ADFOCS 2024, MPI Summer School
Exercise Set: Algorithmic Contract Design

Michal Feldman

August 2024

1 Preliminaries

Set Functions and Oracle Access. Given a set A of n elements, a set function f : 24 — Rt assigns some
real value to every subset of A, where f(X) denotes the value of X C A. Assume that f is monotone. The
marginal value of a set X given a set Y is denoted by f(X |Y), and defined as f(X | Y) = f(XUY)— f(Y).
When X is a singleton, we sometimes abuse notation and omit the brackets, i.e., for the marginal value of
X ={j} given Y, we write f(j | Y).

Definition 1.1. Let A be a set of size n. A set function f : 24 — RT is said to be:
e Additive if there exist f1,..., f, € RT such that f(S) =3,cq fi for every set S C A.

e Gross substitutes (GS) if it is submodular (see below) and it satisfies the following triplet condition:
for any set S C A, and any three elements i,j,k & S, it holds that

fG18)+ f{F, k1 S) <max(f(5]5)+ f{i,k} | 9), f(k|S)+ f({i,j}5)).
e Budget additive (BA) if there exist f1,..., fn € RT and a budget B € [0, 1] such that for every S C A,
f(8) =min{B,} ;s fi}-
e Submodular if for any two sets S CT C A, and any element 5 €T, f(G|T) < f(5|59).

e XOS if it is a mazrimum over additive functions. That is, there exists a set of additive functions
Jis .-+, fe such that for every set S C A, f(S) = max;epy (fi(S5))-

e Subadditive if for any two sets S, T C A, it holds that f(S)+ f(T) > f(SUT).

e Supermodular if for any two sets S C T C [n], and any action § €T, f(G|T)> f(j|S)

All classes above are complement-free except for the supermodular class. It is well known that Additive C
GS C Submodular C XOS C Subadditive, with strict containment relations. In addition, BA C Submodular.

Since f is typically of exponential size, it is standard to consider two primitives by which we can access
f, defined by the following types of queries:

e A walue query receives a set S C A and returns f(5).

e A demand query receives a vector of prices p = (p1,...,pn) € RZ,, and returns a set S that maximizes

f(S) - Ziespi~

2 Exercises: Combinatorial contracts

Exercise 2.1. Let S,,S3 C A be two different sets that mazimize the agent’s utility for two different
contracts 0 < a < < 1. Then,

1. f(Sa) < f(Ss)
2. ¢(Sq) < c(Sh)

Exercise 2.2. Consider a single-agent combinatorial actions setting. Prove that any setting with an additive
f admits at most n critical points. Find the critical points.

Exercise 2.3. Consider a single-agent combinatorial actions setting. Prove that any setting with a su-
permodular f admits at most n critical points. (Hint: show that for any two contracts a < &' and two
corresponding sets in the agent’s demand Sy, S it holds that S, C Sur.)

Exercise 2.4. Consider a single-agent combinatorial actions setting. Prove that the optimal contract problem
for budget additive success probability is NP-hard.

Hint: construct a reduction from SUBSET-SUM. Subset-sum receives as input a (multi-)set of positive
integer values X = {x1,...,2,} and an integer value Z. The question is whether there exists a subset
S C X such that) ,.qxj = Z. W.lo.g., assume that x; < Z for all i (all numbers greater than Z can be
ignored), and that) ;. v; > Z (otherwise this is an easy instance).

Exercise 2.5. Prove the correctness of the recursive algorithm for enumerating all critical points in poly-
time, given access to a demand oracle.

3 Exercises: Ambiguous contracts

Exercise 3.1. Prove that in the following example, the ambiguity gap is unbounded.

rewards: r=-r rg = —r rg =0 ry=T costs
action 1: 0 0 1 0 c1=0
action 2: 0.5 0 0 0.5 co =10
action 3: 0 0.5 0 0.5 c3 =10
action 4: 0.2 0.2 0 0.6 cy =20

Exercise 3.2. Prove that in the following example the principal gains from using an ambiguous contract by
implementing action 6, which cannot be itmplemented with a classic contract.

rewards: | r1 = —200 ro=0 r3=21 ry=21 costs

action 1: 0 1 0 0 c1=0
action 2: 0.1 0 0.9 0 cop =8
action 3: 0.1 0 0.9 c3 =8
action 4: 0 0 1 0 cy =10
action 5: 0 0 1 cs = 10
action 6: 0 0 0.5 0.5 cg =11

Exercise 3.3. Prove that the algorithm shown in class for computing the optimal ambiguous contract im-
plementing action i indeed implements action 1.

