Algorithmic
CONTRACT Contract Design

Michal Feldman
Tel Aviv University

‘g ADFOCS
2024

MPI Summer School
August 26, 2024
Saarbricken, Germany

Example: Sponsored Content

* You want to pay an influencer to run
a social media campaign

* Running a campaign requires effort

* You are buying a costly service with
uncertain outcome (# views, etc.)

What/how should you pay the
influencer for their effort?

Contract Design

One of the pillars of microeconomic theory
[Ross’73, Holmstrom’79]

“The 2016 Nobel Prize in Economics was awarded Monday to
+» Oliver Hart and Bengt Holmstrom for their work in contract
theory — developing a framework to understand agreements
<~ like insurance contracts, employer-employee relationships
and property rights.”

2)

* As markets for services move online, they grow in scale and complexity
(freelance services, legal services, marketing services, etc.)
* An algorithmic / computational approach is timely and relevant

Algorithms and Incentives

Hidden preferences » demand
\c/)?acle [‘),f oracle
Algorithmic
Mechanism
Design 2
I

. Algorithmic . .
algorithms Contract incentives
Design

Hidden actions [Nisan Ronen STOC’99]

[Lehmann Lehmann Nisan EC’01]

Algorithmic Contract Design:
an Emerging Frontier

Simple vs optimal contracts: [Carroll AER’15], [Duetting Roughgarden & Talgam-Cohen EC’19], [Alon
Duetting Li Talgam-Cohen EC’23]

Combinatorial contracts: [Babaioff Feldman Nisan Winter ‘12 (EC’06)], [Lavi & Shamash EC’19],
[Duetting Roughgarden & Talgam-Cohen SODA’20], [Duetting Ezra Feldman & Kesselheim FOCS’21], [Alon
Lavi Shamash & Talgam-Cohen EC’21], [Duetting Ezra Feldman & Kesselheim STOC’23], [Castiglioni et al.
EC’23], [Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman
Schlesinger ITCS’24], [Cacciamani et al. EC"24]

Learning contracts: [Ho Slivkins & Vaughn EC’14], [Cohen Deligkas & Koren SAGT’22], [Zhu et al. EC"23],
[Duetting Guruganesh Schneider & Wang ICML' 23], [Chen et al. EC’'24]

Typed contracts: [Guruganesh Schneider & Wang EC’21], [Alon Duetting & Talgam-Cohen EC’21],
[Castiglioni et al. EC ‘21], [Castiglioni et al. EC ‘22], [Guruganesh Schneider & Wang EC’'23]

Contract design for social good: [Li Immorlica & Lucier WINE’21], [Ashlagi Li & Lo Management
Science’23]

Ambiguous contracts: [Duetting Feldman Peretz Samuelson EC’23]

he Algorithmic/Computational Lens

* The algorithmic lens has been traditionally useful
* Reveals structure
* |dentifies tractability frontier
* Informs the design of simple mechanisms

* Many examples in Algorithmic Mechanism Design

* E.g., greedy algorithms, substitutes as a frontier of tractability,
submodularity as simplicity frontier, hardness of NE, ...

Plan for this Talk

* Part 1: The Fundamentals
* The principal-agent model
* Optimal contracts
* Linear contracts

e Part 2: Combinatorial Contracts

* Multiple actions [Duetting Ezra Feldman Kesselheim FOCS’21] [Duetting Feldman Gal-Tzur
SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman Schlesinger ITCS’24]

* Multiple agents [Babaioff Feldman Nisan Winter ‘12 (EC’06)] [Duetting Ezra Feldman &
Kesselheim STOC’23]

* Combined problem [Duetting Ezra Feldman Kesselheim 2024]

he Principal-Agent Problem

Defines contract t € R"

Chooses action i € [n]

Gets reward r; € R, for outcome j € [m]

with probability f;; Incurs cost ¢;
Expected payment: Pays T; = Zje[m] fiiti Receives T;
Expected utility: R; — T; = X e fij7 - T T; — ¢

Defining features: hidden action, stochastic outcome, limited liability

Iming and Objective

1 = &

A\

Known Principal designs Agent takes Agent’s actions Principal pays time
setting: f,c,7 a contract unobserved produce an the agent based
(payment for costly actions outcome, on observed
every outcome) stochastically outcome

Objective: maximize the expected utility of the principal

Example

Ci
Action O 0
Action 1 Ya
Action 2 Va
Action 3 1

ro=0 rn=2 | rn=2 R;
1 0 0 0
Z iZ 0 1
Z 0 2 1
0 iZ: 2 2

Optimal contract:
* |ncentivize action 1

* Contract:t = (0,0.5,0)

Incentivizing action 3:

* |ncentivize action 3
e Contract:t = (0,1.5,1.5)

* Expected payment: T; = 0.25 * Expected payment: T3 = 1.5
* Expected principal’s utility = * Expected principal’s utility =

Example

Example 2.1 (A simple principal-agent setting). Consider a principal-agent setting with three
actions 1 = 1, 2,3 with costs, rewards, and probabilities as specified in the following table:

ry =0 1 =1 1r3= cost
action 1: 1 () () cp = ()
action 2: 0 /2 L2 o =1
action 3: 0 /g 5/6 ey = 2

The expected rewards corresponding to the three actions are Ry =0, o = 1/2-1 4 /2.7 =4, and
Ry =16-1+5/6-T7=6. Their expected welfares are W, = Ry —¢; =0, Wo =Ry —c3 =4 —-1=3
and Wg = Ry — ¢35 = 6 — 2 = 4. Consider the contract t = (0,1,3). The expected payment for
action 1 under this contract is Ty = 0, for action 2 it 1s To = YY2- 1+ 1/2-3 = 2, and for action 3 it
is Ty = Ye-1+5/6-3 = 8/3. The agent’s expected utility is therefore mazimimzed by action 2, which
yields an expected utility of To — o = 2 — 1 = 1, compared to an expected utility of T — ¢y = 0 for
action 1 and an expected utility of Ty — ¢3 = 8/3 — 2 = 2/3 for action 3. The principal’s expected
utility under this contract is Ils — 15 = 4 — 2 = 2.

Key Results: Optimal Contracts

Theorem (folklore): Optimal contract can be computed in poly(n, m) time
through linear programming.

MIN-PAY problem
Input: Contract setting (f, ¢,7); an action i
Output: Minimum T; that incentivizes action i

Observations:
* LPsolvable
* Optimal contract solvable via min T;
n MIN-PAY problems st.Ty—cig =Ty —cy Vil #i (IC)

Key Results: Optimal Contracts

Theorem (folklore): Optimal contract can be computed in poly(n, m) time
through linear programming.

But optimal contracts have been criticized:

e As solutions to LPs they are opaque, and lack structure
* They may be non-monotone

Important exception: With only two outcomes “success” and “failure”, Linear
(comission-based) contracts thatsett; = « - 7; forall j € [m] are optimal

Example of Non-Monotonicity

Example 3.1 (Non-monotone optimal contract). Consider the principal-agent setting depicted in
the following table:

rp=0 1m9=3 m=9Y r4=12 cost
action 1 1 () () () ¢y = ()
action 2: 0 Lz () 23 ca =1
action 3: 0 0 1/3 2/3 cq =2

In this setting the unigque optimal contract for action i € {1,2,3} pays just enough for outcome
i to cover the action’s cost and nothing for the other two outcomes. The optimal contract 1s the
best contract for incentivizing action 3, which is t = (0,0.6.0). This contract is non-monotone as
rg < rq but t3 > t4. In this example the non-monotonicity is caused by the fact that outcome 4

the one with the highest reward doesnt help differentiate between the two actions, and so it
doesn’t make sense for the principal to pay for that outcome.

Key Results: Linear Contracts

Theorem [Duetting Roughgarden Talgam-Cohen‘19]: Linear contracts
achieve a ®(n) approximation to optimal contracts.

Theorem [Duetting Roughgarden Talgam-Cohen19]: Linear contracts are

max-min optimal when only the expected rewards of the actions are
known.

* Provides easy to interpret, “robust optimization”-style analogue of [Carroll’15]
In [Carroll’15] principal knows subset of actions, actual actions can be any superset

Tool: Upper Envelope (Agent’s Perspective)

Agent’s
utility

aR; — ¢;

0 for2 =1,

;=S (e — i)/ (IR — Rjy) for 2 <1< |n], Action 1
. o I

tor 1 =mn4 1. Action 2

Action 3

A

Contract

Tool: Upper Envelope (Agent’s Perspective)

Agent’s %, Action 1 Action 2 Action 3

utility
C(RL' — Cj

Contract «

Tool: Upper Envelope (Principal’s Perspective)

Principal’s %) Action 1 Action 2 Action 3
utility
(1—-a)R; |
L ® ® ®
Contract

Easy observation: Optimal linear contract occurs at critical «

Rest of the Talk

* Part 1: The Fundamentals
* The principal-agent model
* Optimal contracts
* Linear contracts

e Part 2: Combinatorial Contracts

* Multiple actions [Duetting Ezra Feldman Kesselheim FOCS’21] [Duetting Feldman Gal-Tzur
SODA’24], [Deo-Campo Vuong et al. SODA’24], [Ezra Feldman Schlesinger ITCS’24]

* Multiple agents [Babaioff Feldman Nisan EC’12] [Duetting Ezra Feldman & Kesselheim STOC’23]
* Combined problem [Duetting Ezra Feldman Kesselheim 2024]

Sources of Complexity in Contract Design

Multiple actions

[Duetting Ezra Feldman & Kesselheim FOCS’21]
[Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo
Vuong et al. SODA’24], [Ezra Feldman Schlesinger
ITCS’24]

Multiple agents

[Babaioff Feldman Nisan Winter ‘12 (EC’12)]
[Duetting Ezra Feldman & Kesselheim STOC’23] [Ezra
Feldman Schlesinger ITCS 24]

* c(S) = Y;egc(i) [additive cost]

* Binary outcome: {0,1} (reward 1 for success)

Single Agent, Many Actions (e m
Demand

* nactions A = {1,...,n}, agent chooses a set S

 c(i) = 0: cost of action i

e f: 24 = [0,1] success probability function
* f(S): success probability for actions S € A
* Not necessarily additive

Submodular

Sub
additive

Single Agent, Many Actions (pere21)

Unit
@

* nactions A = {1,...,n}, agent chooses aset S

 c(i) = 0: cost of action i
* c(S) = Y;egc(i) [additive cost]

* Binary outcome: {0,1} (reward 1 for success)
e f: 24 = [0,1] success probability function

Gross
Substitutes

Submodular

Submodular: foreveryS S T,j&T, f(jIS)=f(GIT)

[decreasing marginal value]

Subadditive: forevery S, T, f(S)+ f(T) = f(SUT)

Sub
additive

* c(S) = Y;egc(i) [additive cost]

* Binary outcome: {0,1} (reward 1 for success)

Single Agent, Many Actions [perco1) m
Demand

* nactions A = {1,...,n}, agent chooses a set S

 c(i) = 0: cost of action i

e f: 24 - [0,1] success probability function
Submodular

Demand set D (f,p): a set S maximizing f(S) — X.;es i

Gross substitutes: Suppose g = p. Then, for every
i € D(f,p)s.t.p; = q;,itholdsthati € D(f,q)

Sub
additive

Optimization Problem

* nactions A = {1,...,n}, agent chooses aset S

 c(i) = 0: cost of action i
* c(S) = Y;egc(i) [additive cost]

* Binary outcome: {0,1} (reward 1 for success)

e f: 24 - [0,1] success probability function

Submodular

Optimal Contract Problem:
Find a that maximizes (1 — a)f (S,) [principal’s utility]
where S, maximizes af (S) — c(S) [agent’s utility]

Sub

Value Oracle: Receives S, returns f(5). additive

Oracle Access

Optimal Contract Problem:
Find a that maximizes (1 — a)f (S,) [principal’s utility]
where S, maximizes af (S) — c(S) [agent’s utility]

Value Oracle: Receives S, returns f(5).

Demand Oracle: Given “prices” p4, ..., Py, return sets S
maximizing [(S) — Z;csp;.

Submodular

Sub
additive

Main Results

Theorem [Duetting Ezra Feldman Kesselheim’21]:

* A polynomial-time algorithm for gross substitutes functions
(with value oracle access to f)

* For submodular functions (i.e., decreasing marginal value),
it is NP-hard to compute the optimal contract

Gross substitutes constitutes a frontier, similar to:

* Welfare maximization tractability in combinatorial auctions [Nisan Segal 2006]
 Market equilibrium existence [Kelso Crawford 1982, Gul Stacchetti 1999]

Upper-Envelope Approach

Agent’s % {1}
utility

af (§) —c(S)

Contract «

[Figure is for additive f]

Upper-Envelope Approach

Agent's | o {1} {2} {1,2} {1,2,3}
utility

af (§) —c(S)

Contract a

[Figure is for gross substitutes f]

|[dea for an Algorithm

* Recall: Can restrict attention to set of critical a’s
(i.e., transition points of agent’s best response)
* Naive algorithm: Go over all critical a’s and take the best; requires:

e computing agent’s best response
e computing next critical o

* an upper bound on number of critical a's

Theorem: For gross substitutes f, this yields a polynomial-time algorithm.

Step O: The Agent’s Best Response Problem

Agent’s

utility The agent’s problem: given «,
T find S that maximizes af (S) — c(S)
-
7/ Contract @ find S that maximizes f(S) — %c(S)

Demand set at

“prices” c/a
(in markets for goods)

Step O: The Agent’s Best Response Problem

Agent’s 5 .
utility The agent’s problem: given «,
af(S) —c(S)

find S that maximizes af (S) — c(S)
-
7/ Contract @ find S that maximizes f(S) — %c(S)

4)

* Demand set D(f,p): a set S maximizing utility u(S) = f(S) — X jesP;

* Key property of gross substitutes:

* GREEDY algorithm solves the demand set problem (add element with
maximal marginal utility) [e.g., Paes Leme 2017]

& J

Step 1: Next Critical a

* Fixing tie-breaking, we get an ordered demand set S, = (a4, a,, ..., aq4)
e Let S, = (a4, a,,...,ay) and S, be respective demand sets of «, '
e Either: S, |i] # S,/ |i] forsomei < d, or |S, | > d

« Suffices to consider poly-many potential values for a’ (for each action
and index), and take the smallest one that is larger than «

Sa

|
|
a

Step 2: Poly-Many Critical a's

Agent’s [Key Lemma: at each critical point:)
utility %) {1} {2} {1,2} {1,2,3} ..
af (S) — ¢ * anactionisaddedto S, or
e anaction from S is replaced by one with
m / higher cost
(obtained by perturbing cost, so that GREEDY has at
agent — \most one tie-breaking))
Contract a

Potential argument:

The agent’s problem: given q, * Reorder actions: c(aq) < -+ < c(ay)

find S that maximizes af (S) — c¢(S) * Define ¢(a;) =i, p(S) = Loes (a)
* ¢isaninteger < n(n+ 1)/2, which
increases at every critical a

. - 1
find S that maximizes f(S) — —c(S) e Conclusion: 0(n?) critical points for GS
* (thisis tight)

=

Beyond Gross Substitutes

Unit
@

N ——

Submodular: f(i|S)=f(i|T)forSST,j&T
(decreasing marginal value)

XOS: maximum over additive
(aka: fractionally subadditive)

Submodular

Subadditive: f(S)+ f(T) = f(SUT)

Sub
additive

Beyond Gross Substitutes

Inapproximability results [Ezra F Schlesinger’24]:

* No constant-approximation for submodular
rewards with value queries (assuming P #= NP)

* No better than Q(\/n) approximation for XOS
rewards with value queries (assuming P = NP)

]

With demand oracle access (given action “prices’
D1, -, P, return S maximizing f(S) — X;esPi):
* FPTAS for any f [Duetting Ezra F Kesselheim ‘24]

* But not OPT [Duetting F Gal-Tzur Rubinstein ‘24]

Unit
@

N ——

Gross
Substitutes

Submodular

Sub
additive

Beyond Complement-Free

* Recall Naive algorithm: Go over all critical a’s and take the best;
requires:
e computing agent’s best response

e computing next critical o

* an upper bound on number of critical a's

Theorem: For supermodular f, this yields a polynomial-time algorithm.

Enumerating all Critical Values

* Theorem [DFG’24]: For every [, ¢, a demand oracle (i.e., agent’s BR) is
sufficient for enumerating all critical values

* Algorithm: For a segment |a,], use the oracle to get S, and Sg.
* If S, = Sp: the utility is linear in [a,]

- S
* Otherwise, query again aty = ;gz;_;i‘;}) Sy ’{’)
* If S, = Sp: the utility is linear in [a,y) and in [y,f] "y

S P
. 1 I a
e Otherwise, there are more than 2 linear pieces; / 1%

solve recursively for [a,y] and [y,[]

* Proof: by induction on the number of critical values in the segment

* Upshot: For every monotone f, ¢, a demand oracle and poly-many
critical values are sufficient to find the optimal contract

he Agent’s Best Response Problem

* Agent’s utility function: up(a,S) = af (S) — c(S)
* If f is supermodular, then u,(a,-) is supermodular

* Maximizing u, («,-) is equivalent to minimizing —u («,-) , which is
submodular: known to admit a poly-time algorithm

* Note: this argument holds even if ¢ is submodular

Poly-Many Critical a’s

CramM 4.2. Lel ¢ be a monotone submodular cost function and [a monotone supermodular reward funclion, then
for any two conlracls o < o' and two corresponding sels in the agent’s demand S.,, So il holds that S, T S,r.

Proof. It S, = S, the claim obviously hold. Otherwise, assume that S, is a maximal best-response [or contract
«' (this is in line with our tie-breaking assumption), and also that S, \ So» = R is such that R # (), we will show
that a contradiction is reached. By the [act that S, is optimal for «, it must be that

g (v, R

1?{1 n JF;{IF} = T_f.a(f]'f._, J.c;‘»:t} — Uy ({'_}!,: Sn M ,5'{.'[:) :_:“’ {:l

By the supermodularity of f and submodularity of ¢ it holds that f(R | S, N S.) < [f(R | Sa) and

¢(R|SaMNSy) = c¢(R| Sy). Putting everything together we get
u(e',R|Sy) = o' f(R]|Sy)—c(R|Sy)
= o f(R|S,NSy)—c(R|S,NS,)
> af(R|SanNSa)—c(R|SynNSar)
= wu(la,R|S,)
> 0

1

where the second inequality [ollows [rom the monotonicity of f, which imply f(R | S, M Ss) = 0. Thus, we can
add R to S, while not losing utility, contradicting its maximality. O

Multipe Actions: Overview

Multipl
" . 'pie Value Oracle Value and Demand Oracle
actions
Lower bound Upper bound Lower bound Upper bound
(pos) (neg) (pos) (neg)
Gross- 1 1 1 1
substitutes Diitting et al. [2021]
No constant
approx >1
Submodul FPTAS
ubrodtiar (if P£NP) Diitting et al. [2024c]
Ezra et al. [2024a]
No better
than Q(n!/?2
XO0S an f(n %) FPTAS > 1
(if P£NP)
Ezra et al. [2024a]
FPTA
. No better o 2
Subadditive than Q(n!/?) Diitting et al. [2021] > 1
e Diitting et al. [2024a]
Super L
. Diitting ct al. [2024b] 1 1 1
modular
Deo-Campo Vuong et al. [2024]
Dutting et al. 2021: Dutting Ezra Feldman Kesselheim. Combinatorial Contracts. FOCS’21 Dutting et. al 2024c: Dutting Feldman Gal-Tzur Robinstein. The Query Complexity of Contracts. Working paper

Dutting et al. 2024a: Dutting Ezra Feldman Kesselheim. Multi-Agent Combinatorial Contracts. Working paper Deo-Campo Vuong et al. 2024: D.-C. Vuong Dughmi Patel Prasad. On Supermpodular Contracts. SODA’24
Dutting et al. 2024b: Dutting Feldman Gal-Tzur. Combinatorial Contracts Beyond Gross Substitutes. SODA’24 Ezra. et al. 2024: Ezra Feldman Schlesinger. The (In)Approximability of Combinatorial Contracts. ITCS’'24

%%\r Multiple Actions: Summary

* Key take-aways:

* Gross substitutes is a “frontier of tractability” for combinatorial contracts
* |Interesting connection to combinatorial auctions

* Open problems:
* Tight bounds for submodular, XOS, and subadditive with value queries?

* Beyond binary outcome?

Sources of Complexity in Contract Design

Combinatorial actions

[Duetting Ezra Feldman & Kesselheim FOCS’21]
[Duetting Feldman & Gal-Tzur SODA’24], [Deo-Campo
Vuong et al. SODA’24], [Ezra Feldman Schlesinger
ITCS'24]

Multiple agents

[Babaioff Feldman Nisan EC’12] [Duetting Ezra
Feldman & Kesselheim STOC’23] [Ezra Feldman
Schlesinger ITCS 24]

Combinatorial Agency Model

[Babaioff Feldman Nisan 2006, DEFK’23] =

* 1 agents L'

* Binary action: 4; = {0,1}
(0: no effort, 1: effort) @ .
* Cost ¢;: cost of effort (no effort = no cost)

* Binary outcome: {0,1}

 Reward 1 for success, O for failure
e Success probability function f: {0,1}"— [0,1]

Contracts and Objective

* Optimal (=linear) contract: a = (aq, ..., &)

* a; = 0: payment to agent i for success

e Agent’s perspective: Agent i prefers to exert effort (in equilibrium) iff
aif(§) —ca 2 aif (S — 1))

agent i’s utility agent i’s utility
under effort under no effort

Contracts and Objective

* Optimal (=linear) contract: a = (aq, ..., &)

* a; = 0: payment to agent i for success

e Agent’s perspective: Agent i prefers to exert effort (in equilibrium) iff
aif(S) —¢ = a;f(§ —{i})

-l is the best way to incentivize agent i

~ Fa1s-)

x “margin” of i w.r.t. S:

fG1S—=1)
=fS)—-fS -0

04

Contracts and Objective

* Optimal (=linear) contract: a = (aq, ..., &)

* a; = 0: payment to agent i for success

e Agent’s perspective: Agent i prefers to exert effort (in equilibrium) iff
aif(S) —¢ = a;f(§ —{i})

-l is the best way to incentivize agent i

BRARED
* Principal’s perspective: Find the set of agents S that maximizes

04

* Problem: Compute optimal contract for submodular/X0S/subadditive f

* Challenge: Even if f is highly structured, g may be highly non-structured

Contracts and Objective

Additive
XOS
Size of S
Size of §

—f —pg

Submodular: f(i|S)=f(i|T)forSST,j&T
(decreasing marginal value)

Submodular/X0S/Subadditive f /J@
Demand

XOS: maximum over additive
(aka: fractionally subadditive)

Submodular

Subadditive: f(S)+ f(T) = f(SUT)

Sub
additive

Coverage Function (submodular)

agents tasks
£ f (set of agents) =
tasks covered by these agents
Agent Blue
Vo) e.g..

-4 FUS) =

AgentRed f(@l@) -1
o9

Agent Green

Coverage Function (submodular)

agents tasks
Principal’s objective:

9(5) = F(S)(1 - 2 7 ST

Agent Blue
- / \
h-d
Total # tasks # tasks covered
Agent Red
S
©19

covered by S uniquely by agent i

Agent Green

Coverage Function (submodular)

agents tasks

Agent Blue

c o)
hd

Agent Red
=

Agent Green

Principal’s objective:

9(5) = F(S)(1 - 2 7 ST

/TN

Total # tasks # tasks covered
covered by S uniquely by agent i

Unique coverage is hard to approximate within
a constant factor [Demaine Feige Hajiaghayi
Salavatipour 2006]

Main Results

(+) There is a poly-time algorithm for finding a constant-approximation
contract for submodular f, using value oracle, and for XOS f, using value
and demand oracles [DEFK’23]

(-) No better than constant-approximation, even for submodular f,
and even with both value and demand oracles [DEFK'23, DEFK’24]

* For additive f, it is NP-hard to find the optimal contract, but thereis a an
FPTAS

* No better than Q(vn)-approximation for subadditive f (even for f constant
close to submodular)

Proof Sketch: constant approximation for XOS

Goal: Find a set U satisfying g(U) = const - g(5¥)

? Let T be the demand set under
prices p; = >+/c;f(S)

Lemma 1: f(T) Z%f(S*) we want: —w/c if(8*) =/ 2¢,f(T)
Lemma 2: Foreveryset U, if f(i | U — {i}) = +/2¢;f(U) Vi € U, then g(U) = %f(U) — SO tha{ . .
By definition: f(i | T —{i}) = p; = —,/clf(S) g(T) = Ef(T) = Zf(S*) = 19(5*)

Problem: f (T) may be too large

Idea: remove agents from T until inequality is satisfied
Problem: marginals may decrease (unlike submodular)

Theorem [scaling property of XOS]: for every set T and every ¥ < f(T), can compute a set U € T such that
WS FW)SY and f(ilU—{i}) =5 f(i 1T —{i})
Setting ¥ = —f(S) now gives f(i | U —{i}) = —m > \/m y|eld|ng
gl) == f(U) > const- f(S*) = const- g(S*) =

Multiple Agents: Overview

Multiple Value Oracle Value and Demand Oracle
agents
Lower bound Upper bound Lower bound Upper bound
(pos) (neg) (pos) (neg)
OPT is
FPTA PT i
Additive | 15[2023] ISP N lsd FPTAS NP-hard
HELITE BL 8% & At Diitting et al. [2023a]
Gross- Constant OPT is Constant OPT is
substitutes approx NP-hard approx NP-hard
Constant No PTAS
onstatt . © Constant No PTAS
Submodular approx (if P#£NP) Diitting et al. [2024a]
Diitting et al. [2023a] | Ezra et al. [2024a] hhe Hiking e a 4
No better Constant NO PTAS
XO0S than Q(n!/%) approx Ditting et al. [2023a]
itting et al. a
Ezra et al. [2024a] | Diitting et al. [2023a] &
No better
No bett
Subadditive O(n)-approx 0 e frﬁ than Q(n'/2)
than Q(nl/%) o
Diitting et al. [2023a]
N tant
Super- No constant o constan
modular approx LI
Deo-Campo Vuong et al. [2024]
Dutting et al. 2023a: Dutting Ezra Feldman Kesselheim. Multi-Agent Contracts. FOCS’21 Deo-Campo Vuong et al. 2024: D.-C. Vuong Dughmi Patel Prasad. On Supermpodular Contracts. SODA’24

Dutting et al. 2024a: Dutting Ezra Feldman Kesselheim. Multi-Agent Combinatorial Contracts. Working paper Ezra. et al. 2024: Ezra Feldman Schlesinger. The (In)Approximability of Combinatorial Contracts. ITCS 24

@@ Multiple Agents: Summary

* Key take-aways:

* Submodular as a frontier for poly-time constant-factor approximation
* Non-standard use of prices & demand queries
* New scaling property of XOS functions, that may be of independent interest

* Open problems:

* Gap between upper and lower bounds for GS

* One of the few problems that is hard for GS
* Does it admit an (F)PTAS?

* Beyond binary outcome?

New: Multiple Agents & Multiple Actions

Multiple agents, each of which takes a set of actions [Duetting Ezra Feldman Kesselheim’24]:
Provably very different from either of the special cases

* Constraints on the «;’s incentivizing S are 2-directional = No simple formula for the a;’s

Equilibrium existence is non-trivial (requires potential function argument)

Not all sets can be incentivized

For submodular f, if others do less, it might be beneficial to do less

Main result (+): Poly-time O(1)-approximation for submodular with
value and demand queries

Main result (-): No PTAS for submodular, with value and demand queries

Results require very different tools than ones used in previous special cases

Main Take Aways

* Contract theory is a new frontier in AGT

* Complexity and approximation shed new light on
contract design ,

* Interesting connections to combinatorial auctions
and other combinatorial optimization problems
* E.g., gross substitutes as tractability frontier

e E.g., submodular as frontier for approximation

* Many fundamental problems still open

Thank You!

Resources

e EC'19 & STOC’22 Tutorials (Duetting and Talgam-Cohen]

* Forthcoming (FnTTCS): Algorithmic Contract Theory:
A Survey (Duetting Feldman Talgam-Cohen)

24th Max Planck Advanced Course =
on the Foundations of Computer Science ADFZC())SASI.

26 - 30 August 2024, Saarbricken, Germany

Algorithmic Game Theory

Paul Duetting =7 Elias Koutsoupias
Google Research, Zurich (h% University of Oxford
L
Prophet Inequalities (A Mechanism Design
MN W(

Michal Feldman

Tel-Aviv University

Bernhard von Stengel

London School of Economics and
Political Science (LSE)
Algorithmic Contract Theory

Equilibrium Computation in
Games

o e
I max planck institut

informatik Early registration deadline: July 31, 2024

	Default Section
	Slide 1: Algorithmic Contract Design
	Slide 2: Example: Sponsored Content
	Slide 3: Contract Design
	Slide 4: Algorithms and Incentives
	Slide 5: Algorithmic Contract Design: an Emerging Frontier
	Slide 6: The Algorithmic/Computational Lens
	Slide 7: Plan for this Talk
	Slide 8: The Principal-Agent Problem
	Slide 9: Timing and Objective
	Slide 10
	Slide 11
	Slide 12: Key Results: Optimal Contracts
	Slide 13: Key Results: Optimal Contracts
	Slide 14
	Slide 15: Key Results: Linear Contracts
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Rest of the Talk
	Slide 20: Sources of Complexity in Contract Design
	Slide 21: Single Agent, Many Actions [DEFK’21]
	Slide 22: Single Agent, Many Actions [DEFK’21]
	Slide 23: Single Agent, Many Actions [DEFK’21]
	Slide 24: Optimization Problem
	Slide 25: Oracle Access
	Slide 26: Main Results
	Slide 27
	Slide 28
	Slide 29: Idea for an Algorithm
	Slide 30
	Slide 31
	Slide 32: Step 1: Next Critical alpha
	Slide 33
	Slide 34: Beyond Gross Substitutes
	Slide 35: Beyond Gross Substitutes
	Slide 36: Beyond Complement-Free
	Slide 37
	Slide 38
	Slide 39
	Slide 41: Multipe Actions: Overview
	Slide 42: Multiple Actions: Summary
	Slide 43: Sources of Complexity in Contract Design
	Slide 44: Combinatorial Agency Model
	Slide 45: Contracts and Objective
	Slide 46: Contracts and Objective
	Slide 47: Contracts and Objective
	Slide 48: Contracts and Objective
	Slide 49: Submodular/XOS/Subadditive f
	Slide 50: Coverage Function (submodular)
	Slide 51: Coverage Function (submodular)
	Slide 52: Coverage Function (submodular)
	Slide 53: Main Results
	Slide 55: Proof Sketch: constant approximation for XOS
	Slide 56: Multiple Agents: Overview
	Slide 57: Multiple Agents: Summary
	Slide 59: New: Multiple Agents & Multiple Actions
	Slide 68: Main Take Aways
	Slide 69: Resources
	Slide 70

