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Overview – Two-Player Games

• Best responses and Nash equilibrium

• Zero-sum games, von Neumann’s minimax theorem with proof

• Geometry of Nash equilibria
◦ Lemke-Howson, odd number of Nash equilibria
◦ Bimatrix games and labeled polytopes
◦ Complementary pivoting

• Extensive games
◦ Perfect recall and the sequence form

• Correlated equilibria

• PPAD
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Zero-sum games: start
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A zero-sum game

Max
min

T

B

l r

1 0

−2 2

Best response payoffs / costs:

maximizing row player

minimizing column player

⇒ no “stable” way of playing deterministically
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A zero-sum game
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Optimal mixed (= randomized) strategies
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Probabilities found with the “difference trick”:

they are inversely proportional to the opponent-payoff differences
in the respective rows and columns, and make the opponent
indifferent.
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Payoffs must be expected utilities
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Payoffs must be expected utilities

l r

RL w
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Probability of goal = payoff to striker
(Maximizer), cost to goalkeeper (minimizer)

Max
min

L

R

l w r

0.5 0.7 1.0

1.0 0.6 0.4

l r

RL w

optimal for row player: max-min strategy x̂
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Notation: treat vectors and scalars as matrices

All vectors are column vectors. A>= matrix A transposed.

0 = (0, . . . , 0)>, 1 = (1, . . . , 1)>.

Ay = linear combination of columns of A · =

x>A = linear combination of rows of A · =

x>b = scalar product of x and b · =

yα = (column) vector x scaled by α · =

αx>= row vector x> scaled by α · =
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Example use of notation

Given: A ∈ Rm×n,

probability vectors x ∈ Rm for rows, y ∈ Rn for columns

i.e. 1>x = 1, 1>y = 1 .

Constant α ∈ R added to all entries of A gives A + 1α1>.

Then
x>(A + 1α1>)y = x>Ay + x>(1α1>)y

= x>Ay + (x>1)α(1>y)

= x>Ay + α .
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The best-response condition

11 / 35



Bimatrix game (A,B)

row player I column player II

m pure strategies i = 1, . . . ,m n pure strategies j = 1, . . . , n

payoff aij , payoff matrix A payoff bij , payoff matrix B

aij
bij

j
I

II

i

mixed strategy x mixed strategy y

probabilities x1, . . . , xm probabilities y1, . . . , yn

expected payoff x>Ay expected payoff x>By

12 / 35



Bimatrix game (A,B)

row player I column player II

m pure strategies i = 1, . . . ,m n pure strategies j = 1, . . . , n

payoff aij , payoff matrix A payoff bij , payoff matrix B

aij
bij

j
I

II

i

mixed strategy x mixed strategy y

probabilities x1, . . . , xm probabilities y1, . . . , yn

expected payoff x>Ay expected payoff x>By

12 / 35



Expected payoffs

Given: m × n bimatrix game (A,B) .

mixed strategy vector x = (x1, . . . , xm)> for player I

mixed strategy vector y = (y1, . . . , yn)
> for player II

Expected payoff to player I is

m∑
i=1

n∑
j=1

xi aij yj = x>Ay =
m∑

i=1

xi(Ay)i

Expected payoff to player II is

m∑
i=1

n∑
j=1

xi bij yj = x>By =
n∑

j=1

(x>B)j yj
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Expected payoffs – what the player controls

The expected payoff x>Ay to player I should be read as x>(Ay),

m∑
i=1

xi(Ay)i

because player I chooses x , against given y and expected payoff
vector Ay with entries (Ay)i for the rows i .

Similarly, read the expected payoff x>By to player II as (x>B)y .

Example

Ay = (4, 4, 3)>, x>= (1
3 ,

1
3 ,

1
3), expected payoff 32

3 .

Is this the optimal expected payoff? No, player I could get payoff 4
with x>= (1, 0, 0) or x>= (0, 1, 0) or x>= (1

3 ,
2
3 , 0) or . . . .
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The best response condition

Theorem

Given: m × n bimatrix game (A,B) .

Let x be a mixed strategy of player I and
y be a mixed strategy of player II. Then

x is a best response to y

⇔ for all pure strategies i of player I :

xi > 0 ⇒ (Ay)i = u = max{ (Ay)k | 1 ≤ k ≤ m }.

That is, only pure best responses may be played with positive
probability.
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Proof of the best response condition
x is a best response to y

⇔ for all pure strategies i of player I :

xi > 0 ⇒ (Ay)i = u = max{ (Ay)k | 1 ≤ k ≤ m }.

Proof
x>Ay =

m∑
i=1

xi (Ay)i =
m∑

i=1

xi (u − (u − (Ay)i)

=
m∑

i=1

xi u −
m∑

i=1

xi (u − (Ay)i)

= u −
m∑

i=1

xi︸︷︷︸
≥0

(u − (Ay)i)︸ ︷︷ ︸
≥0

≤ u .

So x>Ay = u ⇔ xi > 0 implies u − (Ay)i = 0, as claimed.
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best response condition written as
orthogonality = complementarity

x is a best response to y

⇔

x ≥ 0 ⊥ Ay ≤ 1u

:⇔

x ≥ 0 , Ay ≤ 1u , x>(1u − Ay) = 0
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Convex combinations
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Lines and line segments

0

c x a y b

{x + (y − x)α | α ∈ R}

x
y

0 α 1

x(1− α) + yα

Line through points x and y given by x + (y − x)α for α ∈ R.

Examples: a for α = 0.6, b for α = 1.5, c for α = −0.4.

Line segment that connects x and y ⇔ 0 ≤ α ≤ 1.
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Convexity
Rewrite x + (y − x)α as

x(1− α) + yα

which for α ∈ [0, 1] is called a convex combination of x and y .

Convex sets contain all convex combinations of their points:

x

y y

x

convex not convex
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Mixed strategy sets X and Y

For player I and player II,

X = {x ∈ Rm | x ≥ 0, 1>x = 1},

Y = {y ∈ Rn | y ≥ 0, 1>y = 1},

X and Y are simplices,

simplex = convex hull of unit vectors.
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Mixed strategy line segment X for m = 2

X = {x ∈ Rm | x ≥ 0, 1>x = 1 }

x2

(0, 1)

(0, 0) (1, 0)
x1
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Mixed strategy triangle X for m = 3

x3

(0, 0, 1)

(0, 0, 0) (0, 1, 0)
x2

(1, 0, 0)
x1
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Mixed strategy tetrahedron X for m = 4

(0, 0, 0, 1)

(0, 0, 1, 0)

(0, 1, 0, 0)

(1, 0, 0, 0)

for general m called mixed strategy simplex X .

24 / 35



Zero-sum games: continued
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Best responses against y

Let y ∈ Y . (Ay)i = expected payoff to player I in row i .

A best response x ∈ X to y maximizes x>Ay .

max{x>(Ay) | x ∈ X}

= max{(Ay)1, . . . , (Ay)m}

= min{u ∈ R | (Ay)1 ≤ u, . . . , (Ay)m ≤ u}

= min{u ∈ R | Ay ≤ 1u}

In a zero-sum game (A,−A), player II minimizes u with her best
choice of y ∈ Y , her min-max strategy ŷ .
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max-min and min-max strategies

min-max strategy ŷ ∈ Y :

max
x∈X

x>Aŷ = min
y∈Y

max
x∈X

x>Ay

= min
y∈Y
{u ∈ R | Ay ≤ 1u}

max-min strategy x̂ ∈ X :

min
y∈Y

x̂>Ay = max
x∈X

min
y∈Y

x>Ay

= max
x∈X
{v ∈ R | v1>≤ x>A}
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max min ≤ min max

The “easy part” of max-min versus min-max payoff:

max
x∈X

min
y∈Y

x>Ay ≤ min
y∈Y

max
x∈X

x>Ay

Proof
max
x∈X

min
y∈Y

x>Ay = min
y∈Y

x̂>Ay

≤ x̂>Aŷ

≤ max
x∈X

x>Aŷ

= min
y∈Y

max
x∈X

x>Ay �
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von Neumann’s minimax theorem [1928]

Every zero-sum game A has a value v :

max
x∈X

min
y∈Y

x>Ay = v = min
y∈Y

max
x∈X

x>Ay
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John von Neumann (1903–1957)

• set theory

• mathematics of quantum mechanics

• minimax theorem [1928], game theory

• stored-program computer

from The Man from the Future (2021):

“Von Neumann would carry on a conversation with my
three-year-old son, and the two of them would talk as equals, and
I sometimes wondered if he used the same principle when he
talked to the rest of us.” Edward Teller, 1966
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Minimax theorem: Proof by Loomis [1946]

min-max strategy y ∈ Y : minimize u s.t. Ay ≤ 1u,

max-min strategy x ∈ X : maximize v s.t. v1>≤ x>A,

v = v1>y ≤ x>Ay ≤ x>1u = u.

v1>= x>A and Ay = 1u ⇒ v = u, done.

Assume (Ay)k < u for some row k , let A be A without row k .

By inductive hypothesis, A has game value u , Ay ≤ 1u.
u ≤ v , u ≤ u, (A better than A for minimizer).

Claim : u = u. Intuition: maximizer avoids row k of A anyhow.
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Proof that u = u

minimal u s.t. Ay ≤ 1u, maximal v s.t. v1>≤ x>A, v ≤ u.

(Ay)k < u, matrix A is A without row k , value u ≤ v , u ≤ u.

Suppose u < u. For 0 < ε ≤ 1 ,

A(y(1− ε) + yε︸ ︷︷ ︸
y(ε)∈Y (convex)

) ≤ 1(u(1−ε)+uε) = 1(u−ε(u−u)) < 1u

For missing row k of A and sufficiently small ε > 0 :

(A(y(1− ε) + yε))k = (Ay)k︸ ︷︷ ︸
<u

(1− ε) + (Ay)kε < u,

overall Ay(ε) < 1u, contradicting minimality of u. Hence u = u .

⇒ u ≤ v ≤ u = u , v = u . Induction complete . �
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minimax pair = saddle point
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Minimax theorem and Nash equilibrium

max
x∈X

min
y∈Y

x>Ay = min
y∈Y

max
x∈X

x>Ay

with max-min strategy x̂ and min-max strategy ŷ :

min
y∈Y

x̂>Ay = x̂>Aŷ = max
x∈X

x>Aŷ

⇔ ∀y ∈ Y , x ∈ X : x̂>Ay ≥ x̂>Aŷ ≥ x>Aŷ

⇔ (x̂, ŷ) is a Nash equilibrium
(x̂ and ŷ are mutual best responses)

Exercise: prove that if (x, y) is a Nash equilibrium in the
zero-sum game (A,−A), then x is a max-min strategy
and y is a min-max strategy.
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(x̂ and ŷ are mutual best responses)

Exercise: prove that if (x, y) is a Nash equilibrium in the
zero-sum game (A,−A), then x is a max-min strategy
and y is a min-max strategy.

34 / 35



Consequences for zero-sum games

Zero-sum game:

equilibrium strategy = max-min / min-max strategy

• equilibrium exists ⇔ maxmin = minmax

• strategies are optimal, independent of opponent

• unique equilibrium payoff / cost v = value of the game

• (x, y), (x, y) equilibria ⇒ (x, y), (x, y) equilibria
(exchangeability)

• x , x equilibrium strategy ⇒ so is x(1− α) + xα
for α ∈ [0, 1] (convexity)
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