
ADFOCS 2024, MPI Summer School

Exercise Set: Algorithmic Contract Design

Michal Feldman

August 2024

1 Preliminaries

Set Functions and Oracle Access. Given a set A of n elements, a set function f : 2A → R+ assigns some
real value to every subset of A, where f(X) denotes the value of X ⊆ A. Assume that f is monotone. The
marginal value of a set X given a set Y is denoted by f(X | Y), and defined as f(X | Y) = f(X ∪Y)−f(Y).
When X is a singleton, we sometimes abuse notation and omit the brackets, i.e., for the marginal value of
X = {j} given Y , we write f(j | Y).

Definition 1.1. Let A be a set of size n. A set function f : 2A → R+ is said to be:

• Additive if there exist f1, . . . , fn ∈ R+ such that f(S) =
∑

i∈S fi for every set S ⊆ A.

• Gross substitutes (GS) if it is submodular (see below) and it satisfies the following triplet condition:
for any set S ⊆ A, and any three elements i, j, k ̸∈ S, it holds that

f(i | S) + f({j, k} | S) ≤ max (f(j | S) + f({i, k} | S), f(k | S) + f({i, j} | S)) .

• Budget additive (BA) if there exist f1, . . . , fn ∈ R+ and a budget B ∈ [0, 1] such that for every S ⊆ A,
f(S) = min{B,

∑
i∈S fi}.

• Submodular if for any two sets S ⊆ T ⊆ A, and any element j ̸∈ T , f(j | T) ≤ f(j | S).

• XOS if it is a maximum over additive functions. That is, there exists a set of additive functions
f1, . . . , fℓ such that for every set S ⊆ A, f(S) = maxi∈[ℓ] (fi(S)).

• Subadditive if for any two sets S, T ⊆ A, it holds that f(S) + f(T) ≥ f(S ∪ T).

• Supermodular if for any two sets S ⊆ T ⊆ [n], and any action j ̸∈ T , f(j | T) ≥ f(j | S)

All classes above are complement-free except for the supermodular class. It is well known that Additive ⊂
GS ⊂ Submodular ⊂ XOS ⊂ Subadditive, with strict containment relations. In addition, BA ⊂ Submodular.

Since f is typically of exponential size, it is standard to consider two primitives by which we can access
f , defined by the following types of queries:

• A value query receives a set S ⊂ A and returns f(S).

• A demand query receives a vector of prices p = (p1, . . . , pn) ∈ Rn
≥0, and returns a set S that maximizes

f(S)−
∑

i∈S pi.

1

2 Exercises: Combinatorial contracts

Exercise 2.1. Let Sα, Sβ ⊆ A be two different sets that maximize the agent’s utility for two different
contracts 0 ≤ α < β ≤ 1. Then,

1. f(Sα) < f(Sβ)

2. c(Sα) < c(Sβ)

Exercise 2.2. Consider a single-agent combinatorial actions setting. Prove that any setting with an additive
f admits at most n critical points. Find the critical points.

Exercise 2.3. Consider a single-agent combinatorial actions setting. Prove that any setting with a su-
permodular f admits at most n critical points. (Hint: show that for any two contracts α < α′ and two
corresponding sets in the agent’s demand Sα, Sα′ it holds that Sα ⊆ Sα′ .)

Exercise 2.4. Consider a single-agent combinatorial actions setting. Prove that the optimal contract problem
for budget additive success probability is NP-hard.

Hint: construct a reduction from subset-sum. Subset-sum receives as input a (multi-)set of positive
integer values X = {x1, . . . , xn} and an integer value Z. The question is whether there exists a subset
S ⊆ X such that

∑
j∈S xj = Z. W.l.o.g., assume that xi < Z for all i (all numbers greater than Z can be

ignored), and that
∑

i∈X xi > Z (otherwise this is an easy instance).

Exercise 2.5. Prove the correctness of the recursive algorithm for enumerating all critical points in poly-
time, given access to a demand oracle.

3 Exercises: Ambiguous contracts

Exercise 3.1. Prove that in the following example, the ambiguity gap is unbounded.

rewards: r1 = −r r2 = −r r3 = 0 r4 = r costs

action 1: 0 0 1 0 c1 = 0

action 2: 0.5 0 0 0.5 c2 = 10

action 3: 0 0.5 0 0.5 c3 = 10

action 4: 0.2 0.2 0 0.6 c4 = 20

Exercise 3.2. Prove that in the following example the principal gains from using an ambiguous contract by
implementing action 6, which cannot be implemented with a classic contract.

rewards: r1 = −200 r2 = 0 r3 = 21 r4 = 21 costs

action 1: 0 1 0 0 c1 = 0

action 2: 0.1 0 0.9 0 c2 = 8

action 3: 0.1 0 0 0.9 c3 = 8

action 4: 0 0 1 0 c4 = 10

action 5: 0 0 0 1 c5 = 10

action 6: 0 0 0.5 0.5 c6 = 11

Exercise 3.3. Prove that the algorithm shown in class for computing the optimal ambiguous contract im-
plementing action i indeed implements action i.

2

