Equilibrium Computation in Games

Bernhard von Stengel

Department of Mathematics London School of Economics

Overview – Two-Player Games

- Best responses and Nash equilibrium
- · Zero-sum games, von Neumann's minimax theorem with proof
- Geometry of Nash equilibria
 - Lemke-Howson, odd number of Nash equilibria
 - Bimatrix games and labeled polytopes
 - Complementary pivoting
- Extensive games
 - Perfect recall and the sequence form
- Correlated equilibria
- PPAD

Zero-sum games: start

A zero-sum game

A zero-sum game

Best response payoffs / costs:

maximizing row player

minimizing column player

A zero-sum game

Best response payoffs / costs:

maximizing row player

minimizing column player

 \Rightarrow no "stable" way of playing deterministically

Optimal mixed (= randomized) strategies

Optimal mixed (= randomized) strategies

Probabilities found with the "difference trick":

they are inversely proportional to the opponent-payoff differences in the respective rows and columns, and make the opponent **indifferent**.

Payoffs must be expected utilities

Payoffs must be expected utilities

Probability of goal = payoff to striker (Maximizer), cost to goalkeeper (minimizer)

Probability of goal = payoff to striker (Maximizer), cost to goalkeeper (minimizer)

optimal for row player: max-min strategy \hat{x}

Notation: treat vectors and scalars as matrices

All vectors are column vectors. \mathbf{A}^{\top} = matrix \mathbf{A} transposed.

$$\mathbf{0} = (\mathbf{0}, \dots, \mathbf{0})^{\top}, \ \ \mathbf{1} = (\mathbf{1}, \dots, \mathbf{1})^{\top}.$$

Ay = linear combination of columns of A

 $\mathbf{X}^{\top}\mathbf{A}$ = linear combination of rows of \mathbf{A}

 $\mathbf{x}^{\top}\mathbf{b}$ = scalar product of \mathbf{x} and \mathbf{b}

 $y\alpha$ = (column) vector **x** scaled by α

 $\alpha \mathbf{X}^{\top} = \text{row vector } \mathbf{X}^{\top} \text{ scaled by } \alpha$

Example use of notation

Given: $A \in \mathbb{R}^{m \times n}$,

probability vectors $\mathbf{x} \in \mathbb{R}^m$ for rows, $\mathbf{y} \in \mathbb{R}^n$ for columns i.e. $\mathbf{1}^\top \mathbf{x} = \mathbf{1}$, $\mathbf{1}^\top \mathbf{y} = \mathbf{1}$. Constant $\alpha \in \mathbb{R}$ added to all entries of \mathbf{A} gives $\mathbf{A} + \mathbf{1}\alpha\mathbf{1}^\top$. Then

$$\begin{aligned} \mathbf{x}^{\mathsf{T}}(\mathbf{A} + \mathbf{1}\alpha\mathbf{1}^{\mathsf{T}})\mathbf{y} &= \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{y} + \mathbf{x}^{\mathsf{T}}(\mathbf{1}\alpha\mathbf{1}^{\mathsf{T}})\mathbf{y} \\ &= \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{y} + (\mathbf{x}^{\mathsf{T}}\mathbf{1})\alpha(\mathbf{1}^{\mathsf{T}}\mathbf{y}) \\ &= \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{y} + \alpha \,. \end{aligned}$$

The best-response condition

Bimatrix game (A, B)

row player I

column player II

m pure strategies $i = 1, \ldots, m$ *n* pure strategies $j = 1, \ldots, n$

payoff aij, payoff matrix A

payoff **b**_{ij}, payoff matrix **B**

Bimatrix game (A, B)

row player I

column player II

m pure strategies $i = 1, \ldots, m$ *n* pure strategies $j = 1, \ldots, n$

payoff aij, payoff matrix A

payoff **b**_{ij}, payoff matrix **B**

mixed strategy \mathbf{x} probabilities $\mathbf{x}_1, \dots, \mathbf{x}_m$ expected payoff $\mathbf{x}^\top \mathbf{A} \mathbf{y}$ mixed strategy yprobabilities y_1, \ldots, y_n expected payoff $x^{\top}By$

Expected payoffs

Given: $m \times n$ bimatrix game (A, B). mixed strategy vector $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_m)^{\top}$ for player I mixed strategy vector $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)^{\top}$ for player II Expected payoff to player I is

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{x}_{i} \, \mathbf{a}_{ij} \, \mathbf{y}_{j} = \mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \sum_{i=1}^{m} \mathbf{x}_{i} (\mathbf{A} \mathbf{y})_{i}$$

Expected payoff to player II is

$$\sum_{i=1}^m \sum_{j=1}^n x_i \, b_{ij} \, y_j = x^\top \mathcal{B} y = \sum_{j=1}^n (x^\top \mathcal{B})_j \, y_j$$

The expected payoff $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}$ to player I should be read as $\mathbf{x}^{\top} (\mathbf{A} \mathbf{y})$,

 $\sum_{i=1}^{m} \mathbf{x}_{i}(\mathbf{A}\mathbf{y})_{i}$

because player I chooses \mathbf{x} , against given \mathbf{y} and expected payoff vector $\mathbf{A}\mathbf{y}$ with entries $(\mathbf{A}\mathbf{y})_i$ for the rows \mathbf{i} .

The expected payoff $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}$ to player I should be read as $\mathbf{x}^{\top} (\mathbf{A} \mathbf{y})$,

 $\sum_{i=1}^{m} \mathbf{x}_{i}(\mathbf{A}\mathbf{y})_{i}$

because player I chooses \mathbf{x} , against given \mathbf{y} and expected payoff vector $\mathbf{A}\mathbf{y}$ with entries $(\mathbf{A}\mathbf{y})_i$ for the rows \mathbf{i} .

Similarly, read the expected payoff $\mathbf{x}^{\top} \mathbf{B} \mathbf{y}$ to player II as $(\mathbf{x}^{\top} \mathbf{B}) \mathbf{y}$.

The expected payoff $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}$ to player I should be read as $\mathbf{x}^{\top} (\mathbf{A} \mathbf{y})$,

 $\sum_{i=1}^{m} \mathbf{x}_{i}(\mathbf{A}\mathbf{y})_{i}$

because player I chooses \mathbf{x} , against given \mathbf{y} and expected payoff vector $\mathbf{A}\mathbf{y}$ with entries $(\mathbf{A}\mathbf{y})_i$ for the rows \mathbf{i} .

Similarly, read the expected payoff $\mathbf{x}^{\top} \mathbf{B} \mathbf{y}$ to player II as $(\mathbf{x}^{\top} \mathbf{B}) \mathbf{y}$.

Example

$$Ay = (4, 4, 3)^{ op}, \ \ x^{ op} = (rac{1}{3}, rac{1}{3}, rac{1}{3}), \ \ ext{expected payoff } 3rac{2}{3}$$

The expected payoff $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}$ to player I should be read as $\mathbf{x}^{\top} (\mathbf{A} \mathbf{y})$,

 $\sum_{i=1}^{m} \mathbf{x}_{i}(\mathbf{A}\mathbf{y})_{i}$

because player I chooses \mathbf{x} , against given \mathbf{y} and expected payoff vector $\mathbf{A}\mathbf{y}$ with entries $(\mathbf{A}\mathbf{y})_i$ for the rows \mathbf{i} .

Similarly, read the expected payoff $\mathbf{x}^{\top} \mathbf{B} \mathbf{y}$ to player II as $(\mathbf{x}^{\top} \mathbf{B}) \mathbf{y}$.

Example

 $Ay = (4, 4, 3)^{\top}, \ x^{\top} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), \ \text{expected payoff } 3\frac{2}{3}.$

Is this the optimal expected payoff? No, player I could get payoff 4 with $\mathbf{x}^{\top} = (\mathbf{1}, \mathbf{0}, \mathbf{0})$ or $\mathbf{x}^{\top} = (\mathbf{0}, \mathbf{1}, \mathbf{0})$ or $\mathbf{x}^{\top} = (\frac{1}{3}, \frac{2}{3}, \mathbf{0})$ or

The best response condition

Theorem

```
Given: m \times n bimatrix game (A, B).
```

Let **x** be a mixed strategy of player I and **y** be a mixed strategy of player II. Then

x is a best response to y

$$\Leftrightarrow$$
 for all pure strategies *i* of player I :

 $x_i > 0 \Rightarrow (Ay)_i = u = \max\{ (Ay)_k \mid 1 \le k \le m \}.$

The best response condition

Theorem

```
Given: m \times n bimatrix game (A, B).
```

Let **x** be a mixed strategy of player I and **y** be a mixed strategy of player II. Then

x is a best response to y

$$\Leftrightarrow$$
 for all pure strategies *i* of player I :

 $x_i > 0 \Rightarrow (Ay)_i = u = \max\{ (Ay)_k \mid 1 \le k \le m \}.$

That is, only **pure best responses** may be played with positive probability.

Proof of the best response condition

x is a best response to y

 \Leftrightarrow for all pure strategies *i* of player I :

 $x_i > 0 \Rightarrow (Ay)_i = u = \max\{ (Ay)_k \mid 1 \le k \le m \}.$

Proof

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{A} \mathbf{y})_i = \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{u} - (\mathbf{u} - (\mathbf{A} \mathbf{y})_i)$$
$$= \sum_{i=1}^{m} \mathbf{x}_i \mathbf{u} - \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{u} - (\mathbf{A} \mathbf{y})_i)$$

Proof of the best response condition

x is a best response to y

 \Leftrightarrow for all pure strategies *i* of player I :

 $x_i > 0 \Rightarrow (Ay)_i = u = \max\{ (Ay)_k \mid 1 \le k \le m \}.$

Proof

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{A} \mathbf{y})_i = \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{u} - (\mathbf{u} - (\mathbf{A} \mathbf{y})_i))$$
$$= \sum_{i=1}^{m} \mathbf{x}_i \mathbf{u} - \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{u} - (\mathbf{A} \mathbf{y})_i)$$
$$= \mathbf{u} - \sum_{i=1}^{m} \underbrace{\mathbf{x}_i}_{\geq 0} \underbrace{(\mathbf{u} - (\mathbf{A} \mathbf{y})_i)}_{\geq 0} \leq \mathbf{u}.$$

Proof of the best response condition

x is a best response to y

 \Leftrightarrow for all pure strategies *i* of player I :

 $\mathbf{x}_i > \mathbf{0} \Rightarrow (\mathbf{A}\mathbf{y})_i = \mathbf{u} = \max\{ (\mathbf{A}\mathbf{y})_k \mid \mathbf{1} \le k \le \mathbf{m} \}.$

Proof

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{A} \mathbf{y})_i = \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{u} - (\mathbf{u} - (\mathbf{A} \mathbf{y})_i))$$
$$= \sum_{i=1}^{m} \mathbf{x}_i \mathbf{u} - \sum_{i=1}^{m} \mathbf{x}_i (\mathbf{u} - (\mathbf{A} \mathbf{y})_i)$$
$$= \mathbf{u} - \sum_{i=1}^{m} \underbrace{\mathbf{x}_i}_{\geq 0} \underbrace{(\mathbf{u} - (\mathbf{A} \mathbf{y})_i)}_{\geq 0} \leq \mathbf{u}.$$

So $\mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \mathbf{u} \iff \mathbf{x}_i > \mathbf{0}$ implies $\mathbf{u} - (\mathbf{A} \mathbf{y})_i = \mathbf{0}$, as claimed.

best response condition written as orthogonality = complementarity

x is a best response to y

 \Leftrightarrow

 $x \ge 0$ \perp $Ay \le 1u$

:⇔

 $\mathbf{x} \ge \mathbf{0}$, $\mathbf{A}\mathbf{y} \le \mathbf{1}\mathbf{u}$, $\mathbf{x}^{\top}(\mathbf{1}\mathbf{u} - \mathbf{A}\mathbf{y}) = \mathbf{0}$

Convex combinations

Lines and line segments

Line through points x and y given by $x + (y - x)\alpha$ for $\alpha \in \mathbb{R}$. Examples: **a** for $\alpha = 0.6$, **b** for $\alpha = 1.5$, **c** for $\alpha = -0.4$. Line segment that connects x and $y \Leftrightarrow 0 \le \alpha \le 1$.

Convexity

Rewrite $\boldsymbol{x} + (\boldsymbol{y} - \boldsymbol{x})\boldsymbol{\alpha}$ as

 $x(1 - \alpha) + y\alpha$

which for $\alpha \in [0, 1]$ is called a **convex combination** of *x* and *y*.

Convexity

Rewrite $\boldsymbol{x} + (\boldsymbol{y} - \boldsymbol{x})\boldsymbol{\alpha}$ as

 $x(1 - \alpha) + y\alpha$

which for $\alpha \in [0, 1]$ is called a **convex combination** of *x* and *y*.

Convex sets contain all convex combinations of their points:

Mixed strategy sets X and Y

For player I and player II,

$$\begin{aligned} \boldsymbol{X} &= \{ \boldsymbol{x} \in \mathbb{R}^m \quad | \ \boldsymbol{x} \geq \boldsymbol{0}, \ \boldsymbol{1}^\top \boldsymbol{x} = \boldsymbol{1} \}, \\ \boldsymbol{Y} &= \{ \boldsymbol{y} \in \mathbb{R}^n \quad | \ \boldsymbol{y} \geq \boldsymbol{0}, \ \boldsymbol{1}^\top \boldsymbol{y} = \boldsymbol{1} \}, \end{aligned}$$

X and Y are simplices,

simplex = convex hull of unit vectors.

Mixed strategy line segment X for m = 2

$$\mathbf{X} = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{x} \ge \mathbf{0}, \ \mathbf{1}^\top \mathbf{x} = \mathbf{1} \}$$

Mixed strategy triangle X for m = 3

Mixed strategy tetrahedron X for m = 4

for general *m* called mixed strategy **simplex** *X*.

Zero-sum games: continued

Best responses against y

Let $y \in Y$. $(Ay)_i$ = expected payoff to player I in row *i*. A **best response** $x \in X$ to y maximizes $x^{\top}Ay$.

 $\max\{\mathbf{x}^{\top}(\mathbf{A}\mathbf{y}) \mid \mathbf{x} \in \mathbf{X}\}$

$$= \max\{(\mathbf{A}\mathbf{y})_1, \dots, (\mathbf{A}\mathbf{y})_m\}$$

- $= \min\{\boldsymbol{u} \in \mathbb{R} \mid (\boldsymbol{A}\boldsymbol{y})_1 \leq \boldsymbol{u}, \dots, (\boldsymbol{A}\boldsymbol{y})_m \leq \boldsymbol{u}\}$
- $= \min\{\mathbf{u} \in \mathbb{R} \mid \mathbf{Ay} \leq \mathbf{1u}\}$

Best responses against y

Let $y \in Y$. $(Ay)_i$ = expected payoff to player I in row *i*. A **best response** $x \in X$ to y maximizes $x^{\top}Ay$.

$$\max\{\mathbf{x}^{\top}(\mathbf{A}\mathbf{y}) \mid \mathbf{x} \in \mathbf{X}\}$$

=
$$\max\{(\mathbf{A}\mathbf{y})_1, \dots, (\mathbf{A}\mathbf{y})_m\}$$

=
$$\min\{\mathbf{u} \in \mathbb{R} \mid (\mathbf{A}\mathbf{y})_1 \leq \mathbf{u}, \dots, (\mathbf{A}\mathbf{y})_m \leq \mathbf{u}\}$$

=
$$\min\{\mathbf{u} \in \mathbb{R} \mid \mathbf{A}\mathbf{y} \leq \mathbf{1}\mathbf{u}\}$$

In a zero-sum game (A, -A), player II minimizes u with her best choice of $y \in Y$, her min-max strategy \hat{y} .

max-min and min-max strategies

min-max strategy $\hat{y} \in Y$:

$$\max_{\boldsymbol{x}\in\boldsymbol{X}} \boldsymbol{x}^{\top}\boldsymbol{A}\hat{\boldsymbol{y}} = \min_{\boldsymbol{y}\in\boldsymbol{Y}} \max_{\boldsymbol{x}\in\boldsymbol{X}} \boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{y}$$
$$= \min_{\boldsymbol{y}\in\boldsymbol{Y}} \{\boldsymbol{u}\in\mathbb{R} \mid \boldsymbol{A}\boldsymbol{y}\leq\boldsymbol{1}\boldsymbol{u}\}$$

max-min strategy $\hat{\mathbf{x}} \in \mathbf{X}$:

$$\min_{\boldsymbol{y} \in \boldsymbol{Y}} \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \boldsymbol{y} = \max_{\boldsymbol{x} \in \boldsymbol{X}} \min_{\boldsymbol{y} \in \boldsymbol{Y}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}$$
$$= \max_{\boldsymbol{x} \in \boldsymbol{X}} \{ \boldsymbol{v} \in \mathbb{R} \mid \boldsymbol{v} \boldsymbol{1}^{\top} \leq \boldsymbol{x}^{\top} \boldsymbol{A} \}$$

$\max\min \leq \min\max$

The "easy part" of max-min versus min-max payoff:

$$\max_{\boldsymbol{x}\in\boldsymbol{X}} \min_{\boldsymbol{y}\in\boldsymbol{Y}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y} \leq \min_{\boldsymbol{y}\in\boldsymbol{Y}} \max_{\boldsymbol{x}\in\boldsymbol{X}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}$$

Proof

$$\max_{\boldsymbol{x}\in\boldsymbol{X}} \min_{\boldsymbol{y}\in\boldsymbol{Y}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y} = \min_{\boldsymbol{y}\in\boldsymbol{Y}} \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \boldsymbol{y} \\ \leq \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \hat{\boldsymbol{y}} \\ \leq \max_{\boldsymbol{x}\in\boldsymbol{X}} \boldsymbol{x}^{\top} \boldsymbol{A} \hat{\boldsymbol{y}} \\ = \min_{\boldsymbol{y}\in\boldsymbol{Y}} \max_{\boldsymbol{x}\in\boldsymbol{X}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y} \square$$

von Neumann's minimax theorem [1928]

Every zero-sum game **A** has a **value v** :

$$\max_{\boldsymbol{x}\in\boldsymbol{X}} \min_{\boldsymbol{y}\in\boldsymbol{Y}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y} = \boldsymbol{v} = \min_{\boldsymbol{y}\in\boldsymbol{Y}} \max_{\boldsymbol{x}\in\boldsymbol{X}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}$$

John von Neumann (1903–1957)

- set theory
- mathematics of quantum mechanics
- minimax theorem [1928], game theory
- stored-program computer

John von Neumann (1903–1957)

- set theory
- mathematics of quantum mechanics
- minimax theorem [1928], game theory
- stored-program computer

from The Man from the Future (2021):

"Von Neumann would carry on a conversation with my three-year-old son, and the two of them would talk as equals, and I sometimes wondered if he used the same principle when he talked to the rest of us." Edward Teller, 1966

min-max strategy $y \in Y$: minimize u s.t. $Ay \leq 1u$, max-min strategy $x \in X$: maximize v s.t. $v1^{\top} \leq x^{\top}A$, $v = v1^{\top}y \leq x^{\top}Ay \leq x^{\top}1u = u$.

min-max strategy $y \in Y$: minimize u s.t. $Ay \leq 1u$, max-min strategy $x \in X$: maximize v s.t. $v1^{\top} \leq x^{\top}A$, $v = v1^{\top}y \leq x^{\top}Ay \leq x^{\top}1u = u$. $v1^{\top} = x^{\top}A$ and $Ay = 1u \Rightarrow v = u$, done.

min-max strategy $y \in Y$: minimize u s.t. $Ay \leq 1u$, max-min strategy $x \in X$: maximize v s.t. $v1^{\top} \leq x^{\top}A$, $v = v1^{\top}y \leq x^{\top}Ay \leq x^{\top}1u = u$. $v1^{\top} = x^{\top}A$ and $Ay = 1u \implies v = u$, done.

Assume $(Ay)_k < u$ for some row k, let \overline{A} be A without row k. By **inductive hypothesis**, \overline{A} has game value \overline{u} , $\overline{Ay} \leq 1\overline{u}$. $\overline{u} \leq v$, $\overline{u} \leq u$, (\overline{A} better than A for minimizer).

min-max strategy $y \in Y$: minimize u s.t. $Ay \leq 1u$, max-min strategy $x \in X$: maximize v s.t. $v1^{\top} \leq x^{\top}A$, $v = v1^{\top}y \leq x^{\top}Ay \leq x^{\top}1u = u$. $v1^{\top} = x^{\top}A$ and $Ay = 1u \implies v = u$, done.

Assume $(Ay)_k < u$ for some row k, let \overline{A} be A without row k. By **inductive hypothesis**, \overline{A} has game value \overline{u} , $\overline{Ay} \leq 1\overline{u}$. $\overline{u} \leq v$, $\overline{u} \leq u$, (\overline{A} better than A for minimizer).

Claim : $\overline{u} = u$. Intuition: maximizer avoids row *k* of *A* anyhow.

minimal u s.t. $Ay \le \mathbf{1}u$, maximal v s.t. $v\mathbf{1}^{\top} \le x^{\top}A$, $v \le u$. $(Ay)_k < u$, matrix \overline{A} is A without row k, value $\overline{u} \le v$, $\overline{u} \le u$.

minimal u s.t. $Ay \le \mathbf{1}u$, maximal v s.t. $v\mathbf{1}^{\top} \le x^{\top}A$, $v \le u$. $(Ay)_k < u$, matrix \overline{A} is A without row k, value $\overline{u} \le v$, $\overline{u} \le u$.

Suppose $\overline{u} < u$. For $0 < \varepsilon \le 1$, $\overline{A}(\underbrace{y(1-\varepsilon) + \overline{y}\varepsilon}_{y(\varepsilon) \in Y \text{ (convex)}}) \le 1(u(1-\varepsilon) + \overline{u}\varepsilon) = 1(u - \varepsilon(u - \overline{u})) < 1u$

minimal u s.t. $Ay \le \mathbf{1}u$, maximal v s.t. $v\mathbf{1}^{\top} \le x^{\top}A$, $v \le u$. $(Ay)_k < u$, matrix \overline{A} is A without row k, value $\overline{u} \le v$, $\overline{u} \le u$.

Suppose
$$\overline{u} < u$$
. For $0 < \varepsilon \le 1$,
 $\overline{A}(\underbrace{y(1-\varepsilon) + \overline{y}\varepsilon}_{y(\varepsilon) \in Y \text{ (convex)}}) \le 1(u(1-\varepsilon) + \overline{u}\varepsilon) = 1(u-\varepsilon(u-\overline{u})) < 1u$

For missing row **k** of **A** and sufficiently small $\varepsilon > 0$:

$$(\mathbf{A}(\mathbf{y}(\mathbf{1}-\varepsilon)+\overline{\mathbf{y}}\varepsilon))_{k} = \underbrace{(\mathbf{A}\mathbf{y})_{k}}_{<\mathbf{u}}(\mathbf{1}-\varepsilon)+(\mathbf{A}\overline{\mathbf{y}})_{k}\varepsilon < \mathbf{u},$$

overall $Ay(\varepsilon) < 1u$, contradicting minimality of u. Hence $\overline{u} = u$.

minimal u s.t. $Ay \le \mathbf{1}u$, maximal v s.t. $v\mathbf{1}^{\top} \le x^{\top}A$, $v \le u$. $(Ay)_k < u$, matrix \overline{A} is A without row k, value $\overline{u} \le v$, $\overline{u} \le u$.

Suppose
$$\overline{u} < u$$
. For $0 < \varepsilon \le 1$,
 $\overline{A}(\underbrace{y(1-\varepsilon) + \overline{y}\varepsilon}_{y(\varepsilon) \in Y \text{ (convex)}}) \le 1(u(1-\varepsilon) + \overline{u}\varepsilon) = 1(u-\varepsilon(u-\overline{u})) < 1u$

For missing row **k** of **A** and sufficiently small $\varepsilon > 0$:

$$(\mathbf{A}(\mathbf{y}(\mathbf{1}-\varepsilon)+\overline{\mathbf{y}}\varepsilon))_{\mathbf{k}} = \underbrace{(\mathbf{A}\mathbf{y})_{\mathbf{k}}}_{<\mathbf{u}}(\mathbf{1}-\varepsilon)+(\mathbf{A}\overline{\mathbf{y}})_{\mathbf{k}}\varepsilon < \mathbf{u},$$

overall $Ay(\varepsilon) < \mathbf{1}u$, contradicting minimality of u. Hence $\overline{u} = u$. $\Rightarrow \overline{u} \le v \le u = \overline{u}$, v = u. Induction complete.

minimax pair = saddle point

Minimax theorem and Nash equilibrium

$$\max_{\boldsymbol{x}\in\boldsymbol{X}} \min_{\boldsymbol{y}\in\boldsymbol{Y}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y} = \min_{\boldsymbol{y}\in\boldsymbol{Y}} \max_{\boldsymbol{x}\in\boldsymbol{X}} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}$$

Minimax theorem and Nash equilibrium

$$\max_{\boldsymbol{x}\in\boldsymbol{X}}\min_{\boldsymbol{y}\in\boldsymbol{Y}}\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{y} = \min_{\boldsymbol{y}\in\boldsymbol{Y}}\max_{\boldsymbol{x}\in\boldsymbol{X}}\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{y}$$

with max-min strategy \hat{x} and min-max strategy \hat{y} :

$$\min_{\boldsymbol{y}\in\boldsymbol{Y}} \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \boldsymbol{y} = \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \hat{\boldsymbol{y}} = \max_{\boldsymbol{x}\in\boldsymbol{X}} \boldsymbol{x}^{\top} \boldsymbol{A} \hat{\boldsymbol{y}}$$

$$\Leftrightarrow \forall y \in Y, x \in X : \hat{x}^{\top}Ay \geq \hat{x}^{\top}A\hat{y} \geq x^{\top}A\hat{y}$$

$$\Leftrightarrow (\hat{x}, \hat{y}) \text{ is a Nash equilibrium} (\hat{x} \text{ and } \hat{y} \text{ are mutual best responses})$$

Minimax theorem and Nash equilibrium

$$\max_{\boldsymbol{x}\in\boldsymbol{X}}\min_{\boldsymbol{y}\in\boldsymbol{Y}}\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{y} = \min_{\boldsymbol{y}\in\boldsymbol{Y}}\max_{\boldsymbol{x}\in\boldsymbol{X}}\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{y}$$

with max-min strategy \hat{x} and min-max strategy \hat{y} :

$$\min_{y \in Y} \hat{\mathbf{X}}^{\top} \mathbf{A} \mathbf{y} = \hat{\mathbf{X}}^{\top} \mathbf{A} \hat{\mathbf{y}} = \max_{\mathbf{x} \in X} \mathbf{x}^{\top} \mathbf{A} \hat{\mathbf{y}}$$

$$\Leftrightarrow \forall y \in Y, x \in X : \hat{x}^{\top}Ay \geq \hat{x}^{\top}A\hat{y} \geq x^{\top}A\hat{y}$$

$$\Leftrightarrow (\hat{x}, \hat{y}) \text{ is a Nash equilibrium} (\hat{x} \text{ and } \hat{y} \text{ are mutual best responses})$$

Exercise: prove that if $(\overline{x}, \overline{y})$ is a Nash equilibrium in the zero-sum game (A, -A), then \overline{x} is a max-min strategy and \overline{y} is a min-max strategy.

Consequences for zero-sum games

Zero-sum game:

equilibrium strategy = max-min / min-max strategy

- equilibrium **exists** ⇔ max min = min max
- strategies are **optimal**, independent of opponent
- unique equilibrium payoff / cost v = value of the game
- $(x, y), (\overline{x}, \overline{y})$ equilibria $\Rightarrow (\overline{x}, y), (x, \overline{y})$ equilibria (exchangeability)
- $\mathbf{x}, \overline{\mathbf{x}}$ equilibrium strategy \Rightarrow so is $\mathbf{x}(\mathbf{1} \alpha) + \overline{\mathbf{x}}\alpha$ for $\alpha \in [0, 1]$ (convexity)