], [Ezra Feldman Schlesinger ITCS'24], [Cacciamani et al. EC'24]
- Learning contracts: [Ho Slivkins & Vaughn EC'14], [Cohen Deligkas & Koren SAGT'22], [Zhu et al. EC'23], [Duetting Guruganesh Schneider & Wang ICML'23], [Chen et al. EC'24]
- Typed contracts: [Guruganesh Schneider & Wang EC'21], [Alon Duetting & Talgam-Cohen EC'21], [Castiglioni et al. EC '21], [Castiglioni et al. EC '22], [Guruganesh Schneider & Wang EC'23]
- Contract design for social good: [Li Immorlica & Lucier WINE'21], [Ashlagi Li & Lo Management Science'23]
- Ambiguous contracts: [Duetting Feldman Peretz Samuelson EC'23]

The Algorithmic/Computational Lens

- The algorithmic lens has been traditionally useful
 - Reveals structure
 - Identifies tractability frontier
 - Informs the design of simple mechanisms
- Many examples in Algorithmic Mechanism Design
 - E.g., greedy algorithms, substitutes as a frontier of tractability, submodularity as simplicity frontier, hardness of NE, ...

Plan for this Talk

• Part 1: The Fundamentals

- The principal-agent model
- Optimal contracts
- Linear contracts
- Part 2: Combinatorial Contracts
 - Multiple actions [Duetting Ezra Feldman Kesselheim FOCS'21] [Duetting Feldman Gal-Tzur SODA'24], [Deo-Campo Vuong et al. SODA'24], [Ezra Feldman Schlesinger ITCS'24]
 - Multiple agents [Babaioff Feldman Nisan Winter '12 (EC'06)] [Duetting Ezra Feldman & Kesselheim STOC'23]
 - Combined problem [Duetting Ezra Feldman Kesselheim 2024]

Defining features: hidden action, stochastic outcome, limited liability

Timing and Objective

Objective: maximize the expected utility of the principal

Example

	Ci	$r_{0} = 0$	$r_1 = 2$	$r_2 = 2$	R _i
Action 0	0	1	0	0	0
Action 1	1⁄4	1/2	1/2	0	1
Action 2	1⁄4	1/2	0	1/2	1
Action 3	1	0	1/2	1/2	2

Optimal contract:

- Incentivize action 1
- Contract: t = (0, 0.5, 0)
- Expected payment: $T_1 = 0.25$
- Expected principal's utility = $R_1 T_1 = 1 0.25 = 0.75$

Incentivizing action 3:

- Incentivize action 3
- Contract: t = (0, 1.5, 1.5)
- Expected payment: $T_3 = 1.5$
- Expected principal's utility = $R_3 T_3 = 2 1.5 = 0.5$

Example

Example 2.1 (A simple principal-agent setting). Consider a principal-agent setting with three actions i = 1, 2, 3 with costs, rewards, and probabilities as specified in the following table:

	$r_1 = 0$	$r_2 = 1$	$r_3 = 7$	cost
action 1:	1	0	0	$c_1 = 0$
action 2:	0	1/2	1/2	$c_2 = 1$
action 3:	0	1/6	$\frac{5}{6}$	$c_3 = 2$

The expected rewards corresponding to the three actions are $R_1 = 0$, $R_2 = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 7 = 4$, and $R_3 = \frac{1}{6} \cdot 1 + \frac{5}{6} \cdot 7 = 6$. Their expected welfares are $W_1 = R_1 - c_1 = 0$, $W_2 = R_2 - c_2 = 4 - 1 = 3$ and $W_3 = R_3 - c_3 = 6 - 2 = 4$. Consider the contract $\mathbf{t} = (0, 1, 3)$. The expected payment for action 1 under this contract is $T_1 = 0$, for action 2 it is $T_2 = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 3 = 2$, and for action 3 it is $T_3 = \frac{1}{6} \cdot 1 + \frac{5}{6} \cdot 3 = \frac{8}{3}$. The agent's expected utility is therefore maximized by action 2, which yields an expected utility of $T_2 - c_2 = 2 - 1 = 1$, compared to an expected utility of $T_1 - c_1 = 0$ for action 1 and an expected utility of $T_3 - c_3 = \frac{8}{3} - 2 = \frac{2}{3}$ for action 3. The principal's expected utility under this contract is $R_2 - T_2 = 4 - 2 = 2$.

Key Results: Optimal Contracts

Theorem (folklore): Optimal contract can be computed in poly(n, m) time through linear programming.

<u>MIN-PAY problem</u> Input: Contract setting (f, c, r); an action *i* Output: Minimum T_i that incentivizes action *i*

Observations:

- LP solvable
- Optimal contract solvable via
 n MIN-PAY problems

 $\min T_i$ $\text{s.t. } T_i - c_i \ge T_{i'} - c_{i'} \ \forall i' \neq i \ (\text{IC})$

Key Results: Optimal Contracts

Theorem (folklore): Optimal contract can be computed in poly(n, m) time through linear programming.

But optimal contracts have been criticized:

- As solutions to LPs they are opaque, and lack structure
- They may be non-monotone

Important exception: With only two outcomes "success" and "failure", Linear (comission-based) contracts that set $t_j = \alpha \cdot r_j$ for all $j \in [m]$ are optimal

Example of Non-Monotonicity

Example 3.1 (Non-monotone optimal contract). Consider the principal-agent setting depicted in the following table:

	$r_1 = 0$	$r_{2} = 3$	$r_3 = 9$	$r_4 = 12$	cost
action 1	1	0	0	0	$c_1 = 0$
action 2:	0	$^{1/3}$	0	$^{2/3}$	$c_2 = 1$
action 3:	0	0	1/3	2/3	$c_3 = 2$

In this setting the unique optimal contract for action $i \in \{1, 2, 3\}$ pays just enough for outcome i to cover the action's cost and nothing for the other two outcomes. The optimal contract is the best contract for incentivizing action 3, which is $\mathbf{t} = (0, 0, 6, 0)$. This contract is non-monotone as $r_3 < r_4$ but $t_3 > t_4$. In this example the non-monotonicity is caused by the fact that outcome 4 — the one with the highest reward — doesn't help differentiate between the two actions, and so it doesn't make sense for the principal to pay for that outcome.

Key Results: Linear Contracts

Theorem [Duetting Roughgarden Talgam-Cohen'19]: Linear contracts achieve a $\Theta(n)$ approximation to optimal contracts.

Theorem [Duetting Roughgarden Talgam-Cohen'19]: Linear contracts are max-min optimal when only the expected rewards of the actions are known.

- Provides easy to interpret, "robust optimization"-style analogue of [Carroll'15]
- In [Carroll'15] principal knows subset of actions, actual actions can be any superset

Tool: Upper Envelope (Agent's Perspective)

Tool: Upper Envelope (Agent's Perspective)

Tool: Upper Envelope (Principal's Perspective)

Rest of the Talk

- Part 1: The Fundamentals
 - The principal-agent model
 - Optimal contracts
 - Linear contracts

• Part 2: Combinatorial Contracts

- Multiple actions [Duetting Ezra Feldman Kesselheim FOCS'21] [Duetting Feldman Gal-Tzur SODA'24], [Deo-Campo Vuong et al. SODA'24], [Ezra Feldman Schlesinger ITCS'24]
- Multiple agents [Babaioff Feldman Nisan EC'12] [Duetting Ezra Feldman & Kesselheim STOC'23]
- Combined problem [Duetting Ezra Feldman Kesselheim 2024]

Sources of Complexity in Contract Design

Multiple actions

[Duetting Ezra Feldman & Kesselheim FOCS'21] [Duetting Feldman & Gal-Tzur SODA'24], [Deo-Campo Vuong et al. SODA'24], [Ezra Feldman Schlesinger ITCS'24]

Multiple agents

[Babaioff Feldman Nisan Winter '12 (EC'12)] [Duetting Ezra Feldman & Kesselheim STOC'23] [Ezra Feldman Schlesinger ITCS'24]

Single Agent, Many Actions [DEFK'21]

- n actions $A = \{1, ..., n\}$, agent chooses a set S
- $c(i) \ge 0$: cost of action *i* • $c(S) = \sum_{i \in S} c(i)$ [additive cost]
- Binary outcome: {0,1} (reward 1 for success)
- $f: 2^A \rightarrow [0,1]$ success probability function
 - f(S): success probability for actions $S \subseteq A$
 - Not necessarily additive

Single Agent, Many Actions [DEFK'21]

- n actions $A = \{1, ..., n\}$, agent chooses a set S
- $c(i) \ge 0$: cost of action *i* • $c(S) = \sum_{i \in S} c(i)$ [additive cost]
- Binary outcome: {0,1} (reward 1 for success)
- $f: 2^A \rightarrow [0,1]$ success probability function

Submodular: for every $S \subseteq T, j \notin T$, $f(j \mid S) \ge f(j \mid T)$ [decreasing marginal value]

Subadditive: for every $S, T, f(S) + f(T) \ge f(S \cup T)$

Single Agent, Many Actions [DEFK'21]

- n actions $A = \{1, ..., n\}$, agent chooses a set S
- $c(i) \ge 0$: cost of action *i* • $c(S) = \sum_{i \in S} c(i)$ [additive cost]
- Binary outcome: {0,1} (reward 1 for success)
- $f: 2^A \rightarrow [0,1]$ success probability function

Demand set D(f, p): a set S maximizing $f(S) - \sum_{i \in S} p_i$

Gross substitutes: Suppose $q \ge p$. Then, for every $i \in D(f, p)$ s.t. $p_i = q_i$, it holds that $i \in D(f, q)$

Optimization Problem

• n actions $A = \{1, ..., n\}$, agent chooses a set S

- $c(i) \ge 0$: cost of action *i* • $c(S) = \sum_{i \in S} c(i)$ [additive cost]
- Binary outcome: {0,1} (reward 1 for success)
- $f: 2^A \rightarrow [0,1]$ success probability function

Optimal Contract Problem:

Find α that maximizes $(1 - \alpha)f(S_{\alpha})$ [principal's utility] where S_{α} maximizes $\alpha f(S) - c(S)$ [agent's utility]

Value Oracle: Receives S, returns f(S).

Oracle Access

Optimal Contract Problem:

Find α that maximizes $(1 - \alpha)f(S_{\alpha})$ [principal's utility] where S_{α} maximizes $\alpha f(S) - c(S)$ [agent's utility]

Value Oracle: Receives S, returns f(S).

Demand Oracle: Given "prices" $p_1, ..., p_n$, return sets *S* maximizing $f(S) - \sum_{i \in S} p_i$.

Main Results

Theorem [Duetting Ezra Feldman Kesselheim'21]:

- A polynomial-time algorithm for gross substitutes functions (with value oracle access to *f*)
- For submodular functions (i.e., decreasing marginal value), it is NP-hard to compute the optimal contract

Gross substitutes constitutes a frontier, similar to:

- Welfare maximization tractability in combinatorial auctions [Nisan Segal 2006]
- Market equilibrium existence [Kelso Crawford 1982, Gul Stacchetti 1999]

Upper-Envelope Approach

Upper-Envelope Approach

[Figure is for gross substitutes *f*]

Idea for an Algorithm

• **Recall:** Can restrict attention to set of critical α 's

(i.e., transition points of agent's best response)

- Naïve algorithm: Go over all critical α 's and take the best; requires:
 - computing agent's best response
 - computing next critical α
 - an upper bound on number of critical α 's

Theorem: For gross substitutes *f*, this yields a polynomial-time algorithm.

Step 0: The Agent's Best Response Problem

The agent's problem: given α , find S that maximizes $\alpha f(S) - c(S)$ \Leftrightarrow find S that maximizes $f(S) - \frac{1}{\alpha}c(S)$

Demand set at "prices" c/α (in markets for goods)

Step 0: The Agent's Best Response Problem

The agent's problem: given α , find S that maximizes $\alpha f(S) - c(S)$ \Leftrightarrow find S that maximizes $f(S) - \frac{1}{\alpha}c(S)$

- Demand set D(f, p): a set S maximizing utility $u(S) = f(S) \sum_{i \in S} p_i$
- Key property of gross substitutes:
 - GREEDY algorithm solves the demand set problem (add element with maximal marginal utility) [e.g., Paes Leme 2017]

Step 1: Next Critical α

- Fixing tie-breaking, we get an ordered demand set $S_{\alpha} = (a_1, a_2, ..., a_d)$
- Let $S_{\alpha} = (a_1, a_2, ..., a_d)$ and $S_{\alpha'}$ be respective demand sets of α, α'
- Either: $S_{\alpha}[i] \neq S_{\alpha'}[i]$ for some $i \leq d$, or $|S_{\alpha'}| > d$
- Suffices to consider poly-many potential values for α' (for each action and index), and take the smallest one that is larger than α

Step 2: Poly-Many Critical α 's

The agent's problem: given α ,

 \Leftrightarrow

find S that maximizes $\alpha f(S) - c(S)$

find S that maximizes $f(S) - \frac{1}{\alpha}c(S)$

Key Lemma: at each critical point:

- an action is added to *S*, or
- an action from *S* is replaced by one with higher cost

(obtained by perturbing cost, so that GREEDY has at most one tie-breaking)

Potential argument:

- Reorder actions: $c(a_1) < \cdots < c(a_n)$
- Define $\phi(a_i) = i, \phi(S) = \sum_{a \in S} \phi(a)$
- ϕ is an integer $\leq n(n+1)/2$, which increases at every critical α
- Conclusion: $O(n^2)$ critical points for GS
- (this is tight)

Beyond Gross Substitutes

Submodular: $f(i | S) \ge f(i | T)$ for $S \subseteq T, j \notin T$ (decreasing marginal value)

XOS: maximum over additive (aka: fractionally subadditive)

Subadditive: $f(S) + f(T) \ge f(S \cup T)$

Beyond Gross Substitutes

Inapproximability results [Ezra F Schlesinger'24]:

- No constant-approximation for submodular rewards with value queries (assuming P ≠ NP)
- No better than $\Omega(\sqrt{n})$ approximation for XOS rewards with value queries (assuming P \neq NP)

With demand oracle access (given action "prices" $p_1, ..., p_n$, return S maximizing $f(S) - \sum_{i \in S} p_i$):

- FPTAS for any *f* [Duetting Ezra F Kesselheim '24]
- But not OPT [Duetting F Gal-Tzur Rubinstein '24]

Beyond Complement-Free

- Recall Naïve algorithm: Go over all critical α's and take the best; requires:
 - computing agent's best response
 - computing next critical α
 - an upper bound on number of critical α 's

Theorem: For supermodular *f*, this yields a polynomial-time algorithm.

Enumerating all Critical Values

- Theorem [DFG'24]: For every *f*, *c*, a demand oracle (i.e., agent's BR) is sufficient for enumerating all critical values
- Algorithm: For a segment $[\alpha, \beta]$, use the oracle to get S_{α} and S_{β} .
 - If $S_{\alpha} = S_{\beta}$: the utility is linear in $[\alpha, \beta]$
 - Otherwise, query again at $\gamma = \frac{c(S_{\alpha}) c(S_{\beta})}{f(S_{\alpha}) f(S_{\beta})}$
 - If $S_{\gamma} = S_{\beta}$: the utility is linear in $[\alpha, \gamma)$ and in $[\gamma, \beta]$
 - Otherwise, there are more than 2 linear pieces; solve recursively for [α,γ] and [γ,β]

- Proof: by induction on the number of critical values in the segment
- Upshot: For every monotone *f*, *c*, a demand oracle and poly-many critical values are sufficient to find the optimal contract

The Agent's Best Response Problem

- Agent's utility function: $u_A(\alpha, S) = \alpha f(S) c(S)$
- If f is supermodular, then $u_A(\alpha, \cdot)$ is supermodular
- Maximizing $u_A(\alpha, \cdot)$ is equivalent to minimizing $-u_A(\alpha, \cdot)$, which is submodular: known to admit a poly-time algorithm
- Note: this argument holds even if c is submodular

Poly-Many Critical α 's

CLAIM 4.2. Let c be a monotone submodular cost function and f a monotone supermodular reward function, then for any two contracts $\alpha < \alpha'$ and two corresponding sets in the agent's demand S_{α} , $S_{\alpha'}$ it holds that $S_{\alpha} \subseteq S_{\alpha'}$.

Proof. If $S_{\alpha} = S_{\alpha'}$ the claim obviously hold. Otherwise, assume that $S_{\alpha'}$ is a maximal best-response for contract α' (this is in line with our tie-breaking assumption), and also that $S_{\alpha} \setminus S_{\alpha'} = R$ is such that $R \neq \emptyset$, we will show that a contradiction is reached. By the fact that S_{α} is optimal for α , it must be that

$$u_a(\alpha, R \mid S_\alpha \cap S_{\alpha'}) = u_a(\alpha, S_\alpha) - u_a(\alpha, S_\alpha \cap S_{\alpha'}) \ge 0$$

By the supermodularity of f and submodularity of c it holds that $f(R \mid S_{\alpha} \cap S_{\alpha'}) \leq f(R \mid S_{\alpha'})$ and $c(R \mid S_{\alpha} \cap S_{\alpha'}) \geq c(R \mid S_{\alpha'})$. Putting everything together we get

$$u(\alpha', R \mid S_{\alpha'}) = \alpha' f(R \mid S_{\alpha'}) - c(R \mid S_{\alpha'})$$

$$\geq \alpha' f(R \mid S_{\alpha} \cap S_{\alpha'}) - c(R \mid S_{\alpha} \cap S_{\alpha'})$$

$$\geq \alpha f(R \mid S_{\alpha} \cap S_{\alpha'}) - c(R \mid S_{\alpha} \cap S_{\alpha'})$$

$$= u(\alpha, R \mid S_{\alpha})$$

$$\geq 0,$$

where the second inequality follows from the monotonicity of f, which imply $f(R \mid S_{\alpha} \cap S_{\alpha'}) \ge 0$. Thus, we can add R to $S_{\alpha'}$ while not losing utility, contradicting its maximality. \Box

Multipe Actions: Overview

Multiple actions	Value Orac	le	Value and Demand Oracle		
	Lower bound	Upper bound	Lower bound	Upper bound	
	(pos)	(neg)	(pos)	(neg)	
Gross-	1	1	1	1	
$\mathbf{substitutes}$	Dütting et al. [2021]	L	1	1	
		No constant			
Submodular		approx FPTAS		> 1	
		(if $P \neq NP$)	11 1115	Dütting et al. [2024c]	
		Ezra et al. [2024a]			
XOS		No better			
		than $\Omega(n^{1/2})$	FPTAS	>1	
		$(if P \neq NP)$			
		Ezra et al. [2024a]			
Subadditive		No better	FPTAS		
		than $\Omega(n^{1/2})$	Dütting et al. [2021]	> 1	
			Dütting et al. [2024a]		
Super	1				
Super- modular	Dütting et al. [2024b]	1	1	1	
	Deo-Campo Vuong et al. [2024]				

Dutting et al. 2021: Dutting Ezra Feldman Kesselheim. Combinatorial Contracts. FOCS'21 Dutting et al. 2024a: Dutting Ezra Feldman Kesselheim. Multi-Agent Combinatorial Contracts. Working paper Dutting et al. 2024b: Dutting Feldman Gal-Tzur. Combinatorial Contracts Beyond Gross Substitutes. SODA'24 Dutting et. al 2024c: Dutting Feldman Gal-Tzur Robinstein. The Query Complexity of Contracts. Working paper Deo-Campo Vuong et al. 2024: D.-C. Vuong Dughmi Patel Prasad. On Supermpodular Contracts. SODA'24 Ezra. et al. 2024: Ezra Feldman Schlesinger. The (In)Approximability of Combinatorial Contracts. ITCS'24

• Key take-aways:

- Gross substitutes is a "frontier of tractability" for combinatorial contracts
- Interesting connection to combinatorial auctions

• Open problems:

- Tight bounds for submodular, XOS, and subadditive with value queries?
- Beyond binary outcome?

Sources of Complexity in Contract Design

Combinatorial actions

[Duetting Ezra Feldman & Kesselheim FOCS'21] [Duetting Feldman & Gal-Tzur SODA'24], [Deo-Campo Vuong et al. SODA'24], [Ezra Feldman Schlesinger ITCS'24]

Multiple agents

[Babaioff Feldman Nisan EC'12] [Duetting Ezra Feldman & Kesselheim STOC'23] [Ezra Feldman Schlesinger ITCS'24]

Combinatorial Agency Model

[Babaioff Feldman Nisan 2006, DEFK'23]

- *n* agents
- Binary action: A_i = {0,1}
 (0: no effort, 1: effort)
- Cost c_i: cost of effort (no effort = no cost)
- Binary outcome: {0,1}
- Reward 1 for success, 0 for failure
- Success probability function $f: \{0,1\}^n \rightarrow [0,1]$

- Optimal (=linear) contract: $\alpha = (\alpha_1, ..., \alpha_n)$
 - $\alpha_i \ge 0$: payment to agent *i* for success
- Agent's perspective: Agent *i* prefers to exert effort (in equilibrium) iff

$$\alpha_i f(S) - c_i \ge \alpha_i f(S - \{i\})$$

agent i's utilityagent i's utilityunder effortunder no effort

- Optimal (=linear) contract: $\alpha = (\alpha_1, ..., \alpha_n)$
 - $\alpha_i \ge 0$: payment to agent *i* for success
- Agent's perspective: Agent *i* prefers to exert effort (in equilibrium) iff

$$\alpha_i f(S) - c_i \ge \alpha_i f(S - \{i\})$$

 $\Rightarrow \alpha_i = \frac{c_i}{f(i \mid S - \{i\})}$ is the best way to incentivize agent *i*

"margin" of *i* w.r.t. S:

$$f(i | S - i)$$

$$= f(S) - f(S - i)$$

- Optimal (=linear) contract: $\alpha = (\alpha_1, ..., \alpha_n)$
 - $\alpha_i \ge 0$: payment to agent *i* for success
- Agent's perspective: Agent *i* prefers to exert effort (in equilibrium) iff

$$\alpha_i f(S) - c_i \ge \alpha_i f(S - \{i\})$$

 $\Rightarrow \alpha_i = \frac{c_i}{f(i \mid S - \{i\})}$ is the best way to incentivize agent *i*

• Principal's perspective: Find the set of agents S that maximizes

$$g(S) = f(S)(1 - \sum_{i \in S} \frac{c_i}{f(i \mid S - \{i\})})$$

- **Problem**: Compute optimal contract for submodular/XOS/subadditive f
- Challenge: Even if *f* is highly structured, *g* may be highly non-structured

Submodular/XOS/Subadditive f

Submodular: $f(i | S) \ge f(i | T)$ for $S \subseteq T, j \notin T$ (decreasing marginal value)

XOS: maximum over additive (aka: fractionally subadditive)

Subadditive: $f(S) + f(T) \ge f(S \cup T)$

Coverage Function (submodular)

f(set of agents) =
 # tasks covered by these agents

Coverage Function (submodular)

Principal's objective:

$$g(S) = f(S)(1 - \sum_{i \in S} \frac{c_i}{f(i | S - \{i\})})$$

Total # tasks covered by *S*

tasks covered
uniquely by agent i

Coverage Function (submodular)

Principal's objective:

covered by \boldsymbol{S}

uniquely by agent *i*

Unique coverage is hard to approximate within a constant factor [Demaine Feige Hajiaghayi Salavatipour 2006]

Main Results

(+) There is a poly-time algorithm for finding a constant-approximation contract for submodular *f*, using value oracle, and for XOS *f*, using value and demand oracles [DEFK'23]

(-) No better than constant-approximation, even for submodular *f*, and even with both value and demand oracles [DEFK'23, DEFK'24]

- For additive *f*, it is NP-hard to find the optimal contract, but there is a an FPTAS
- No better than $\Omega(\sqrt{n})$ -approximation for subadditive f (even for f constant close to submodular)

Proof Sketch: constant approximation for XOS

Goal: Find a set U satisfying $g(U) \ge \text{const} \cdot g(S^*)$

 $c_{i} \bigoplus_{p_{i}} \bigoplus_{i \in I} \bigoplus_{i \in I$

Problem: f(T) may be too large

Idea: remove agents from T until inequality is satisfied

Problem: marginals may decrease (unlike submodular)

Theorem [scaling property of XOS]: for every set T and every $\Psi < f(T)$, can compute a set $U \subseteq T$ such that

 $\frac{1}{2}\Psi \le f(U) \le \Psi \quad \text{and} \quad f(i \mid U - \{i\}) \ge \frac{1}{2}f(i \mid T - \{i\})$ Setting $\Psi = \frac{1}{32}f(S^*)$ now gives $f(i \mid U - \{i\}) \ge \frac{1}{4}\sqrt{c_i f(S^*)} \ge \sqrt{2c_i f(U)}$, yielding: $g(U) \ge \frac{1}{2}f(U) \ge \operatorname{const} \cdot f(S^*) \ge \operatorname{const} \cdot g(S^*)$

Multiple Agents: Overview

Multiple agents	Value Oracle		Value and Demand Oracle		
	Lower bound (pos)	Upper bound (neg)	Lower bound (pos)	Upper bound (neg)	
Additive	FPTAS Dütting et al. [2023a]	OPT is NP-hard	FPTAS	OPT is NP-hard Dütting et al. [2023a]	
Gross-	Constant	OPT is	Constant	OPT is	
$\mathbf{substitutes}$	approx	NP-hard	approx	NP-hard	
Submodular	Constant approx Dütting et al. [2023a]	No PTAS (if P≠NP) Ezra et al. [2024a]	Constant approx	No PTAS Dütting et al. [2024a]	
XOS		No better than $\Omega(n^{1/6})$ Ezra et al. [2024a]	Constant approx Dütting et al. [2023a]	NO PTAS Dütting et al. [2023a]	
Subadditive	O(n)-approx	No better than $\Omega(n^{1/6})$		No better than $\Omega(n^{1/2})$ Dütting et al. [2023a]	
Super- modular		No constant approx		No constant approx Deo-Campo Vuong et al. [2024]	

Dutting et al. 2023a: Dutting Ezra Feldman Kesselheim. Multi-Agent Contracts. FOCS'21 Dutting et al. 2024a: Dutting Ezra Feldman Kesselheim. Multi-Agent Combinatorial Contracts. Working paper

Deo-Campo Vuong et al. 2024: D.-C. Vuong Dughmi Patel Prasad. On Supermpodular Contracts. SODA'24 Ezra. et al. 2024: Ezra Feldman Schlesinger. The (In)Approximability of Combinatorial Contracts. ITCS'24

Multiple Agents: Summary

• Key take-aways:

- Submodular as a frontier for poly-time constant-factor approximation
- Non-standard use of prices & demand queries
- New scaling property of XOS functions, that may be of independent interest

• Open problems:

- Gap between upper and lower bounds for GS
 - One of the few problems that is hard for GS
 - Does it admit an (F)PTAS?
- Beyond binary outcome?

New: Multiple Agents & Multiple Actions

Multiple agents, each of which takes a set of actions [Duetting Ezra Feldman Kesselheim'24]: Provably very different from either of the special cases

- Constraints on the α_i 's incentivizing S are 2-directional \Rightarrow No simple formula for the α_i 's
- Equilibrium existence is non-trivial (requires potential function argument)
- Not all sets can be incentivized

• ...

• For submodular f, if others do less, it might be beneficial to do less

Main result (+): Poly-time O(1)-approximation for submodular with value and demand queries

Main result (-): No PTAS for submodular, with value and demand queries

Results require very different tools than ones used in previous special cases

Main Take Aways

- Contract theory is a new frontier in AGT
- Complexity and approximation shed new light on contract design
- Interesting connections to combinatorial auctions and other combinatorial optimization problems
 - E.g., gross substitutes as tractability frontier
 - E.g., submodular as frontier for approximation
- Many fundamental problems still open

Thank You!

Resources

- EC'19 & STOC'22 Tutorials (Duetting and Talgam-Cohen]
- Forthcoming (FnTTCS): Algorithmic Contract Theory: A Survey (Duetting Feldman Talgam-Cohen)

24th Max Planck Advanced Course on the Foundations of Computer Science

26 - 30 August 2024, Saarbrücken, Germany

max planck institut informatik

Algorithmic Game Theory

Paul Duetting

Google Research, Zurich
Prophet Inequalities

Elias Koutsoupias

University of Oxford

Mechanism Design

Michal Feldman

Tel-Aviv University

Algorithmic Contract Theory

Bernhard von Stengel

London School of Economics and Political Science (LSE)

Equilibrium Computation in Games

Early registration deadline: July 31, 2024