
Algorithmic
Contract Design

Michal Feldman

Tel Aviv University

MPI Summer School

August 26, 2024

Saarbrücken, Germany

Example: Sponsored Content

• You want to pay an influencer to run
a social media campaign

• Running a campaign requires effort
• You are buying a costly service with

uncertain outcome (# views, etc.)

 What/how should you pay the
 influencer for their effort?

Contract Design

One of the pillars of microeconomic theory
[Ross’73, Holmström’79]

“The 2016 Nobel Prize in Economics was awarded Monday to
Oliver Hart and Bengt Holmström for their work in contract
theory — developing a framework to understand agreements
like insurance contracts, employer-employee relationships
and property rights.”

HartHolmström

• As markets for services move online, they grow in scale and complexity
(freelance services, legal services, marketing services, etc.)

• An algorithmic / computational approach is timely and relevant

Algorithms and Incentives

[Nisan Ronen STOC’99]
[Lehmann Lehmann Nisan EC’01]

…

Hidden preferences

Hidden actions

GS

Submod

XOS

Subadd

additive

demand
oracle

value
oracle

Algorithmic Contract Design:
an Emerging Frontier

• Simple vs optimal contracts: [Carroll AER’15], [Duetting Roughgarden & Talgam-Cohen EC’19], [Alon
Duetting Li Talgam-Cohen EC’23]

• Combinatorial contracts: [Babaioff Feldman Nisan Winter ‘12 (EC’06)], [Lavi & Shamash EC’19],
[Duetting Roughgarden & Talgam-Cohen SODA’20], [Duetting Ezra Feldman & Kesselheim FOCS’21], [Alon
Lavi Shamash & Talgam-Cohen EC’21], [Duetting Ezra Feldman & Kesselheim STOC’23], [Castiglioni et al.
EC’23], [Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman
Schlesinger ITCS’24], [Cacciamani et al. EC’24]

• Learning contracts: [Ho Slivkins & Vaughn EC’14], [Cohen Deligkas & Koren SAGT’22], [Zhu et al. EC’23],
[Duetting Guruganesh Schneider & Wang ICML’23], [Chen et al. EC’24]

• Typed contracts: [Guruganesh Schneider & Wang EC’21], [Alon Duetting & Talgam-Cohen EC’21],
[Castiglioni et al. EC ‘21], [Castiglioni et al. EC ‘22], [Guruganesh Schneider & Wang EC’23]

• Contract design for social good: [Li Immorlica & Lucier WINE’21], [Ashlagi Li & Lo Management
Science’23]

• Ambiguous contracts: [Duetting Feldman Peretz Samuelson EC’23]

The Algorithmic/Computational Lens

• The algorithmic lens has been traditionally useful

• Reveals structure

• Identifies tractability frontier

• Informs the design of simple mechanisms

• Many examples in Algorithmic Mechanism Design

• E.g., greedy algorithms, substitutes as a frontier of tractability,
submodularity as simplicity frontier, hardness of NE, …

Plan for this Talk

• Part 1: The Fundamentals
• The principal-agent model

• Optimal contracts

• Linear contracts

• Part 2: Combinatorial Contracts
• Multiple actions [Duetting Ezra Feldman Kesselheim FOCS’21] [Duetting Feldman Gal-Tzur

SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman Schlesinger ITCS’24]

• Multiple agents [Babaioff Feldman Nisan Winter ‘12 (EC’06)] [Duetting Ezra Feldman &
Kesselheim STOC’23]

• Combined problem [Duetting Ezra Feldman Kesselheim 2024]

The Principal-Agent Problem

Chooses action 𝑖 ∈ [𝑛]

Gets reward 𝑟𝑗 ∈ ℝ+ for outcome 𝑗 ∈ [𝑚]

with probability 𝑓𝑖𝑗
Incurs cost 𝑐𝑖

Defines contract 𝑡 ∈ ℝ+
𝑚

Receives 𝑇𝑖

𝑅𝑖 − 𝑇𝑖 = σ𝑗∈[𝑚] 𝑓𝑖𝑗𝑟𝑗 - 𝑇𝑖 𝑇𝑖 − 𝑐𝑖

Defining features: hidden action, stochastic outcome, limited liability

Pays 𝑇𝑖 = σ𝑗∈[𝑚] 𝑓𝑖𝑗𝑡𝑗

Expected utility:

Expected payment:

agent
principal

Timing and Objective

timeKnown
setting: 𝑓, 𝑐, 𝑟

Principal designs
a contract
(payment for
every outcome)

Agent takes
unobserved
costly actions

Agent’s actions
produce an
outcome,
stochastically

Principal pays
the agent based
on observed
outcome

Objective: maximize the expected utility of the principal

𝑐𝑖 𝑟0 = 0 𝑟1 = 2 𝑟2 = 2

Action 0 0 1 0 0

Action 1 ¼ ½ ½ 0

Action 2 ¼ ½ 0 ½

Action 3 1 0 ½ ½

Example

𝑅𝑖

0

1

1

2

Optimal contract:
• Incentivize action 1
• Contract: 𝑡 = (0, 0.5, 0)
• Expected payment: 𝑇1 = 0.25
• Expected principal’s utility =

𝑅1 − 𝑇1 = 1 − 0.25 = 0.75

Incentivizing action 3:
• Incentivize action 3
• Contract: 𝑡 = (0, 1.5, 1.5)
• Expected payment: 𝑇3 = 1.5
• Expected principal’s utility =

𝑅3 − 𝑇3 = 2 − 1.5 = 0.5

Example

Key Results: Optimal Contracts

Theorem (folklore): Optimal contract can be computed in 𝑝𝑜𝑙𝑦(𝑛, 𝑚) time
through linear programming.

MIN-PAY problem
Input: Contract setting (𝑓, 𝑐, 𝑟); an action 𝑖
Output: Minimum 𝑇𝑖 that incentivizes action 𝑖

Observations:
• LP solvable
• Optimal contract solvable via

𝑛 MIN-PAY problems
min 𝑇𝑖

s.t. 𝑇𝑖 − ci ≥ 𝑇𝑖′ − 𝑐𝑖′ ∀𝑖′ ≠ 𝑖 (IC)

Key Results: Optimal Contracts

Theorem (folklore): Optimal contract can be computed in 𝑝𝑜𝑙𝑦(𝑛, 𝑚) time
through linear programming.

But optimal contracts have been criticized:

• As solutions to LPs they are opaque, and lack structure
• They may be non-monotone

Important exception: With only two outcomes “success” and “failure”, Linear
(comission-based) contracts that set 𝑡𝑗 = 𝛼 ∙ 𝑟𝑗 for all 𝑗 ∈ [𝑚] are optimal

Example of Non-Monotonicity

Key Results: Linear Contracts

Theorem [Duetting Roughgarden Talgam-Cohen‘19]: Linear contracts
achieve a Θ(𝑛) approximation to optimal contracts.

Theorem [Duetting Roughgarden Talgam-Cohen‘19]: Linear contracts are
max-min optimal when only the expected rewards of the actions are
known.

• Provides easy to interpret, ”robust optimization”-style analogue of [Carroll’15]
• In [Carroll’15] principal knows subset of actions, actual actions can be any superset

Contract 𝛼

Agent’s
utility

Tool: Upper Envelope (Agent’s Perspective)

Action 1

Action 2

Action 3

𝛼𝑅𝑖 − 𝑐𝑖

agent

∅

Contract 𝛼

Agent’s
utility

𝛼𝑅𝑖 − 𝑐𝑖

∅ Action 1 Action 2 Action 3

Tool: Upper Envelope (Agent’s Perspective)

∅ Action 1

Contract 𝛼

Principal’s
utility

1 − 𝛼 𝑅𝑖

Action 2 Action 3

Easy observation: Optimal linear contract occurs at critical 𝛼

Tool: Upper Envelope (Principal’s Perspective)

principal

Rest of the Talk

• Part 1: The Fundamentals
• The principal-agent model

• Optimal contracts

• Linear contracts

• Part 2: Combinatorial Contracts
• Multiple actions [Duetting Ezra Feldman Kesselheim FOCS’21] [Duetting Feldman Gal-Tzur

SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman Schlesinger ITCS’24]

• Multiple agents [Babaioff Feldman Nisan EC’12] [Duetting Ezra Feldman & Kesselheim STOC’23]

• Combined problem [Duetting Ezra Feldman Kesselheim 2024]

Sources of Complexity in Contract Design

Multiple agents

[Babaioff Feldman Nisan Winter ‘12 (EC’12)]
[Duetting Ezra Feldman & Kesselheim STOC’23] [Ezra
Feldman Schlesinger ITCS’24]

Multiple actions

[Duetting Ezra Feldman & Kesselheim FOCS’21]
[Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo
Vuong et al. SODA’24], [Ezra Feldman Schlesinger
ITCS’24]

Single Agent, Many Actions [DEFK’21]

• 𝑛 actions 𝐴 = {1, … , 𝑛}, agent chooses a set 𝑆

• c i ≥ 0: cost of action 𝑖
• c 𝑆 = σ𝑖 ∈ 𝑆 𝑐(𝑖) [additive cost]

• Binary outcome: {0,1} (reward 1 for success)

• 𝑓: 2𝐴 → 0,1 success probability function
• 𝑓 𝑆 : success probability for actions 𝑆 ⊆ 𝐴

• Not necessarily additive

Unit
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Single Agent, Many Actions [DEFK’21]

• 𝑛 actions 𝐴 = {1, … , 𝑛}, agent chooses a set 𝑆

• c i ≥ 0: cost of action 𝑖
• c 𝑆 = σ𝑖 ∈ 𝑆 𝑐(𝑖) [additive cost]

• Binary outcome: {0,1} (reward 1 for success)

• 𝑓: 2𝐴 → 0,1 success probability function

Submodular: for every 𝑆 ⊆ 𝑇, 𝑗 ∉ 𝑇, 𝑓 𝑗 𝑆 ≥ 𝑓(𝑗 ∣ 𝑇)
[decreasing marginal value]

Subadditive: for every 𝑆, 𝑇, 𝑓 𝑆 + 𝑓(𝑇) ≥ 𝑓(𝑆 ∪ 𝑇)

Unit
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Single Agent, Many Actions [DEFK’21]

• 𝑛 actions 𝐴 = {1, … , 𝑛}, agent chooses a set 𝑆

• c i ≥ 0: cost of action 𝑖
• c 𝑆 = σ𝑖 ∈ 𝑆 𝑐(𝑖) [additive cost]

• Binary outcome: {0,1} (reward 1 for success)

• 𝑓: 2𝐴 → 0,1 success probability function

Demand set 𝐷 𝑓, 𝑝 : a set 𝑆 maximizing 𝑓 𝑆 − σ𝑖∈𝑆 𝑝𝑖

Gross substitutes: Suppose 𝑞 ≥ 𝑝. Then, for every
𝑖 ∈ 𝐷 𝑓, 𝑝 s.t. 𝑝𝑖 = 𝑞𝑖, it holds that 𝑖 ∈ 𝐷(𝑓, 𝑞)

Unit
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Optimization Problem Unit
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Optimal Contract Problem:
Find 𝛼 that maximizes (1 − 𝛼)𝑓(𝑆𝛼) [principal’s utility]

where 𝑆𝛼 maximizes α𝑓 𝑆 − 𝑐(𝑆) [agent’s utility]

• 𝑛 actions 𝐴 = {1, … , 𝑛}, agent chooses a set 𝑆

• c i ≥ 0: cost of action 𝑖
• c 𝑆 = σ𝑖 ∈ 𝑆 𝑐(𝑖) [additive cost]

• Binary outcome: {0,1} (reward 1 for success)

• 𝑓: 2𝐴 → 0,1 success probability function

Value Oracle: Receives 𝑆, returns 𝑓 𝑆 .

Oracle Access Unit
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Optimal Contract Problem:
Find 𝛼 that maximizes (1 − 𝛼)𝑓(𝑆𝛼) [principal’s utility]

where 𝑆𝛼 maximizes α𝑓 𝑆 − 𝑐(𝑆) [agent’s utility]

Value Oracle: Receives 𝑆, returns 𝑓 𝑆 .

Demand Oracle: Given “prices” 𝑝1, … , 𝑝𝑛, return sets 𝑆
maximizing 𝑓 𝑆 − Σ𝑖∈𝑆𝑝𝑖.

Main Results

Theorem [Duetting Ezra Feldman Kesselheim’21]:

• A polynomial-time algorithm for gross substitutes functions
(with value oracle access to 𝑓)

• For submodular functions (i.e., decreasing marginal value),
it is NP-hard to compute the optimal contract

Gross substitutes constitutes a frontier, similar to:

• Welfare maximization tractability in combinatorial auctions [Nisan Segal 2006]

• Market equilibrium existence [Kelso Crawford 1982, Gul Stacchetti 1999]

{ 1, 2, 3}∅ { 1} { 1, 2} { 1, 2, 3}

Contract 𝛼

{ 1, 2}
{ 1, 3}
{1 }
{ 2, 3}
{2 }
{3 }

∅

Upper-Envelope Approach

Agent’s
utility

𝛼𝑓 𝑆 − 𝑐(𝑆)

[Figure is for additive 𝑓]

Upper-Envelope Approach

Agent’s
utility

𝛼𝑓 𝑆 − 𝑐(𝑆)

[Figure is for gross substitutes 𝑓]

Idea for an Algorithm

• Recall: Can restrict attention to set of critical 𝛼’s

 (i.e., transition points of agent’s best response)

• Naïve algorithm: Go over all critical 𝛼’s and take the best; requires:

• computing agent’s best response

• computing next critical 𝛼

• an upper bound on number of critical 𝛼′s

Theorem: For gross substitutes 𝑓, this yields a polynomial-time algorithm.

The agent’s problem: given 𝛼,

find 𝑆 that maximizes α𝑓 𝑆 − 𝑐(𝑆)

 ⇔

find 𝑆 that maximizes 𝑓 𝑆 −
1

𝛼
𝑐(𝑆)

Demand set at

“prices” 𝑐/𝛼

(in markets for goods)

Step 0: The Agent’s Best Response Problem

The agent’s problem: given 𝛼,

find 𝑆 that maximizes α𝑓 𝑆 − 𝑐(𝑆)

 ⇔

find 𝑆 that maximizes 𝑓 𝑆 −
1

𝛼
𝑐(𝑆)

Step 0: The Agent’s Best Response Problem

• Demand set 𝐷 𝑓, 𝑝 : a set 𝑆 maximizing utility u S = 𝑓 𝑆 − σ𝑗∈𝑆 𝑝𝑗

• Key property of gross substitutes:

• GREEDY algorithm solves the demand set problem (add element with
maximal marginal utility) [e.g., Paes Leme 2017]

Step 1: Next Critical 𝛼

• Fixing tie-breaking, we get an ordered demand set 𝑆𝛼 = (𝑎1, 𝑎2, … , 𝑎𝑑)

• Let 𝑆𝛼 = (𝑎1, 𝑎2, … , 𝑎𝑑) and 𝑆𝛼′ be respective demand sets of 𝛼, 𝛼′

• Either: 𝑆𝛼 𝑖 ≠ 𝑆𝛼′ 𝑖 for some 𝑖 ≤ 𝑑, or |𝑆𝛼′| > 𝑑

• Suffices to consider poly-many potential values for 𝛼′ (for each action
and index), and take the smallest one that is larger than 𝛼

𝛼 𝛼′

𝑆𝛼 𝑆𝛼′

Potential argument:

• Reorder actions: 𝑐 𝑎1 < ⋯ < 𝑐 𝑎𝑛

• Define 𝜙 𝑎𝑖 = 𝑖, 𝜙 𝑆 = σ𝑎∈𝑆 𝜙(𝑎)

• 𝜙 is an integer ≤ 𝑛(𝑛 + 1)/2, which
increases at every critical 𝛼

• Conclusion: 𝑂(𝑛2) critical points for GS

• (this is tight)

Step 2: Poly-Many Critical 𝛼’s

The agent’s problem: given 𝛼,

find 𝑆 that maximizes α𝑓 𝑆 − 𝑐(𝑆)

 ⇔

find 𝑆 that maximizes 𝑓 𝑆 −
1

𝛼
𝑐(𝑆)

Key Lemma: at each critical point:
• an action is added to 𝑆, or
• an action from 𝑆 is replaced by one with

higher cost
(obtained by perturbing cost, so that GREEDY has at
most one tie-breaking)

Agent’s
utility

𝛼𝑓(𝑆) − 𝑐𝑆

Beyond Gross Substitutes Unit
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Submodular: 𝑓 𝑖 𝑆 ≥ 𝑓(𝑖 ∣ 𝑇) for 𝑆 ⊆ 𝑇, 𝑗 ∉ 𝑇
(decreasing marginal value)

XOS: maximum over additive
(aka: fractionally subadditive)

Subadditive: 𝑓 𝑆 + 𝑓(𝑇) ≥ 𝑓(𝑆 ∪ 𝑇)

Beyond Gross Substitutes

Inapproximability results [Ezra F Schlesinger’24]:

• No constant-approximation for submodular
rewards with value queries (assuming P ≠ NP)

• No better than Ω(√𝑛) approximation for XOS
rewards with value queries (assuming P ≠ NP)

With demand oracle access (given action “prices”
𝑝1, … , 𝑝𝑛, return 𝑆 maximizing 𝑓 𝑆 − σ𝑖∈𝑆 𝑝𝑖):

• FPTAS for any 𝑓 [Duetting Ezra F Kesselheim ‘24]

• But not OPT [Duetting F Gal-Tzur Rubinstein ‘24]

Unit
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Beyond Complement-Free

• Recall Naïve algorithm: Go over all critical 𝛼’s and take the best;
requires:
• computing agent’s best response

• computing next critical 𝛼

• an upper bound on number of critical 𝛼′s

Theorem: For supermodular 𝑓, this yields a polynomial-time algorithm.

• Theorem [DFG’24]: For every 𝑓, 𝑐, a demand oracle (i.e., agent’s BR) is
sufficient for enumerating all critical values

• Algorithm: For a segment [𝛼, 𝛽], use the oracle to get 𝑆𝛼 and 𝑆𝛽.
• If 𝑆𝛼 = 𝑆𝛽: the utility is linear in [𝛼, 𝛽]

• Otherwise, query again at 𝛾 =
𝑐(𝑆𝛼)−𝑐(𝑆𝛽)

𝑓(𝑆𝛼)−𝑓(𝑆𝛽)

• If 𝑆𝛾 = 𝑆𝛽: the utility is linear in [𝛼,𝛾) and in [𝛾,𝛽]

• Otherwise, there are more than 2 linear pieces;
solve recursively for [𝛼,𝛾] and [𝛾,𝛽]

• Proof: by induction on the number of critical values in the segment

• Upshot: For every monotone 𝑓, 𝑐, a demand oracle and poly-many
critical values are sufficient to find the optimal contract

𝑆𝛼

𝑆𝛽

𝛾

𝑆𝛾

Enumerating all Critical Values

The Agent’s Best Response Problem

• Agent’s utility function: uA 𝛼, 𝑆 = 𝛼𝑓(𝑆) − 𝑐(𝑆)

• If 𝑓 is supermodular, then uA 𝛼,⋅ is supermodular

• Maximizing uA 𝛼,⋅ is equivalent to minimizing −uA 𝛼,⋅ , which is
submodular: known to admit a poly-time algorithm

• Note: this argument holds even if 𝑐 is submodular

Poly-Many Critical 𝛼’s

Multipe Actions: Overview

Dutting et al. 2021: Dutting Ezra Feldman Kesselheim. Combinatorial Contracts. FOCS’21
Dutting et al. 2024a: Dutting Ezra Feldman Kesselheim. Multi-Agent Combinatorial Contracts. Working paper
Dutting et al. 2024b: Dutting Feldman Gal-Tzur. Combinatorial Contracts Beyond Gross Substitutes. SODA’24

Dutting et. al 2024c: Dutting Feldman Gal-Tzur Robinstein. The Query Complexity of Contracts. Working paper
Deo-Campo Vuong et al. 2024: D.-C. Vuong Dughmi Patel Prasad. On Supermpodular Contracts. SODA’24
Ezra. et al. 2024: Ezra Feldman Schlesinger. The (In)Approximability of Combinatorial Contracts. ITCS’24

• Key take-aways:

• Gross substitutes is a “frontier of tractability” for combinatorial contracts

• Interesting connection to combinatorial auctions

• Open problems:

• Tight bounds for submodular, XOS, and subadditive with value queries?

• Beyond binary outcome?

Multiple Actions: Summary

Sources of Complexity in Contract Design

Multiple agents

[Babaioff Feldman Nisan EC’12] [Duetting Ezra
Feldman & Kesselheim STOC’23] [Ezra Feldman
Schlesinger ITCS’24]

Combinatorial actions

[Duetting Ezra Feldman & Kesselheim FOCS’21]
[Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo
Vuong et al. SODA’24], [Ezra Feldman Schlesinger
ITCS’24]

Combinatorial Agency Model

• 𝑛 agents

• Binary action: 𝐴𝑖 = 0,1

 (0: no effort, 1: effort)

• Cost 𝑐𝑖: cost of effort (no effort = no cost)

• Binary outcome: {0,1}

• Reward 1 for success, 0 for failure

• Success probability function 𝑓: {0,1}𝑛→ 0,1

[Babaioff Feldman Nisan 2006, DEFK’23]

Contracts and Objective

• Optimal (=linear) contract: 𝛼 = 𝛼1, … , 𝛼𝑛
• 𝛼𝑖 ≥ 0: payment to agent 𝑖 for success

• Agent’s perspective: Agent 𝑖 prefers to exert effort (in equilibrium) iff

 𝛼𝑖𝑓 𝑆 − 𝑐𝑖 ≥ 𝛼𝑖𝑓 𝑆 − 𝑖

agent 𝑖’s utility
under effort

agent 𝑖’s utility
under no effort

Contracts and Objective

• Optimal (=linear) contract: 𝛼 = 𝛼1, … , 𝛼𝑛
• 𝛼𝑖 ≥ 0: payment to agent 𝑖 for success

• Agent’s perspective: Agent 𝑖 prefers to exert effort (in equilibrium) iff

 𝛼𝑖𝑓 𝑆 − 𝑐𝑖 ≥ 𝛼𝑖𝑓 𝑆 − 𝑖

 ⇒ 𝛼𝑖=
𝑐𝑖

𝑓 𝑖 𝑆−{𝑖})
 is the best way to incentivize agent 𝑖

“margin” of 𝑖 w.r.t. S:
𝑓 𝑖 𝑆 − 𝑖)
= 𝑓 𝑆 − 𝑓 𝑆 − 𝑖

Contracts and Objective

• Optimal (=linear) contract: 𝛼 = 𝛼1, … , 𝛼𝑛
• 𝛼𝑖 ≥ 0: payment to agent 𝑖 for success

• Agent’s perspective: Agent 𝑖 prefers to exert effort (in equilibrium) iff

 𝛼𝑖𝑓 𝑆 − 𝑐𝑖 ≥ 𝛼𝑖𝑓 𝑆 − 𝑖

 ⇒ 𝛼𝑖=
𝑐𝑖

𝑓 𝑖 𝑆−{𝑖})
 is the best way to incentivize agent 𝑖

• Principal’s perspective: Find the set of agents 𝑆 that maximizes

 𝑔 𝑆 = 𝑓 𝑆 (1 − σ𝑖 ∈𝑆
𝑐𝑖

𝑓 𝑖 𝑆−{𝑖})
)

• Problem: Compute optimal contract for submodular/XOS/subadditive 𝑓

• Challenge: Even if 𝑓 is highly structured, 𝑔 may be highly non-structured

Contracts and Objective
va

lu
e

Size of 𝑆

Additive

f g

va
lu

e

Size of 𝑆

XOS

f g

Submodular/XOS/Subadditive 𝑓 Unit
Demand

Additive

Submodular

Gross
Substitutes

Sub
additive

XOS

Submodular: 𝑓 𝑖 𝑆 ≥ 𝑓(𝑖 ∣ 𝑇) for 𝑆 ⊆ 𝑇, 𝑗 ∉ 𝑇
(decreasing marginal value)

XOS: maximum over additive
(aka: fractionally subadditive)

Subadditive: 𝑓 𝑆 + 𝑓(𝑇) ≥ 𝑓(𝑆 ∪ 𝑇)

Coverage Function (submodular)

Agent Blue

Agent Red

Agent Green

𝑓(set of agents) =
 # tasks covered by these agents

e.g.:
𝑓 = 2

𝑓) = 1

agents tasks

Agent Blue

Agent Red

Agent Green

𝑔 𝑆 = 𝑓 𝑆 (1 −

𝑖 ∈𝑆

𝑐𝑖

𝑓 𝑖 𝑆 − {𝑖})
)

Principal’s objective:

Total # tasks
covered by 𝑆

tasks covered
uniquely by agent 𝑖

Coverage Function (submodular)
agents tasks

Agent Blue

Agent Red

Agent Green

𝑔 𝑆 = 𝑓 𝑆 (1 −

𝑖 ∈𝑆

𝑐𝑖

𝑓 𝑖 𝑆 − {𝑖})
)

Principal’s objective:

Total # tasks
covered by 𝑆

tasks covered
uniquely by agent 𝑖

Coverage Function (submodular)
agents tasks

Unique coverage is hard to approximate within
a constant factor [Demaine Feige Hajiaghayi
Salavatipour 2006]

(+) There is a poly-time algorithm for finding a constant-approximation
contract for submodular 𝑓, using value oracle, and for XOS 𝑓, using value
and demand oracles [DEFK’23]

• For additive 𝑓, it is NP-hard to find the optimal contract, but there is a an
FPTAS

• No better than Ω(√𝑛)-approximation for subadditive 𝑓 (even for 𝑓 constant
close to submodular)

Main Results

(-) No better than constant-approximation, even for submodular 𝑓,
and even with both value and demand oracles [DEFK’23, DEFK’24]

v

v

Proof Sketch: constant approximation for XOS

𝑝𝑖

𝑐𝑖 Let 𝑇 be the demand set under

prices 𝑝𝑖 =
1

2
𝑐𝑖𝑓 𝑆∗

Lemma 1: 𝑓 𝑇 ≥
1

2
𝑓 𝑆∗

By definition: 𝑓 𝑖 𝑇 − {𝑖} ≥ 𝑝𝑖 =
1

2
𝑐𝑖𝑓 𝑆∗

Lemma 2: For every set 𝑈, if 𝑓 𝑖 𝑈 − {i} ≥ 2𝑐𝑖𝑓(𝑈) ∀𝑖 ∈ 𝑈, then 𝑔 𝑈 ≥
1

2
𝑓 𝑈

we want:
1

2
𝑐𝑖𝑓 𝑆∗ ≥ 2𝑐𝑖𝑓 𝑇

so that:⇒
𝑔 𝑇 ≥

1

2
𝑓 𝑇 ≥

1

4
𝑓 𝑆∗ ≥

1

4
𝑔 𝑆∗

Problem: 𝑓 𝑇 may be too large

Idea: remove agents from 𝑇 until inequality is satisfied

Problem: marginals may decrease (unlike submodular)

Theorem [scaling property of XOS]: for every set 𝑇 and every Ψ < 𝑓(𝑇), can compute a set 𝑈 ⊆ 𝑇 such that
1

2
Ψ ≤ 𝑓 𝑈 ≤ Ψ and 𝑓 𝑖 𝑈 − {𝑖} ≥

1

2
𝑓 𝑖 𝑇 − {𝑖}

Setting Ψ =
1

32
𝑓(𝑆∗) now gives 𝑓 𝑖 𝑈 − {i} ≥

1

4
𝑐𝑖𝑓 𝑆∗ ≥ 2𝑐𝑖𝑓(𝑈), yielding:

Goal: Find a set 𝑈 satisfying 𝑔 𝑈 ≥ const ⋅ 𝑔(𝑆∗)

𝑔 𝑈 ≥
1

2
𝑓 𝑈 ≥ const ⋅ 𝑓 𝑆∗ ≥ const ⋅ 𝑔 𝑆∗

Multiple Agents: Overview

Dutting et al. 2023a: Dutting Ezra Feldman Kesselheim. Multi-Agent Contracts. FOCS’21
Dutting et al. 2024a: Dutting Ezra Feldman Kesselheim. Multi-Agent Combinatorial Contracts. Working paper

Deo-Campo Vuong et al. 2024: D.-C. Vuong Dughmi Patel Prasad. On Supermpodular Contracts. SODA’24
Ezra. et al. 2024: Ezra Feldman Schlesinger. The (In)Approximability of Combinatorial Contracts. ITCS’24

• Key take-aways:

• Submodular as a frontier for poly-time constant-factor approximation

• Non-standard use of prices & demand queries

• New scaling property of XOS functions, that may be of independent interest

• Open problems:

• Gap between upper and lower bounds for GS

• One of the few problems that is hard for GS

• Does it admit an (F)PTAS?

• Beyond binary outcome?

Multiple Agents: Summary

Multiple agents, each of which takes a set of actions [Duetting Ezra Feldman Kesselheim’24]:

Provably very different from either of the special cases

• Constraints on the 𝛼𝑖’s incentivizing 𝑆 are 2-directional ⇒ No simple formula for the 𝛼𝑖’s

• Equilibrium existence is non-trivial (requires potential function argument)

• Not all sets can be incentivized

• For submodular 𝑓 , if others do less, it might be beneficial to do less

• …

New: Multiple Agents & Multiple Actions

Main result (-): No PTAS for submodular, with value and demand queries

Main result (+): Poly-time O(1)-approximation for submodular with
value and demand queries

Results require very different tools than ones used in previous special cases

• Contract theory is a new frontier in AGT

• Complexity and approximation shed new light on
contract design

• Interesting connections to combinatorial auctions
and other combinatorial optimization problems

• E.g., gross substitutes as tractability frontier

• E.g., submodular as frontier for approximation

• Many fundamental problems still open

Main Take Aways

Thank You!

Resources

• EC’19 & STOC’22 Tutorials (Duetting and Talgam-Cohen]

• Forthcoming (FnTTCS): Algorithmic Contract Theory:
A Survey (Duetting Feldman Talgam-Cohen)

24th Max Planck Advanced Course
on the Foundations of Computer Science

26 - 30 August 2024, Saarbrücken, Germany

Algorithmic Game Theory

Paul Duetting
Google Research, Zurich

Prophet Inequalities

Michal Feldman
Tel-Aviv University

Algorithmic Contract Theory

Elias Koutsoupias
University of Oxford

Mechanism Design

Bernhard von Stengel
London School of Economics and
Political Science (LSE)

Equilibrium Computation in
Games

Early registration deadline: July 31, 2024

	Default Section
	Slide 1: Algorithmic Contract Design
	Slide 2: Example: Sponsored Content
	Slide 3: Contract Design
	Slide 4: Algorithms and Incentives
	Slide 5: Algorithmic Contract Design: an Emerging Frontier
	Slide 6: The Algorithmic/Computational Lens
	Slide 7: Plan for this Talk
	Slide 8: The Principal-Agent Problem
	Slide 9: Timing and Objective
	Slide 10
	Slide 11
	Slide 12: Key Results: Optimal Contracts
	Slide 13: Key Results: Optimal Contracts
	Slide 14
	Slide 15: Key Results: Linear Contracts
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Rest of the Talk
	Slide 20: Sources of Complexity in Contract Design
	Slide 21: Single Agent, Many Actions [DEFK’21]
	Slide 22: Single Agent, Many Actions [DEFK’21]
	Slide 23: Single Agent, Many Actions [DEFK’21]
	Slide 24: Optimization Problem
	Slide 25: Oracle Access
	Slide 26: Main Results
	Slide 27
	Slide 28
	Slide 29: Idea for an Algorithm
	Slide 30
	Slide 31
	Slide 32: Step 1: Next Critical alpha
	Slide 33
	Slide 34: Beyond Gross Substitutes
	Slide 35: Beyond Gross Substitutes
	Slide 36: Beyond Complement-Free
	Slide 37
	Slide 38
	Slide 39
	Slide 41: Multipe Actions: Overview
	Slide 42: Multiple Actions: Summary
	Slide 43: Sources of Complexity in Contract Design
	Slide 44: Combinatorial Agency Model
	Slide 45: Contracts and Objective
	Slide 46: Contracts and Objective
	Slide 47: Contracts and Objective
	Slide 48: Contracts and Objective
	Slide 49: Submodular/XOS/Subadditive f
	Slide 50: Coverage Function (submodular)
	Slide 51: Coverage Function (submodular)
	Slide 52: Coverage Function (submodular)
	Slide 53: Main Results
	Slide 55: Proof Sketch: constant approximation for XOS
	Slide 56: Multiple Agents: Overview
	Slide 57: Multiple Agents: Summary
	Slide 59: New: Multiple Agents & Multiple Actions
	Slide 68: Main Take Aways
	Slide 69: Resources
	Slide 70

