Simple Sublinear-Time Edit Distance Approximation

Tomasz Kociumaka

Based on a FOCS'22 paper with Elazar Goldenberg, Robert Krauthgamer, and Barna Saha

ADFOCS 2024, August 29th, 2024

Edit Distance

Edit distance ED(X, Y)

Minimum number of character insertions, deletions, and substitutions to transform X to Y.

$$\mathsf{ED}(X,Y)=3$$

Computing Edit Distance

Exact algorithms

Reference	Time	Remarks
Vintsyuk'68, Needleman & Wunsch'70,	$\mathcal{O}(n^2)$	
Backurs, Indyk; STOC'15	$\Omega(n^{2-o(1)})$	conditioned on SETH

Computing Edit Distance

Exact algorithms

Reference	Time	Remarks
Vintsyuk'68, Needleman & Wunsch'70,	$\mathcal{O}(n^2)$	
Backurs, Indyk; STOC'15	$\Omega(n^{2-o(1)})$	conditioned on SETH

Approximation algorithms (selected results, all randomized)

Reference	Time	Approx.
Andoni, Onak; STOC'09	$n^{1+o(1)}$	$n^{o(1)}$
Chakraborty, Das, Goldenberg, Koucky, Saks; FOCS'18	$\widetilde{\mathcal{O}}(n^{12/7})$	$\mathcal{O}(1)$
Goldenberg, Rubinstein, Saha; STOC'20	$n^{1.6+o(1)}$	3 + o(1)
Andoni, Nosatzki; FOCS'20	$\mathcal{O}(n^{1+\varepsilon})$	$\mathcal{O}_{arepsilon}(1)$

Computing Edit Distance

Exact algorithms

Reference	Time	Remarks
Vintsyuk'68, Needleman & Wunsch'70,	$\mathcal{O}(n^2)$	
Backurs, Indyk; STOC'15	$\Omega(n^{2-o(1)})$	conditioned on SETH

Approximation algorithms (selected results, all randomized)

Reference	Time	Approx.
Andoni, Onak; STOC'09	$\hat{\mathcal{O}}(n)$	$\hat{\mathcal{O}}(1)$
Chakraborty, Das, Goldenberg, Koucky, Saks; FOCS'18	$\widetilde{\mathcal{O}}(n^{12/7})$	$\mathcal{O}(1)$
Goldenberg, Rubinstein, Saha; STOC'20	$\hat{\mathcal{O}}(n^{1.6})$	3 + o(1)
Andoni, Nosatzki; FOCS'20	$\mathcal{O}(n^{1+\varepsilon})$	$\mathcal{O}_{arepsilon}(1)$

Sublinear-Time Edit Distance Approximation

Model

- lacksquare $\mathcal{O}(1)$ -time random access to X and Y
- Monte-Carlo randomization

Adaptive algorithms: may issue access queries one by one.

Non-adaptive algorithms: issue a single batch of access queries.

Sublinear-Time Edit Distance Approximation

Model

- lacksquare $\mathcal{O}(1)$ -time random access to X and Y
- Monte-Carlo randomization

Adaptive algorithms: may issue access queries one by one.

Non-adaptive algorithms: issue a single batch of access queries.

Bad news: Testing ED(X,Y)=0 requires $\Omega(n)$ queries!

Sublinear-Time Edit Distance Approximation

Model

- $lue{\mathcal{O}}(1)$ -time random access to X and Y
- Monte-Carlo randomization

Adaptive algorithms: may issue access queries one by one.

Non-adaptive algorithms: issue a single batch of access queries.

Bad news: Testing ED(X,Y)=0 requires $\Omega(n)$ queries!

$(k,K)\text{-}\mathsf{Gap}\ \mathsf{Edit}\ \mathsf{Distance}\ \mathsf{Problem}\quad [\mathsf{BEK}^+03,\mathsf{AO09},\mathsf{GKS19},\mathsf{KS20},\mathsf{GKKS22},\mathsf{BCFN22},\mathsf{BCFK24}]$

Given random access to strings $X,Y\in\Sigma^n$, and integer parameters $0\leq k\leq K\leq n$, return:

- **CLOSE** if $ED(X,Y) \leq k$,
- **FAR** if ED(X,Y) > K,
- an arbitrary answer otherwise.

Gap Edit Distance Problem: Selected Results

Theorem

Goldenberg, K., Krauthgamer, Saha; FOCS'22

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit Distance problem in $\hat{\mathcal{O}}(\frac{nk}{K})$ time provided that $K>k\cdot n^{\Omega(1)}$.

■ The first algorithm to achieve sublinear runtime for the whole spectrum of parameters.

Gap Edit Distance Problem: Selected Results

Theorem

Goldenberg, K., Krauthgamer, Saha; FOCS'22

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit Distance problem in $\hat{\mathcal{O}}(\frac{nk}{K})$ time provided that $K>k\cdot n^{\Omega(1)}$.

■ The first algorithm to achieve sublinear runtime for the whole spectrum of parameters.

Theorem

 $Goldenberg,\ K.,\ Krauthgamer,\ Saha;\ FOCS'22$

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit distance problem using $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K})$ queries and in $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K}+\frac{nk^2}{K^2})$ time provided that $K>k\cdot n^{\Omega(1)}$.

lacksquare Up to $\widetilde{\mathcal{O}}(\cdot)$, the query complexity is unconditionally optimal for non-adaptive algorithms.

Gap Edit Distance Problem: Selected Results

Theorem

Goldenberg, K., Krauthgamer, Saha; FOCS'22

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit Distance problem in $\hat{\mathcal{O}}(\frac{nk}{K})$ time provided that $K>k\cdot n^{\Omega(1)}$.

■ The first algorithm to achieve sublinear runtime for the whole spectrum of parameters.

Theorem

 $Goldenberg,\ K.,\ Krauthgamer,\ Saha;\ FOCS'22$

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit distance problem using $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K})$ queries and in $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K}+\frac{nk^2}{K^2})$ time provided that $K>k\cdot n^{\Omega(1)}$.

lacktriangle Up to $\mathcal{O}(\cdot)$, the query complexity is unconditionally optimal for non-adaptive algorithms.

Theorem

Bringmann, Cassis, Fischer, K.; SODA'24

There is an adaptive algorithm that solves the (k,K)-Gap Edit distance problem in $\widetilde{\mathcal{O}}(\frac{n}{K}+\sqrt{nk}+k^2)$ time provided that $K>k\cdot n^{\Omega(1)}$.

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- 1 Partition $X = X_1 \cdots X_m$ and $Y = Y_1 \cdots Y_m$ into m blocks of equal length.
- **2** For each $i \in [1 \dots m]$:
 - With probability ρ , use the oracle to distinguish $ED(X_i, Y_i) \leq k$ from $ED(X_i, Y_i) > \hat{k}$.
- 3 Return CLOSE if and only if all oracle calls returned CLOSE.

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- 1 Partition $X = X_1 \cdots X_m$ and $Y = Y_1 \cdots Y_m$ into m blocks of equal length.
- **2** For each $i \in [1 ... m]$:
 - With probability ρ , use the oracle to distinguish $ED(X_i, Y_i) \leq k$ from $ED(X_i, Y_i) > \hat{k}$.
- 3 Return CLOSE if and only if all oracle calls returned CLOSE.

Correctness:

■ If $ED(X,Y) \le k$, then $ED(X_i,Y_i) \le ED(X,Y) \le k$, so all oracle calls return CLOSE.

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- 1 Partition $X = X_1 \cdots X_m$ and $Y = Y_1 \cdots Y_m$ into m blocks of equal length.
- **2** For each $i \in [1 ... m]$:
 - With probability ρ , use the oracle to distinguish $ED(X_i, Y_i) \leq k$ from $ED(X_i, Y_i) > \hat{k}$.
- 3 Return CLOSE if and only if all oracle calls returned CLOSE.

- If $ED(X,Y) \le k$, then $ED(X_i,Y_i) \le ED(X,Y) \le k$, so all oracle calls return CLOSE.
- If all oracle calls return CLOSE, then $|\{i: \mathsf{ED}(X_i,Y_i) > \hat{k}\}| \lesssim \frac{1}{\rho}.$

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- 1 Partition $X = X_1 \cdots X_m$ and $Y = Y_1 \cdots Y_m$ into m blocks of equal length.
- **2** For each $i \in [1 ... m]$:
 - With probability ρ , use the oracle to distinguish $\mathsf{ED}(X_i,Y_i) \leq k$ from $\mathsf{ED}(X_i,Y_i) > \hat{k}$.
- 3 Return CLOSE if and only if all oracle calls returned CLOSE.

- If $ED(X,Y) \le k$, then $ED(X_i,Y_i) \le ED(X,Y) \le k$, so all oracle calls return CLOSE.
- ullet If all oracle calls return CLOSE, then $|\{i: \mathsf{ED}(X_i,Y_i) > \hat{k}\}| \lesssim rac{1}{
 ho}.$ Thus,

$$\mathsf{ED}(X,Y) \leq \sum_{i=1}^m \mathsf{ED}(X_i,Y_i) \lesssim m\hat{k} + \frac{1}{\rho} \cdot \frac{n}{m}$$

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- 1 Partition $X=X_1\cdots X_m$ and $Y=Y_1\cdots Y_m$ into $m\approx \frac{K}{k}$ blocks of equal length.
- **2** For each $i \in [1 ... m]$:
 - $\blacksquare \text{ With probability } \rho \approx \frac{n}{mK} \text{, use the oracle to distinguish } \mathrm{ED}(X_i,Y_i) \leq k \text{ from } \mathrm{ED}(X_i,Y_i) > \hat{k}.$
- 3 Return CLOSE if and only if all oracle calls returned CLOSE.

- If $ED(X,Y) \le k$, then $ED(X_i,Y_i) \le ED(X,Y) \le k$, so all oracle calls return CLOSE.
- If all oracle calls return CLOSE, then $|\{i: \mathsf{ED}(X_i,Y_i) > \hat{k}\}| \lesssim \frac{1}{\rho}$. Thus,

$$\mathsf{ED}(X,Y) \leq \sum_{i=1}^m \mathsf{ED}(X_i,Y_i) \lesssim m\hat{k} + \frac{1}{\rho} \cdot \frac{n}{m} \lesssim K.$$

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- **1** Partition $X = X_1 \cdots X_m$ and $Y = Y_1 \cdots Y_m$ into $m \approx \frac{K}{k}$ blocks of equal length.
- **2** For each $i \in [1 \dots m]$:
 - $\blacksquare \text{ With probability } \rho \approx \frac{n}{mK} \text{, use the oracle to distinguish } \mathrm{ED}(X_i,Y_i) \leq k \text{ from } \mathrm{ED}(X_i,Y_i) > \hat{k}.$
- 3 Return CLOSE if and only if all oracle calls returned CLOSE.

Correctness:

- If $ED(X,Y) \le k$, then $ED(X_i,Y_i) \le ED(X,Y) \le k$, so all oracle calls return CLOSE.
- ullet If all oracle calls return CLOSE, then $|\{i: \mathsf{ED}(X_i,Y_i) > \hat{k}\}| \lesssim rac{1}{
 ho}.$ Thus,

$$\mathsf{ED}(X,Y) \leq \sum_{i=1}^m \mathsf{ED}(X_i,Y_i) \lesssim m\hat{k} + \frac{1}{\rho} \cdot \frac{n}{m} \lesssim K.$$

Expected running time: $\hat{\mathcal{O}}(\rho \cdot m \cdot \frac{n}{m}) = \hat{\mathcal{O}}(\rho \cdot n) = \hat{\mathcal{O}}(\frac{n^2}{mK}) = \hat{\mathcal{O}}(\frac{n^2k}{K^2}).$

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- **1** For q = 0 to $\log n$:
 - a Partition $X=X_{q,1}\cdots X_{q,2^q}$ and $Y=Y_{q,1}\cdots Y_{q,2^q}$ into 2^q blocks of equal length.
 - **b** For each $i \in [1...2^q]$:
 - $\blacksquare \text{ With probability } \rho \approx \frac{k}{K} \text{, use the oracle to distinguish } \mathrm{ED}(X_{q,i},Y_{q,i}) \leq k \text{ from } \mathrm{ED}(X_{q,i},Y_{q,i}) > \hat{k}.$
- 2 Return CLOSE if and only if all oracle calls returned CLOSE.

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- **1** For q = 0 to $\log n$:
 - Partition $X = X_{q,1} \cdots X_{q,2^q}$ and $Y = Y_{q,1} \cdots Y_{q,2^q}$ into 2^q blocks of equal length.
 - For each $i \in [1 \dots 2^q]$:
 - $\blacksquare \text{ With probability } \rho \approx \frac{k}{K} \text{, use the oracle to distinguish } \mathrm{ED}(X_{q,i},Y_{q,i}) \leq k \text{ from } \mathrm{ED}(X_{q,i},Y_{q,i}) > \hat{k}.$
- 2 Return CLOSE if and only if all oracle calls returned CLOSE.

Correctness:

 $\blacksquare \ \, \mathsf{If} \ \, \mathsf{ED}(X,Y) \leq k \mathsf{, then} \ \, \mathsf{ED}(X_{q,i},Y_{q,i}) \leq \mathsf{ED}(X,Y) \leq k \mathsf{, so all oracle calls return CLOSE}.$

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- **1** For q = 0 to $\log n$:
 - Partition $X = X_{q,1} \cdots X_{q,2^q}$ and $Y = Y_{q,1} \cdots Y_{q,2^q}$ into 2^q blocks of equal length.
 - **b** For each $i \in [1...2^q]$:
 - $\blacksquare \text{ With probability } \rho \approx \frac{k}{K} \text{, use the oracle to distinguish } \mathrm{ED}(X_{q,i},Y_{q,i}) \leq k \text{ from } \mathrm{ED}(X_{q,i},Y_{q,i}) > \hat{k}.$
- 2 Return CLOSE if and only if all oracle calls returned CLOSE.

- If $ED(X,Y) \le k$, then $ED(X_{q,i},Y_{q,i}) \le ED(X,Y) \le k$, so all oracle calls return CLOSE.
- If all oracle calls return CLOSE, then $|\{(q,i): \mathsf{ED}(X_{q,i},Y_{q,i}) > \hat{k}\}| \lesssim \frac{1}{\rho}$.

Lemma

$X_{0,1}$								
$X_{1,1}$ $X_{1,2}$								
X_{2}	$X_{2,1}$ $X_{2,2}$			$X_{2,3}$		$X_{2,4}$		
$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	$X_{3,6}$	$X_{3,7}$	$X_{3,8}$	
$X_{4,1} X_{4,2}$	$X_{4,3} X_{4,4}$	$X_{4,5} X_{4,6}$	$X_{4,7} X_{4,8}$	$X_{4,9} X_{4,10}$	$X_{4,11}X_{4,12}$	$X_{4,13}X_{4,14}$	$X_{4,15}X_{4,16}$	

Lemma

$X_{0,1}$								
$X_{1,1}$ $X_{1,2}$								
X_{i}	$X_{2,1}$ $X_{2,2}$			$X_{2,3}$		$X_{2,4}$		
$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	$X_{3,6}$	$X_{3,7}$	$X_{3,8}$	
$X_{4,1} X_{4,2}$	$X_{4,3} X_{4,4}$	$X_{4,5} X_{4,6}$	$X_{4,7} X_{4,8}$	$X_{4,9} X_{4,10}$	$X_{4,11}X_{4,12}$	$X_{4,13}X_{4,14}$	$X_{4,15}X_{4,16}$	

Lemma

$X_{0,1}$								
$X_{1,1}$ $X_{1,2}$								
X_{2}	$X_{2,1}$ $X_{2,2}$		$X_{2,3}$		$X_{2,4}$			
$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	$X_{3,6}$	$X_{3,7}$	$X_{3,8}$	
$X_{4,1} X_{4,2}$	$X_{4,3} X_{4,4}$	$X_{4,5} X_{4,6}$	$X_{4,7} X_{4,8}$	$X_{4,9} X_{4,10}$	$X_{4,11}X_{4,12}$	$X_{4,13}X_{4,14}$	$X_{4,15}X_{4,16}$	

Lemma

$X_{0,1}$								
$X_{1,1}$ $X_{1,2}$								
X_{i}	$X_{2,1}$ $X_{2,2}$		$X_{2,3}$		$X_{2,4}$			
$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	$X_{3,6}$	$X_{3,7}$	$X_{3,8}$	
$X_{4,1} X_{4,2}$	$Y \cup Y \cup$							

Lemma

$X_{0,1}$								
$X_{1,1}$				$X_{1,2}$				
X_{i}	$X_{2,1}$ $X_{2,2}$			X_{i}	2,3	$X_{2,4}$		
$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	$X_{3,6}$	$X_{3,7}$	$X_{3,8}$	
$X_{4,1} X_{4,2}$	$X_{4,3} X_{4,4}$	$X_{4,5} X_{4,6}$	$X_{4,7} X_{4,8}$	$X_{4,9} X_{4,10}$	$X_{4,11}X_{4,12}$	$X_{4,13}X_{4,14}$	$X_{4,15}X_{4,16}$	

Lemma

$X_{0,1}$								
$X_{1,1}$					$X_{:}$	1,2		
X_{i}	$X_{2,1}$ $X_{2,2}$			X_{i}	2,3	$X_{2,4}$		
$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	$X_{3,6}$	$X_{3,7}$	$X_{3,8}$	
$X_{4,1} X_{4,2}$	$X_{4,3} X_{4,4}$	$X_{4,5} X_{4,6}$	$X_{4,7} X_{4,8}$	$X_{4,9} X_{4,10}$	$X_{4,11}X_{4,12}$	$X_{4,13}X_{4,14}$	$X_{4,15}X_{4,16}$	

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- 1 For q = 0 to $\log n$:
 - Partition $X = X_{q,1} \cdots X_{q,2^q}$ and $Y = Y_{q,1} \cdots Y_{q,2^q}$ into 2^q blocks of equal length.
 - **b** For each $i \in [1...2^q]$:
 - With probability $\rho \approx \frac{k}{K}$, use the oracle to distinguish $\mathrm{ED}(X_{q,i},Y_{q,i}) \leq k$ from $\mathrm{ED}(X_{q,i},Y_{q,i}) > \hat{k}$.
- 2 Return CLOSE if and only if all oracle calls returned CLOSE.

- If $ED(X,Y) \le k$, then $ED(X_{q,i},Y_{q,i}) \le ED(X,Y) \le k$, so all oracle calls return CLOSE.
- If all oracle calls return CLOSE, then $|\{(q,i): \mathsf{ED}(X_{q,i},Y_{q,i}) > \hat{k}\}| \lesssim \frac{1}{\rho}$. By the lemma, X can be decomposed into $\approx \frac{2}{\rho}$ blocks $X_{q,i}$ satisfying $\mathsf{ED}(X_{q,i},Y_{q,i}) \leq \hat{k}$:

$$\mathsf{ED}(X,Y) \lesssim \frac{2}{\rho} \cdot \hat{k} \lesssim \frac{K}{k} \cdot k = K.$$

Oracle (almost linear-time approximation of edit distance)

The (k, \hat{k}) -Gap Edit Distance problem can be solved in $\hat{\mathcal{O}}(n)$ time for some $\hat{k} \leq k \cdot \hat{\mathcal{O}}(1)$.

- 1 For q = 0 to $\log n$:
 - Partition $X = X_{q,1} \cdots X_{q,2^q}$ and $Y = Y_{q,1} \cdots Y_{q,2^q}$ into 2^q blocks of equal length.
 - For each $i \in [1...2^q]$:
 - $\blacksquare \text{ With probability } \rho \approx \frac{k}{K} \text{, use the oracle to distinguish } \mathrm{ED}(X_{q,i},Y_{q,i}) \leq k \text{ from } \mathrm{ED}(X_{q,i},Y_{q,i}) > \hat{k}.$
- 2 Return CLOSE if and only if all oracle calls returned CLOSE.

Correctness:

- If $\mathrm{ED}(X,Y) \leq k$, then $\mathrm{ED}(X_{q,i},Y_{q,i}) \leq \mathrm{ED}(X,Y) \leq k$, so all oracle calls return CLOSE.
- If all oracle calls return CLOSE, then $|\{(q,i): \mathsf{ED}(X_{q,i},Y_{q,i}) > \hat{k}\}| \lesssim \frac{1}{\rho}$. By the lemma, X can be decomposed into $\approx \frac{2}{\rho}$ blocks $X_{q,i}$ satisfying $\mathsf{ED}(X_{q,i},Y_{q,i}) \leq \hat{k}$:

$$\mathsf{ED}(X,Y) \lesssim \frac{2}{\rho} \cdot \hat{k} \lesssim \frac{K}{k} \cdot k = K.$$

Expected running time: $\hat{\mathcal{O}}(\sum_q \rho \cdot 2^q \cdot \frac{n}{2^q}) = \hat{\mathcal{O}}(\rho \cdot n) = \hat{\mathcal{O}}(\frac{nk}{K}).$

Simple Algorithm

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit Distance problem in $\hat{\mathcal{O}}(\frac{nk}{K})$ time provided that $K > k \cdot n^{\Omega(1)}$.

Simple Algorithm

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit Distance problem in $\hat{\mathcal{O}}(\frac{nk}{K})$ time provided that $K>k\cdot n^{\Omega(1)}$.

Optimal Non-Adaptive Algorithm

There is a non-adaptive algorithm that solves (k,K)-Gap Edit distance problem with $K > k \cdot n^{\Omega(1)}$ using $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K})$ queries and in $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K} + \frac{nk^2}{K^2})$ time.

 $K>k\cdot n^{s_k(1)}$ using $\mathcal{O}(\frac{n_{VK}}{K})$ queries and in $\mathcal{O}(\frac{n_{VK}}{K}+\frac{n_{K}}{K^2})$ time

Any non-adaptive algorithm for (k,K)-Gap Edit distance with $K<\frac{n}{6}$ needs $\Omega(\frac{n\sqrt{k}}{K})$ queries.

Simple Algorithm

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit Distance problem in $\hat{\mathcal{O}}(\frac{nk}{K})$ time provided that $K>k\cdot n^{\Omega(1)}$.

Optimal Non-Adaptive Algorithm

There is a non-adaptive algorithm that solves (k,K)-Gap Edit distance problem with $K>k\cdot n^{\Omega(1)}$ using $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K})$ queries and in $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K}+\frac{nk^2}{K^2})$ time.

Any non-adaptive algorithm for (k,K)-Gap Edit distance with $K<\frac{n}{6}$ needs $\Omega(\frac{n\sqrt{k}}{K})$ queries.

Open problems:

- 1 Bridge the gap between time and query complexity. Conditional lower bounds?
- 2 Use adaptive algorithms to circumvent the lower bound also for $k > \sqrt{n}$.

Simple Algorithm

There is a non-adaptive algorithm that solves the (k,K)-Gap Edit Distance problem in $\hat{\mathcal{O}}(\frac{nk}{K})$ time provided that $K>k\cdot n^{\Omega(1)}$.

Optimal Non-Adaptive Algorithm

There is a non-adaptive algorithm that solves (k,K)-Gap Edit distance problem with $K>k\cdot n^{\Omega(1)}$ using $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K})$ queries and in $\widetilde{\mathcal{O}}(\frac{n\sqrt{k}}{K}+\frac{nk^2}{K^2})$ time.

Any non-adaptive algorithm for (k,K)-Gap Edit distance with $K<\frac{n}{6}$ needs $\Omega(\frac{n\sqrt{k}}{K})$ queries.

Open problems:

- 1 Bridge the gap between time and query complexity. Conditional lower bounds?
- 2 Use adaptive algorithms to circumvent the lower bound also for $k > \sqrt{n}$.

Thank you for your attention!