Equilibrium Computation in Games

Bernhard von Stengel

Department of Mathematics London School of Economics

Overview – Two-Player Games

- Best responses and Nash equilibrium
- Zero-sum games, von Neumann's minimax theorem with proof
- Geometry of Nash equilibria
	- Lemke-Howson, odd number of Nash equilibria
	- Bimatrix games and labeled polytopes
	- Complementary pivoting
- Extensive games
	- Perfect recall and the sequence form
- Correlated equilibria
- PPAD

Zero-sum games: start

A zero-sum game

A zero-sum game

Best response payoffs / costs:

maximizing row player

minimizing column player

A zero-sum game

Best response payoffs / costs:

maximizing row player

minimizing column player

 \Rightarrow no "stable" way of playing deterministically

Optimal mixed (= randomized) strategies

Optimal mixed (= randomized) strategies

Probabilities found with the **"difference trick"**:

they are inversely proportional to the opponent-payoff differences in the respective rows and columns, and make the opponent **indifferent**.

Payoffs must be expected utilities

Payoffs must be expected utilities

Probability of goal = payoff to striker (Maximizer), cost to goalkeeper (minimizer)

Probability of goal = payoff to striker (Maximizer), cost to goalkeeper (minimizer)

optimal for row player: **max-min strategy** *x*ˆ

Notation: treat vectors and scalars as matrices

All vectors are column vectors. A^{\top} = matrix A transposed.

$$
0=(0,\ldots,0)^{\top},\ \ 1=(1,\ldots,1)^{\top}.
$$

 $\alpha \mathbf{x}^\top$ = row vector \mathbf{x}^\top scaled by α $\qquad \qquad \Box \cdot \Box \Box =$

Example use of notation

Given: *A* ∈ **R** *m*×*n* ,

probability vectors *x* ∈ **R** *^m* for rows, *y* ∈ **R** *n* for columns i.e. $\mathbf{1}^\top \mathbf{x} = \mathbf{1}, \quad \mathbf{1}^\top \mathbf{y} = \mathbf{1}$. Constant $\alpha \in \mathbb{R}$ added to all entries of \boldsymbol{A} gives $\boldsymbol{A} + \boldsymbol{1} \alpha \boldsymbol{1}^{\top}$. Then

$$
\mathbf{x}^{\top}(\mathbf{A} + \mathbf{1}\alpha \mathbf{1}^{\top})\mathbf{y} = \mathbf{x}^{\top} \mathbf{A} \mathbf{y} + \mathbf{x}^{\top} (\mathbf{1}\alpha \mathbf{1}^{\top})\mathbf{y}
$$

= $\mathbf{x}^{\top} \mathbf{A} \mathbf{y} + (\mathbf{x}^{\top} \mathbf{1})\alpha (\mathbf{1}^{\top} \mathbf{y})$
= $\mathbf{x}^{\top} \mathbf{A} \mathbf{y} + \alpha.$

The best-response condition

Bimatrix game (*A*, *B*)

row player I column player II

m pure strategies $i = 1, \ldots, m$ *n* pure strategies $j = 1, \ldots, n$

payoff *aij* , payoff matrix *A* payoff *bij* , payoff matrix *B*

Bimatrix game (*A*, *B*)

row player I column player II

m pure strategies $i = 1, \ldots, m$ *n* pure strategies $j = 1, \ldots, n$

payoff *aij* , payoff matrix *A* payoff *bij* , payoff matrix *B*

mixed strategy *x* mixed strategy *y* probabilities x_1, \ldots, x_m probabilities y_1, \ldots, y_n expected payoff $x^T A y$

>*Ay* expected payoff *x* >*By*

Expected payoffs

Given: $m \times n$ bimatrix game (A, B) . mixed strategy vector $\boldsymbol{x} = (\boldsymbol{x_1}, \dots, \boldsymbol{x_m})^{\top}$ for player I mixed strategy vector $\textbf{\textit{y}}=(\textbf{\textit{y}}_1,\ldots,\textbf{\textit{y}}_n)^\top$ for player Π Expected payoff to player I is

$$
\sum_{i=1}^m \sum_{j=1}^n x_i a_{ij} y_j = x^\top A y = \sum_{i=1}^m x_i (Ay)_i
$$

Expected payoff to player II is

$$
\sum_{i=1}^m \sum_{j=1}^n x_i b_{ij} y_j = x^\top B y = \sum_{j=1}^n (x^\top B)_j y_j
$$

The expected payoff *x* >*Ay* to player I should be read as *x* >(*Ay*),

 \sum ^{*m*} *i*=**1** *xi*(*Ay*)*ⁱ*

because player I chooses *x*, against given *y* and expected payoff vector *Ay* with entries (*Ay*)*ⁱ* for the rows *i*.

The expected payoff *x* >*Ay* to player I should be read as *x* >(*Ay*),

 \sum ^{*m*} *i*=**1** *xi*(*Ay*)*ⁱ*

because player I chooses *x*, against given *y* and expected payoff vector *Ay* with entries (*Ay*)*ⁱ* for the rows *i*.

Similarly, read the expected payoff $\pmb{x}^\top \pmb{B} \pmb{y}$ to player II as $(\pmb{x}^\top \pmb{B}) \pmb{y}$.

The expected payoff *x* >*Ay* to player I should be read as *x* >(*Ay*),

 \sum ^{*m*} *i*=**1** *xi*(*Ay*)*ⁱ*

because player I chooses *x*, against given *y* and expected payoff vector *Ay* with entries (*Ay*)*ⁱ* for the rows *i*.

Similarly, read the expected payoff $\pmb{x}^\top \pmb{B} \pmb{y}$ to player II as $(\pmb{x}^\top \pmb{B}) \pmb{y}$.

Example

$$
Ay = (4, 4, 3)^{\top}, x^{\top} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), \text{ expected payoff } 3\frac{2}{3}.
$$

The expected payoff *x* >*Ay* to player I should be read as *x* >(*Ay*),

 \sum ^{*m*} *i*=**1** *xi*(*Ay*)*ⁱ*

because player I chooses *x*, against given *y* and expected payoff vector *Ay* with entries (*Ay*)*ⁱ* for the rows *i*.

Similarly, read the expected payoff $\pmb{x}^\top \pmb{B} \pmb{y}$ to player II as $(\pmb{x}^\top \pmb{B}) \pmb{y}$.

Example

 $Ay = (4, 4, 3)^{\top}, \quad x^{\top} = (\frac{1}{3}, \frac{1}{3})$ $\frac{1}{3}, \frac{1}{3}$ $\frac{1}{3}$), expected payoff $3\frac{2}{3}$ **3** .

Is this the optimal expected payoff? No, player I could get payoff **4** with $x^{\top} = (1, 0, 0)$ or $x^{\top} = (0, 1, 0)$ or $x^{\top} = (\frac{1}{3}, \frac{2}{3})$ $\frac{2}{3}$, **0**) or \dots

The best response condition

Theorem

```
Given: m \times n bimatrix game (A, B).
```
Let x be a mixed strategy of player I and *v* be a mixed strategy of player II. Then

x is a best response to *y*

$$
\Leftrightarrow
$$
 for all pure strategies *i* of player I :

 $x_i > 0 \Rightarrow (Ay)_i = u = \max\{(Ay)_k | 1 \le k \le m\}.$

The best response condition

Theorem

```
Given: m \times n bimatrix game (A, B).
```
Let x be a mixed strategy of player I and *v* be a mixed strategy of player II. Then

x is a best response to *y*

$$
\Leftrightarrow
$$
 for all pure strategies *i* of player I :

 $x_i > 0 \Rightarrow (Ay)_i = u = \max\{(Ay)_k | 1 \le k \le m\}.$

That is, only **pure best responses** may be played with positive probability.

Proof of the best response condition

x is a best response to *y*

⇔ for all pure strategies *i* of player I :

 $x_i > 0 \Rightarrow (Ay)_i = u = \max\{(Ay)_k | 1 \le k \le m\}.$

Proof

$$
\mathbf{x}^{\top} A \mathbf{y} = \sum_{i=1}^{m} \mathbf{x}_i (A \mathbf{y})_i = \sum_{i=1}^{m} \mathbf{x}_i (u - (u - (A \mathbf{y})_i))
$$

=
$$
\sum_{i=1}^{m} \mathbf{x}_i u - \sum_{i=1}^{m} \mathbf{x}_i (u - (A \mathbf{y})_i)
$$

Proof of the best response condition

x is a best response to *y*

⇔ for all pure strategies *i* of player I :

 $x_i > 0 \Rightarrow (Ay)_i = u = \max\{(Ay)_k | 1 \le k \le m\}.$

Proof

$$
\mathbf{x}^{\top} A \mathbf{y} = \sum_{i=1}^{m} x_i (A \mathbf{y})_i = \sum_{i=1}^{m} x_i (u - (u - (A \mathbf{y})_i)
$$

=
$$
\sum_{i=1}^{m} x_i u - \sum_{i=1}^{m} x_i (u - (A \mathbf{y})_i)
$$

=
$$
u - \sum_{i=1}^{m} \underbrace{x_i}_{\geq 0} \underbrace{(u - (A \mathbf{y})_i)}_{\geq 0} \leq u.
$$

Proof of the best response condition

x is a best response to *y*

⇔ for all pure strategies *i* of player I :

 $x_i > 0$ \Rightarrow $(Ay)_i = u = \max\{(Ay)_k | 1 \le k \le m\}.$

Proof

$$
\mathbf{x}^{\top} A \mathbf{y} = \sum_{i=1}^{m} x_i (A \mathbf{y})_i = \sum_{i=1}^{m} x_i (u - (u - (A \mathbf{y})_i)
$$

=
$$
\sum_{i=1}^{m} x_i u - \sum_{i=1}^{m} x_i (u - (A \mathbf{y})_i)
$$

=
$$
u - \sum_{i=1}^{m} \underbrace{x_i}_{\geq 0} \underbrace{(u - (A \mathbf{y})_i)}_{\geq 0} \leq u.
$$

So $\boldsymbol{x}^\top A \boldsymbol{y} = \boldsymbol{u} \Leftrightarrow \boldsymbol{x}_i > \boldsymbol{0}$ implies $\boldsymbol{u} - (\boldsymbol{A} \boldsymbol{y})_i = \boldsymbol{0}$, as claimed.

best response condition written as orthogonality = complementarity

x is a best response to *y*

x ≥ 0 ⊥ *Ay* \leq 1*u*

:⇔

⇔

 $\boldsymbol{x} \geq \boldsymbol{0}$, $\boldsymbol{A} \boldsymbol{y} \leq \boldsymbol{1} \boldsymbol{u}$, $\boldsymbol{x}^{\top} (\boldsymbol{1} \boldsymbol{u} - \boldsymbol{A} \boldsymbol{y}) = \boldsymbol{0}$

Convex combinations

Lines and line segments

Line through points *x* and *y* given by $x + (y - x)\alpha$ for $\alpha \in \mathbb{R}$. Examples: **a** for $\alpha = 0.6$, **b** for $\alpha = 1.5$, **c** for $\alpha = -0.4$. **Line segment** that connects *x* and *y* \Leftrightarrow **0** $\lt \alpha \lt 1$.

Convexity

Rewrite $\mathbf{x} + (\mathbf{y} - \mathbf{x})\alpha$ as

x(**1** $-\alpha$) + *y* α

which for $\alpha \in [0, 1]$ is called a **convex combination** of **x** and **y**.

Convexity

Rewrite $\mathbf{x} + (\mathbf{y} - \mathbf{x})\alpha$ as

 $x(1 - \alpha) + y\alpha$

which for $\alpha \in [0, 1]$ is called a **convex combination** of **x** and **y**.

Convex sets contain all convex combinations of their points:

Mixed strategy sets *X* **and** *Y*

For player I and player II,

$$
X = \{x \in \mathbb{R}^m \mid x \ge 0, 1^T x = 1\},
$$

$$
Y = \{y \in \mathbb{R}^n \mid y \ge 0, 1^T y = 1\},
$$

X and *Y* are **simplices**,

simplex = convex hull of unit vectors.

Mixed strategy line segment *X* **for** $m = 2$

$$
\boldsymbol{X} = \{ \boldsymbol{x} \in \mathbb{R}^m \mid \boldsymbol{x} \geq \boldsymbol{0}, \boldsymbol{1}^\top \boldsymbol{x} = \boldsymbol{1} \}
$$

Mixed strategy triangle *X* **for** $m = 3$

Mixed strategy tetrahedron X for $m = 4$

for general *m* called mixed strategy **simplex** *X* .

Zero-sum games: continued

Best responses against *y*

Let $y \in Y$. $(Ay)_i$ = expected payoff to player I in row *i*. A **best response** $\boldsymbol{x} \in \boldsymbol{X}$ **to** \boldsymbol{y} maximizes $\boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{y}$.

 $\mathsf{max}\{\mathbf{x}^\top(\mathbf{A}\mathbf{y}) \mid \mathbf{x} \in \mathbf{X}\}$

$$
= \ \max\{(\mathbf{A}\mathbf{y})_1,\ldots,(\mathbf{A}\mathbf{y})_m\}
$$

- $=$ min{ $u \in \mathbb{R}$ | $(Ay)_1 \le u, ..., (Ay)_m \le u$ }
- $=$ min{ $u \in \mathbb{R}$ | $Ay < 1u$ }

Best responses against *y*

Let $y \in Y$. $(Ay)_i$ = expected payoff to player I in row *i*. A **best response** $\boldsymbol{x} \in \boldsymbol{X}$ **to** \boldsymbol{y} maximizes $\boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{y}$.

$$
\max\{x^{\top}(Ay) \mid x \in X\}
$$
\n
$$
= \max\{(Ay)_1, \ldots, (Ay)_m\}
$$
\n
$$
= \min\{u \in \mathbb{R} \mid (Ay)_1 \le u, \ldots, (Ay)_m \le u\}
$$
\n
$$
= \min\{u \in \mathbb{R} \mid Ay \le 1u\}
$$

In a **zero-sum game** $(A, -A)$, player II minimizes **u** with her best choice of $y \in Y$, her **min-max strategy** \hat{y} .

max-min and min-max strategies

min-max strategy $\hat{y} \in Y$

$$
\max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top} \mathbf{A} \hat{\mathbf{y}} = \min_{\mathbf{y} \in \mathbf{Y}} \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y}
$$

=
$$
\min_{\mathbf{y} \in \mathbf{Y}} \{ \mathbf{u} \in \mathbb{R} \mid \mathbf{A} \mathbf{y} \le \mathbf{1} \mathbf{u} \}
$$

max-min strategy $\hat{\mathbf{x}} \in \mathbf{X}$

$$
\min_{y \in Y} \hat{x}^{\top} A y = \max_{x \in X} \min_{y \in Y} x^{\top} A y
$$

$$
= \max_{x \in X} \{ v \in \mathbb{R} \mid v \mathbf{1}^{\top} \leq x^{\top} A \}
$$

max min \leq min max

The "easy part" of max-min versus min-max payoff:

$$
\max_{x \in X} \min_{y \in Y} x^{\top} A y \leq \min_{y \in Y} \max_{x \in X} x^{\top} A y
$$

Proof

$$
\begin{array}{rcl}\n\max \min \limits_{\mathbf{x} \in \mathbf{X}} & \mathbf{x}^\top A \mathbf{y} & = & \min \limits_{\mathbf{y} \in \mathbf{Y}} & \hat{\mathbf{x}}^\top A \mathbf{y} \\
& \leq & \hat{\mathbf{x}}^\top A \hat{\mathbf{y}} \\
& \leq & \max \limits_{\mathbf{x} \in \mathbf{X}} & \mathbf{x}^\top A \hat{\mathbf{y}} \\
& = & \min \limits_{\mathbf{y} \in \mathbf{Y}} & \max \limits_{\mathbf{x} \in \mathbf{X}} & \mathbf{x}^\top A \mathbf{y} \quad \Box\n\end{array}
$$

von Neumann's minimax theorem [1928]

Every zero-sum game *A* has a **value** *v* :

$$
\begin{array}{|l|l|}\n\hline\n\max_{\mathbf{x} \in \mathbf{X}} \min_{\mathbf{y} \in \mathbf{Y}} \mathbf{x}^\top A \mathbf{y} = \mathbf{v} = \min_{\mathbf{y} \in \mathbf{Y}} \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^\top A \mathbf{y}\n\end{array}
$$

John von Neumann (1903–1957)

- set theory
- mathematics of quantum mechanics
- minimax theorem [1928], game theory
- stored-program computer

John von Neumann (1903–1957)

- set theory
- mathematics of quantum mechanics
- minimax theorem [1928], game theory
- stored-program computer

from *The Man from the Future (2021):*

"Von Neumann would carry on a conversation with my three-year-old son, and the two of them would talk as equals, and I sometimes wondered if he used the same principle when he talked to the rest of us." Edward Teller, 1966

min-max strategy $y \in Y$: minimize *u* s.t. $Ay < 1u$, max-min strategy $\pmb{x} \in \pmb{X}$: maximize \pmb{v} s.t. \pmb{v} 1 $^{\top}$ \leq $\pmb{x}^{\top} \pmb{A}$, $v = v1^\top y \leq x^\top Ay \leq x^\top 1$ *u* = *u*.

min-max strategy $y \in Y$: minimize *u* s.t. $Ay < 1u$, max-min strategy $\pmb{x} \in \pmb{X}$: maximize \pmb{v} s.t. \pmb{v} 1 $^{\top}$ \leq $\pmb{x}^{\top} \pmb{A}$, $v = v1^\top y \leq x^\top Ay \leq x^\top 1$ *u* = *u*. $v1^{\top} = x^{\top}A$ and $Ay = 1u \Rightarrow v = u$, done.

min-max strategy $y \in Y$: minimize *u* s.t. $Ay < 1u$, max-min strategy $\pmb{x} \in \pmb{X}$: maximize \pmb{v} s.t. \pmb{v} 1 $^{\top}$ \leq $\pmb{x}^{\top} \pmb{A}$, $v = v1^\top y \leq x^\top Ay \leq x^\top 1$ *u* = *u*. $v1^{\top} = x^{\top}A$ and $Ay = 1u \Rightarrow v = u$, done.

Assume $(Ay)_k < u$ for some row k, let \overline{A} be A without row k. By **inductive hypothesis**, \overline{A} has game value \overline{u} , $\overline{A}\overline{v}$ < 1 \overline{u} . \overline{u} $\leq v$, \overline{u} $\leq u$, \overline{A} better than **A** for minimizer).

min-max strategy $y \in Y$: minimize *u* s.t. $Ay < 1u$, max-min strategy $\pmb{x} \in \pmb{X}$: maximize \pmb{v} s.t. \pmb{v} 1 $^{\top}$ \leq $\pmb{x}^{\top} \pmb{A}$, $v = v1^\top y \leq x^\top Ay \leq x^\top 1$ *u* = *u*. $v1^{\top} = x^{\top}A$ and $Ay = 1u \Rightarrow v = u$, done.

Assume $(Ay)_k < u$ for some row k, let \overline{A} be A without row k. By **inductive hypothesis**, \overline{A} has game value \overline{u} , $\overline{A}\overline{v}$ < 1 \overline{u} . \overline{u} $\leq v$, \overline{u} $\leq u$, \overline{A} better than **A** for minimizer).

Claim : $\overline{u} = u$. Intuition: maximizer avoids row **k** of **A** anyhow.

minimal u s.t. $Ay \leq 1u$, maximal v s.t. $v1^\top \leq x^\top A$, $v \leq u$. $(\overline{Ay})_k < u$, matrix \overline{A} is A without row k , value $\overline{u} \le v$, $\overline{u} \le u$.

minimal u s.t. $Ay \leq 1u$, maximal v s.t. $v1^\top \leq x^\top A$, $v \leq u$. $(\overline{Ay})_k < u$, matrix \overline{A} is A without row k , value $\overline{u} \le v$, $\overline{u} \le u$.

Suppose $\overline{u} < u$. For $0 < \varepsilon < 1$, $\bm{A}(\bm{y}(\bm{1}-\varepsilon)+\overline{\bm{y}}\varepsilon) \ \leq \ \bm{1}(\bm{u}(\bm{1}-\varepsilon)+\overline{\bm{u}}\varepsilon) \ = \ \bm{1}(\bm{u}-\varepsilon(\bm{u}-\overline{\bm{u}})) \ < \ \bm{1}\bm{u}$ | {z } *y*(ε)∈*Y* (*convex*)

minimal u s.t. $Ay \leq 1u$, maximal v s.t. $v1^\top \leq x^\top A$, $v \leq u$. $(\overline{Ay})_k < u$, matrix \overline{A} is A without row k , value $\overline{u} \le v$, $\overline{u} \le u$.

Suppose
$$
\overline{u} < u
$$
. For $0 < \varepsilon \le 1$,
\n
$$
\overline{A}(\underline{y(1-\varepsilon)+\overline{y}\varepsilon}) \le 1(u(1-\varepsilon)+\overline{u}\varepsilon) = 1(u-\varepsilon(u-\overline{u})) < 1u
$$
\n
$$
y(\varepsilon) \in Y(\text{convex})
$$

For missing row **k** of **A** and sufficiently small $\varepsilon > 0$:

$$
(\mathbf{A}(\mathbf{y}(1-\varepsilon)+\overline{\mathbf{y}}\varepsilon))_{k} = (\mathbf{A}\mathbf{y})_{k}(1-\varepsilon)+(\mathbf{A}\overline{\mathbf{y}})_{k}\varepsilon < \mathbf{u},
$$

overall $Ay(\varepsilon) < 1*u*$, contradicting minimality of *u*. Hence $\overline{u} = u$.

minimal u s.t. $Ay \leq 1u$, maximal v s.t. $v1^\top \leq x^\top A$, $v \leq u$. $(\overline{Ay})_k < u$, matrix \overline{A} is A without row k , value $\overline{u} \le v$, $\overline{u} \le u$.

Suppose
$$
\overline{u} < u
$$
. For $0 < \varepsilon \le 1$,
\n
$$
\overline{A}(\underline{y(1-\varepsilon)+\overline{y}\varepsilon}) \le 1(u(1-\varepsilon)+\overline{u}\varepsilon) = 1(u-\varepsilon(u-\overline{u})) < 1u
$$
\n
$$
\overline{y(\varepsilon)} = \overline{y(\text{convex})}
$$

For missing row **k** of **A** and sufficiently small $\varepsilon > 0$:

$$
(A(y(1-\varepsilon)+\overline{y}\varepsilon))_k = \underbrace{(Ay)_k}_{\leq u}(1-\varepsilon) + (A\overline{y})_k\varepsilon < u,
$$

overall $Ay(\varepsilon) < 1*u*$, contradicting minimality of *u*. Hence $\overline{u} = u$. $\Rightarrow \overline{u} \leq v \leq u = \overline{u}$, $\overline{v = u}$. Induction complete. \Box

minimax pair = saddle point

Minimax theorem and Nash equilibrium

$$
\max_{\mathbf{x} \in \mathbf{X}} \min_{\mathbf{y} \in \mathbf{Y}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \min_{\mathbf{y} \in \mathbf{Y}} \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y}
$$

Minimax theorem and Nash equilibrium

$$
\max_{\mathbf{x} \in \mathbf{X}} \min_{\mathbf{y} \in \mathbf{Y}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \min_{\mathbf{y} \in \mathbf{Y}} \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y}
$$

with max-min strategy $\hat{\mathbf{x}}$ and min-max strategy $\hat{\mathbf{y}}$:

$$
\min_{\mathbf{y} \in \mathbf{Y}} \hat{\mathbf{x}}^{\top} A \mathbf{y} = \hat{\mathbf{x}}^{\top} A \hat{\mathbf{y}} = \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top} A \hat{\mathbf{y}}
$$

$$
\mathbf{y} \in \mathbf{Y}, \quad \mathbf{y} \in \mathbf{Y}, \quad \hat{\mathbf{y}} \in \mathbf{Y} \text{ and } \hat{\mathbf{y}} \in \mathbf{X} \text{ and
$$

$$
\Leftrightarrow \forall y \in Y, x \in X : \qquad \hat{x}^{\top}Ay \geq \hat{x}^{\top}A\hat{y} \geq x^{\top}A\hat{y}
$$

$$
\Leftrightarrow (\hat{x}, \hat{y}) \text{ is a Nash equilibrium}
$$

(\hat{x} and \hat{y} are mutual best responses)

Minimax theorem and Nash equilibrium

$$
\max_{\mathbf{x} \in \mathbf{X}} \min_{\mathbf{y} \in \mathbf{Y}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \min_{\mathbf{y} \in \mathbf{Y}} \max_{\mathbf{x} \in \mathbf{X}} \mathbf{x}^{\top} \mathbf{A} \mathbf{y}
$$

with max-min strategy $\hat{\mathbf{x}}$ and min-max strategy $\hat{\mathbf{v}}$:

$$
\min_{y \in Y} \hat{x}^{\top} A y = \hat{x}^{\top} A \hat{y} = \max_{x \in X} x^{\top} A \hat{y}
$$

\n
$$
\Leftrightarrow \forall y \in Y, x \in X : \hat{x}^{\top} A y \geq \hat{x}^{\top} A \hat{y} \geq x^{\top} A \hat{y}
$$

$$
\Leftrightarrow (\hat{x}, \hat{y}) \text{ is a Nash equilibrium}
$$

(\hat{x} and \hat{y} are mutual best responses)

Exercise: prove that if (\bar{x}, \bar{y}) is a Nash equilibrium in the zero-sum game $(A, -A)$, then \overline{x} is a max-min strategy and \overline{v} is a min-max strategy.

Consequences for zero-sum games

Zero-sum game:

equilibrium strategy = $max-min / min-max$ strategy

- equilibrium **exists** \Leftrightarrow \vert max min = min max
- strategies are **optimal**, independent of opponent
- unique equilibrium payoff / $cost$ v = **value** of the game
- (x, y) , $(\overline{x}, \overline{y})$ equilibria \Rightarrow (\overline{x}, y) , (x, \overline{y}) equilibria **(exchangeability)**
- *x*, \overline{x} equilibrium strategy \Rightarrow so is $x(1 \alpha) + \overline{x}\alpha$ for $\alpha \in [0, 1]$ (convexity)