
ADFOCS 2024, MPI Summer School

Exercise Set (w/ Solutions): Algorithmic Contract Design

Michal Feldman

August 2024

1 Preliminaries

Set Functions and Oracle Access. Given a set A of n elements, a set function f : 2A → R+ assigns some
real value to every subset of A, where f(X) denotes the value of X ⊆ A. Assume that f is monotone. The
marginal value of a set X given a set Y is denoted by f(X | Y), and defined as f(X | Y) = f(X ∪Y)−f(Y).
When X is a singleton, we sometimes abuse notation and omit the brackets, i.e., for the marginal value of
X = {j} given Y , we write f(j | Y).

Definition 1.1. Let A be a set of size n. A set function f : 2A → R+ is said to be:

• Additive if there exist f1, . . . , fn ∈ R+ such that f(S) =
∑

i∈S fi for every set S ⊆ A.

• Gross substitutes (GS) if it is submodular (see below) and it satisfies the following triplet condition:
for any set S ⊆ A, and any three elements i, j, k ̸∈ S, it holds that

f(i | S) + f({j, k} | S) ≤ max (f(j | S) + f({i, k} | S), f(k | S) + f({i, j} | S)) .

• Budget additive (BA) if there exist f1, . . . , fn ∈ R+ and a budget B ∈ [0, 1] such that for every S ⊆ A,
f(S) = min{B,

∑
i∈S fi}.

• Submodular if for any two sets S ⊆ T ⊆ A, and any element j ̸∈ T , f(j | T) ≤ f(j | S).

• XOS if it is a maximum over additive functions. That is, there exists a set of additive functions
f1, . . . , fℓ such that for every set S ⊆ A, f(S) = maxi∈[ℓ] (fi(S)).

• Subadditive if for any two sets S, T ⊆ A, it holds that f(S) + f(T) ≥ f(S ∪ T).

• Supermodular if for any two sets S ⊆ T ⊆ [n], and any action j ̸∈ T , f(j | T) ≥ f(j | S)

All classes above are complement-free except for the supermodular class. It is well known that Additive ⊂
GS ⊂ Submodular ⊂ XOS ⊂ Subadditive, with strict containment relations. In addition, BA ⊂ Submodular.

Since f is typically of exponential size, it is standard to consider two primitives by which we can access
f , defined by the following types of queries:

• A value query receives a set S ⊂ A and returns f(S).

• A demand query receives a vector of prices p = (p1, . . . , pn) ∈ Rn
≥0, and returns a set S that maximizes

f(S)−
∑

i∈S pi.

1

2 Exercises: Combinatorial contracts

Exercise 2.1. Let Sα, Sβ ⊆ A be two different sets that maximize the agent’s utility for two different
contracts 0 ≤ α < β ≤ 1. Then,

1. f(Sα) < f(Sβ)

2. c(Sα) < c(Sβ)

Solution: The fact that Sα is superior for contract α and Sβ is superior for β implies that

αf(Sβ)− c(Sβ) ≤ αf(Sα)− c(Sα)

βf(Sβ)− c(Sβ) ≥ βf(Sα)− c(Sα)

Rearranging,
α[f(Sβ)− f(Sα)] ≤ β[f(Sβ)− f(Sα)]

Together with the fact that α < β we get that f(Sα) ≤ f(Sβ). Due to consistent tie breaking, it must be
that f(Sα) < f(Sβ). For the second part of the claim, observe that if c(Sα) ≥ c(Sβ), then

u(α, Sβ) = αf(Sβ)− c(Sβ) ≥ αf(Sα)− c(Sα) = u(α, Sα)

Which contradicts the optimality of Sα.

Exercise 2.2. Consider a single-agent combinatorial actions setting. Prove that any setting with an additive
f admits at most n critical points. Find the critical points.

Solution: for every scenario with an additive f , every action i belongs to the agent’s best response if and
only if α ≥ ci/f(i), independent of the other actions. This is the point α satisfying αf(S ∪ i)− ci = αf(S),
independent of the set S. Thus, there are at most n critical points.

Exercise 2.3. Consider a single-agent combinatorial actions setting. Prove that any setting with a su-
permodular f admits at most n critical points. (Hint: show that for any two contracts α < α′ and two
corresponding sets in the agent’s demand Sα, Sα′ it holds that Sα ⊆ Sα′ .)

Solution: We show that for any two contracts α < α′ and two corresponding sets in the agent’s demand
Sα, Sα′ it holds that Sα ⊆ Sα′ . This holds for any setting with supermodular f and submodular c. The
proof follows.

If Sα = Sα′ the claim obviously hold. Otherwise, assume that Sα′ is a maximal best-response for contract
α′ (this is in line with our tie-breaking assumption), and also that Sα \ Sα′ = R is such that R ̸= ∅, we will
show that a contradiction is reached. By the fact that Sα is optimal for α, it must be that

ua(α,R | Sα ∩ Sα′) = ua(α, Sα)− ua(α, Sα ∩ Sα′) ≥ 0

By the supermodularity of f and submodularity of c it holds that f(R | Sα ∩ Sα′) ≤ f(R | Sα′) and
c(R | Sα ∩ Sα′) ≥ c(R | Sα′). Putting everything together we get

ua(α
′, R | Sα′) = α′f(R | Sα′)− c(R | Sα′)

≥ α′f(R | Sα ∩ Sα′)− c(R | Sα ∩ Sα′)

≥ αf(R | Sα ∩ Sα′)− c(R | Sα ∩ Sα′)

= ua(α,R | Sα)

≥ 0,

where the second inequality follows from the monotonicity of f , which imply f(R | Sα ∩ Sα′) ≥ 0. Thus, we
can add R to Sα′ while not losing utility, contradicting its maximality.

2

Exercise 2.4. Consider a single-agent combinatorial actions setting. Prove that the optimal contract problem
for budget additive success probability is NP-hard.

Hint: construct a reduction from subset-sum. Subset-sum receives as input a (multi-)set of positive
integer values X = {x1, . . . , xn} and an integer value Z. The question is whether there exists a subset
S ⊆ X such that

∑
j∈S xj = Z. W.l.o.g., assume that xi < Z for all i (all numbers greater than Z can be

ignored), and that
∑

i∈X xi > Z (otherwise this is an easy instance).

Solution: We prove the hardness by a reduction from subset-sum. Subset-sum receives as input a multi-set
of positive integer values X = {x1, . . . , xn} and an integer value Z. The question is whether there exists a
subset S ⊆ X such that

∑
j∈S xj = Z. W.l.o.g., assume that xi < Z for all i (all numbers greater than Z

can be ignored), and that
∑

i∈X xi > Z (otherwise this is an easy instance).
Given an instance (x1, . . . , xn, Z) to subset-sum, construct an instance to the optimal contract problem

for budget additive functions over n actions as follows. For every action i = 1, . . . , n, set f({i}) = xi, and set
B = Z. I.e., for every set S, f(S) = min(Z,

∑
i∈S xi). Let the cost function be c(i) = ϵ · xi, where ϵ = 1

Z2 .
If there exists a set S such that

∑
i∈S xi = Z, then for a contract of α ≥ ϵ the agent’s best-response is

the set S, and for α < ϵ the agent’s best response is the empty-set. Thus, the optimal contract is to set
α = ϵ where the principal utility is (1− ϵ) · Z.

Consider next the case where there does not exist a set S such that
∑

i∈S xi = Z. Let Z1 = argmin{z >
Z | ∃S ⊆ [n].

∑
i∈S xi = z}, and let S1 be the set that sums to Z1. Similarly, let Z2 = argmax{z < Z | ∃S ⊆

[n].
∑

i∈S xi = z}, and let S2 be the set that sums to Z2.
Every set S such that

∑
i∈S xi > Z gives an agent’s utility of αZ− ϵ

∑
i∈S xi. Thus, S1 is optimal among

all these sets. Similarly, every set S such that
∑

i∈S xi < Z gives an agent’s utility of (α− ϵ)
∑

i∈S xi. Thus,
for α ≥ ϵ, S2 is optimal among all these sets. It follows that there are exactly two critical α’s, namely α1 = ϵ,
where the agent selects S2 and the principal’s utility is (1− ϵ)Z2, and α2 = Z1−Z2

Z−Z2
· ϵ, where the agent selects

S1 and the principal’s utility is (1− Z1−Z2

Z−Z2
· ϵ)Z.

Exercise 2.5. Prove the correctness of the recursive algorithm for enumerating all critical points in poly-
time, given access to a demand oracle.

Solution: We prove that for any segment [α, β], CV(α, β) returns all the critical values in that segment.
We prove it by induction over the number of critical values in the segment.
For the basis of the induction, assume there are no critical values in [α, β]. Thus, it must be that the

agent’s utility is linear in that segment, by the consistency of tie breaking Sα = Sβ — and the algorithm
returns ∅.

If there exists a single critical value, since the agent’s utility is piece-wise linear, Sα ̸= Sβ and the critical
value is at the intersection of the linear functions ua(x, Sα) = xf(Sα)−c(Sα) and ua(x, Sβ) = xf(Sβ)−c(Sβ),

which is exactly γ =
c(Sβ)−c(Sα)
f(Sβ)−f(Sα) . Note that this implies that Sγ = Sβ , as ties are broken in favor of the

principal.
Assume the correctness of the algorithm for any a segment with k > i ≥ 1 critical values and consider

the segment [α, β] with k critical values. The inductive step will show that there is at least one critical
value on each side of γ, so each of the sub-segments [α, γ] and [γ, β] have strictly less than k critical values.
Thus, when calling CV(α, γ) and CV(γ, β), by the induction hypothesis, the critical values for each of these
sub-segments are returned. As implied by the base of the induction, if γ is a critical value it will emerge
from the CV(α, γ) branch in the calls tree.

Let δmin be the smallest critical value in (α, β]. As Sδmin
is the indifference point between Sα and Sδmin

,

δmin =
c(Sδmin

)−c(Sα)

f(Sδmin
)−f(Sα) . Aiming for contradiction, assume δmin ∈ [γ, β]. Thus, Sα dominates Sδmin

in the

segment [α, γ) and at γ:
ua(Sβ , γ) = ua(Sα, γ) ≥ ua(Sδmin

, γ)

By the monotonicity lemma f(Sβ) > f(Sδmin) and so Sβ dominates Sδmin in [γ, β], contradicting the opti-
mality of Sδmin .

An analogous argument can be applied to show the existence of a critical value in the segment (γ, β]:
let δmax be the largest critical value in [α, β]. Observe that Sδmax

= Sβ , and let S be the optimal set just

3

preceding Sβ (that is, for every sufficiently small ϵ > 0, Sδmax−ϵ = S). Aiming for contradiction, assume
δmax ∈ [α, γ]. As δmax is the indifference point between S and Sβ , and f(Sβ) > f(S), it holds that Sβ

dominates S in the segment [γ, β]. Under contract γ:

ua(Sα, γ) = ua(Sβ , γ) ≥ ua(S, γ)

Combined with f(S) > f(Sα) (by Lemma ??), we get that for any δ < γ:

ua(Sα, δ) = ua(Sα, γ)− (γ − δ)f(Sα)

≥ ua(S, γ)− (γ − δ)f(Sα)

> ua(S, γ)− (γ − δ)f(S)

= ua(S, δ)

This implies that S in never optimal, a contradiction.

3 Exercises: Ambiguous contracts

Exercise 3.1. Prove that in the following example, the ambiguity gap is unbounded.

rewards: r1 = −r r2 = −r r3 = 0 r4 = r costs

action 1: 0 0 1 0 c1 = 0

action 2: 0.5 0 0 0.5 c2 = 10

action 3: 0 0.5 0 0.5 c3 = 10

action 4: 0.2 0.2 0 0.6 c4 = 20

Solution: Actions 2 and 3 generate negative welfare, and hence only action 4 is capable (depending on r)
of producing positive welfare. Welfare is given by

max{0, 0.2r − 20},

and is positive if and only if r > 100. An optimal classic contract implementing action 4 is ⟨t, 4⟩ =
⟨(0, 0, 0, 100), 4⟩, which gives

UP (⟨t, 4⟩) = 0.2r − 60,

which is positive if and only if r > 300. An optimal ambiguous contract implementing action 4 is ⟨τ, 4⟩ =
⟨{t1, t2}, 4⟩ = ⟨{(100, 0, 0, 0), (0, 100, 0, 0)}, 4⟩, giving

UP (⟨τ, 4⟩) = 0.2r − 20,

which is positive if and only if r > 100. Hence for r ∈ (100, 300], the best classic contract generates a payoff
of 0, while the best ambiguous contract generates a positive payoff, yielding an infinite ambiguity gap.

Exercise 3.2. Prove that in the following example the principal gains from using an ambiguous contract by
implementing action 6, which cannot be implemented with a classic contract.

rewards: r1 = −200 r2 = 0 r3 = 21 r4 = 21 costs

action 1: 0 1 0 0 c1 = 0

action 2: 0.1 0 0.9 0 c2 = 8

action 3: 0.1 0 0 0.9 c3 = 8

action 4: 0 0 1 0 c4 = 10

action 5: 0 0 0 1 c5 = 10

action 6: 0 0 0.5 0.5 c6 = 11

4

Solution: Action 6 cannot be implemented by a classic contract, with the half/half combination of actions
4 and 5 giving the same distribution over outcomes at a lower cost. Actions 2 and 3 have a negative expected
welfare, and so will never be optimal for the principal. Actions 4 and 5 can both be implemented with a
classic contract, and yield the same maximal utility for the principal. Optimal classic contracts for these
actions include ⟨(0, 0, 20, 0), 4⟩ and ⟨(0, 0, 0, 20), 5⟩, each giving the principal an expected utility of 1. In
contrast, the optimal ambiguous contract ⟨{(0, 0, 22, 0), (0, 0, 0, 22)}, 6⟩ implements action 6, for an expected
utility of 10.

Exercise 3.3. Prove that the algorithm shown in class for computing the optimal ambiguous contract im-
plementing action i indeed implements action i.

Solution: We first show that if there exists an action i′ ̸= i such that pi′ = pi and ci′ < ci, then it
is impossible to implement action i with an ambiguous contract. For the sake of contradiction, suppose
that ambiguous contract ⟨τ, i⟩ = ⟨{t1, . . . , tk}, i⟩ implements action i. In this case, since pi = pi′ , we have
Ti(t

ℓ) = Ti′(t
ℓ′) for all ℓ, ℓ′ ∈ [k]. But then UA(i

′ | τ) = minℓ∈[k] Ti′(t
ℓ)−ci′ > minℓ∈[k] Ti(t

ℓ)−ci = UA(i | τ),
contradicting the fact that ⟨τ, i⟩ is incentive compatible.

Next we show that if there is no action i′ ̸= i such that pi′ = pi and ci′ < ci, then action i can be
implemented with an ambiguous contract. In this case, for each action i′ ̸= i, either (i) pi′ ̸= pi or (ii)
pi′ = pi and ci′ ≥ ci. Let A be the actions of type (i). If A is empty, then i must be a zero-cost action. A
(consistent) ambiguous contract for implementing that action is ⟨τ, i⟩ with τ = {(0, . . . , 0)}.

Assume A is nonempty. We construct an ambiguous contract ⟨τ, i⟩ for implementing action i that has
one contract ti

′
for each action i′ ̸= i of type (i). For each action i′ ∈ A, let j(i′) be an outcome j such that

pij/pi′j is maximal. Note that pij(i′)/pi′j(i′) > 1. Let

T = max
i′∈A

{
min

{
x ≥ 0

∣∣∣∣ pij(i′) · x

pij(i′)
− ci ≥ pi′j(i′) ·

x

pij(i′)
− ci′

}}
.

For each i′ ∈ A, let ti
′

j(i′) = T/pij(i′) and ti
′

j′ = 0 for j′ ̸= j(i′).

We conclude by verifying that ⟨τ, i⟩ = ⟨{ti′ | i′ ∈ A}, i⟩ is a (consistent) ambiguous contract that
implements action i. It is easy to check consistency.

To see that ⟨τ, i⟩ is incentive compatible, first consider actions i′ ̸= i of type (ii). For these actions we
have

UA(i
′ | τ) = UA(i | τ) + ci − ci′ ≤ UA(i | τ),

where we used that pi′ = pi and ci′ ≥ ci.
Next consider actions i′ ̸= i of type (i). For these actions, there must be a Ti′ ≥ 0 with Ti′ ≤ T such that

pij(i′) ·
Ti′

pij(i′)
− ci ≥ pi′j(i′) ·

Ti′

pij(i′)
− ci′ .

Since Ti′ ≤ T and pij(i′) > pi′j(i′) this implies

UA(i | τ) = pij(i′) ·
T

pij(i′)
− ci ≥ pi′j(i′) ·

T

pij(i′)
− ci′

= min
i′′∈A

(
pi′j(i′′) ·

T

pij(i′′)
− ci′

)
= UA(i

′ | τ),

where the first equality holds by consistency, the second equality holds by definition of j(i′), and the final
equality holds by definition.

5

