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Overview — Two-Player Games

Best responses and Nash equilibrium
Zero-sum games, von Neumann’s minimax theorem with proof

Geometry of Nash equilibria

o Lemke-Howson, odd number of Nash equilibria
o Bimatrix games and labeled polytopes

o Complementary pivoting

Extensive games
o Perfect recall and the sequence form

Correlated equilibria
PPAD
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Zero-sum games: start
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A zero-sum game
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Best response payoffs / costs:

[ ] maximizing row player

Q minimizing column player

4/35



A zero-sum game
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Best response payoffs / costs:

[ | maximizing row player

Q minimizing column player

= no “stable” way of playing deterministically
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Optimal mixed (= randomized) strategies
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Optimal mixed (= randomized) strategies
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Probabilities found with the “difference trick”:

they are inversely proportional to the opponent-payoff differences
in the respective rows and columns, and make the opponent
indifferent.
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Payoffs must be expected utilities
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Payoffs must be expected utilities
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Probability of goal = payoff to striker
(Maximizer), cost to goalkeeper (minimizer)
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Probability of goal = payoff to striker
(Maximizer), cost to goalkeeper (minimizer)

payoff to Max, = cost to min
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optimal for row player: max-min strategy x
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Notation: treat vectors and scalars as matrices

All vectors are column vectors. AT = matrix A transposed.

0=(0,...,0T, 1=(1,...,1)T.

Ay = linear combination of columns of A

x TA = linear combination of rows of A

x b = scalar product of x and b

ya = (column) vector x scaled by o

ax T =row vector x T scaled by «
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Example use of notation

Given: A € RMxn,

probability vectors x € R™ for rows, y € R" for columns
ie. 1Tx=1, 1Ty=1.

Constant a € R added to all entries of Agives A+ 1ad’.

Then
x"(A+1alT)y = xTAy + x"(1al )y

= xTAy + (x1)a(1Ty)
= x'Ay + a.
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The best-response condition
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Bimatrix game (A, B)

row player I column player 11

m pure strategies i = 1,...,m npure strategiesj=1,...,n

payoff a;;, payoff matrix A payoff bj;, payoff matrix B
II J
I
i by
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Bimatrix game (A, B)

row player I

column player 11

m pure strategies i = 1,...,m npure strategiesj=1,...,n

payoff a;;, payoff matrix A

I

mixed strategy x
probabilities X1, ..., Xm

expected payoff x Ay

II

payoff bj;, payoff matrix B

mixed strategy y
probabilities y1,..., ¥n
expected payoff x By
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Expected payoffs
Given: m x n bimatrix game (A, B) .
mixed strategy vector x = (Xy,...,Xy) " for player I

mixed strategy vector y = (y4,...,¥n) ' for player II

Expected payoff to player I is

ZZX,a,, yj=x"Ay = Zx, Ay);

i=1 j=1

Expected payoff to player IT is

ZZx,b,,y,_x By = Z B); y;

i=1 j=1
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Expected payoffs — what the player controls

The expected payoff x "Ay to player I should be read as x '(Ay),

m

" xi(Ay);

i=1

because player I chooses x, against given y and expected payoff
vector Ay with entries (Ay); for the rows i.
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Ay = (4,4,3)7, x"=(},1,3), expected payoff 32 .
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Expected payoffs — what the player controls

The expected payoff x "Ay to player I should be read as x '(Ay),

" xi(Ay);
i=1

because player I chooses x, against given y and expected payoff
vector Ay with entries (Ay); for the rows i.

Similarly, read the expected payoff x "By to player Il as (x 'B)y .

Example

Ay = (4,4,3)7, x"=(},1,3), expected payoff 32 .

Is this the optimal expected payoff? No, player I could get payoff 4

with x T = (1,0,0) or x " = (0,1,0) or x" = (3, 2,0) or ...
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The best response condition

Theorem
Given: m x n bimatrix game (A, B) .

Let x be a mixed strategy of player I and
y be a mixed strategy of player II. Then

X is a best response to y
& for all pure strategies i of player I :
Xi>0 = (Ay)i = u =max{(Ay)k |1 <k < m}.
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The best response condition

Theorem
Given: m x n bimatrix game (A, B) .

Let x be a mixed strategy of player I and
y be a mixed strategy of player II. Then

X is a best response to y
& for all pure strategies i of player I :
Xi>0 = (Ay)i = u =max{(Ay)k |1 <k < m}.

That is, only pure best responses may be played with positive
probability.

15/35



Proof of the best response condition

X is a best response to y
& for all pure strategies i of player I :
xi>0 = (Ay)i = u =max{(Ay)k |1 <k <m}.

Proof
x Ay

> xi(Ay)i=> xi(u—(u—(Ay))
i=1 i=1

= inu— ZX,-(U— (Ay)i)
i=1 i=1
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Proof of the best response condition

X is a best response to y

& for all pure strategies i of player I :

xi>0 = (Ay)i = u =max{(Ay)k |1 <k <m}.

Proof
x Ay

> xi(Ay)i=> xi(u—(u—(Ay))
i=1 i=1

= inu— ZX,-(U— (Ay)i)
i=1 i=1

= U—_Z\XL(U—(A}'):-) < u.
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Proof of the best response condition

X is a best response to y

& for all pure strategies i of player I :

xi>0 = (Ay)i = u =max{(Ay)k |1 <k <m}.

Proof
xTAy = Ay)l_le (u— (u— (Ay)i)

i=1

Zx, u — (Ay))

i=1

S
o

m
= u=) X (u=(Ay)) < u.
=1 >p >0

SoxTAy = u < x; > 0implies u — (Ay); = 0, as claimed.
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best response condition written as
orthogonality = complementarity

X is a best response to y
&
x>0 1 Ay<1u ‘

<~
x>0, Ay<1u, x"(1lu—Ay)=0
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Convex combinations
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Lines and line segments

8 ox 5 x
y i b O\o\g
Z;\_ x(1—a)+ya
{x+(y —x)a| a € R} —_—

Line through points x and y given by x + (y — x)a for o € R.
Examples: afora=0.6, bfora=1.5, cfora=—-0.4.

Line segment that connects xandy & 0< a <1.
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Convexity
Rewrite X + (y — X)a as

x(1—a)+ ya

which for a € [0, 1] is called a convex combination of x and y.
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Convexity
Rewrite X + (y — X) as

x(1—a)+ ya

which for a € [0, 1] is called a convex combination of x and y.

Convex sets contain all convex combinations of their points:

convex not convex
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Mixed strategy sets X and Y

For player I and player II,

X ={xeR™ | x>0,1"x =1},
Y ={yer” |y>0,1Ty=1},

X and Y are simplices,

simplex = convex hull of unit vectors.
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Mixed strategy line segment X for m = 2

X={xeR™"|x>0,1"x=1}

X2
A
(0,1)

(0,0) (1,0)
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Mixed strategy triangle X for m = 3
X3

(0,0,1)

X2
(0,0,0) 0,1,0)

(1,0,0)
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Mixed strategy tetrahedron X for m = 4

(0,0,0,1)

(0,0,1,0)

(0,1,0,0)

(1,0,0,0)

for general m called mixed strategy simplex X .
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Zero-sum games: continued
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Best responses against y

Lety € Y. (Ay); = expected payoff to player I in row i.
A best response x € X to y maximizes x 'Ay .

max{x T(Ay) | x € X}

= max{(Ay)1;...,(AY)m}
= min{fueR| (Ay)1 < u,...,(AY)m < u}
= min{fu e R| Ay < 1u}
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Best responses against y

Lety € Y. (Ay); = expected payoff to player I in row i.
A best response x € X to y maximizes x 'Ay .

max{xT(Ay) | x € X}
= max{(AY)1s .- -+ (AY)m}
= min{fueR| (Ay)1 < u,...,(AY)m < u}
= min{u e R | Ay <1u}

In a zero-sum game (A, —A), player 11 minimizes u with her best
choice of y € Y, her min-max strategy y.
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max-min and min-max strategies

min-max strategy y € Y :

max X Ay = min max X' Ay
xex yeY xeX
= mn{ueR|Ay <1u
miy {u € R | Ay < 10}

max-min strategy x € X :
min XTAy = max min X Ay
yeyY xeX yeY
= max{veR|viT < xTA}
xeX
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max min < min max

The “easy part” of max-min versus min-max payoff:

max min X'Ay < min max X'Ay

xeX yeY yeY xeX
Proof
max min X Ay = min X'Ay
xeX yeY yeY
< xTAy
< max XAy
- xeX

min max X'Ay []
yeY xeX
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von Neumann’s minimax theorem [1928]

Every zero-sum game A has a value v :

max min XAy = v = min max x'Ay
xeX yeY yeY xeX
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John von Neumann (1903-1957)

set theory
mathematics of quantum mechanics
minimax theorem [1928], game theory

stored-program computer
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John von Neumann (1903-1957)

e set theory
e mathematics of quantum mechanics
e minimax theorem [1928], game theory

e stored-program computer

from The Man from the Future (2021):

“VYon Neumann would carry on a conversation with my
three-year-old son, and the two of them would talk as equals, and
| sometimes wondered if he used the same principle when he
talked to the rest of us.” Edward Teller, 1966
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Minimax theorem: Proof by Loomis [1946]
min-max strategy y € Y: minimize us.t. Ay < 1u,

max-min strategy x € X: maximize v s.t. viT < xTA,

v=v1Ty < xTAy < x"u = u.
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Minimax theorem: Proof by Loomis [1946]

min-max strategy y € Y: minimize us.t. Ay < 1u,
max-min strategy x € X: maximize v s.t. viT < xTA,
v=v1Ty < xTAy < x"u = u.

viT=x"A and Ay =1u = v = u, done.

Assume (Ay)x < u for some row k, let A be A without row k.

By inductive hypothesis, A has game value u, Ay < 1u.
u<v, u<u, (Abetterthan A for minimizer).

Claim : U = u. Intuition: maximizer avoids row k of A anyhow.
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Proof that u = u

minimal us.t. Ay <1u, maximalvst viT <xTA v <u.

(Ay)k < u, matrix Ais Awithoutrow k, value u<v, u< u.

32/35



Proof that u = u

minimal us.t. Ay <1u, maximalvst viT <xTA v <u.

(Ay)k < u, matrix Ais Awithoutrow k, value u<v, u< u.

Suppose u< u. For 0<e<1,
Ay(1—e)+ye) < 1(u(1—e)+ue) = N(u—e(u—1u)) < 1u
~—_———

y(e)€Y (convex)

32/35



Proof that u = u

minimal us.t. Ay <1u, maximalvst viT <xTA v <u.

(Ay)k < u, matrix Ais Awithoutrow k, value u<v, u< u.

Suppose u< u. For 0<e<1,
Ay(1—e)+ye) < 1(u(1—e)+ue) = N(u—e(u—1u)) < 1u
~—_———

y(e)€Y (convex)

For missing row k of A and sufficiently smalle > 0:

(Aly(d —e) +ye))k = (Ay)k(1 —¢) + (A¥)ke < U,
N——
<u
overall Ay(e) < 1u, contradicting minimality of u. Hence u = u.
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Proof that u = u

minimal us.t. Ay <1u, maximalvst viT <xTA v <u.

(Ay)k < u, matrix Ais Awithoutrow k, value u<v, u< u.

Suppose u< u. For 0<e<1,
Ay(1—e)+ye) < 1(u(1—e)+ue) = N(u—e(u—1u)) < 1u
~—_———

y(e)€Y (convex)

For missing row k of A and sufficiently smalle > 0:

(Aly(d —e) +ye))k = (Ay)k(1 —¢) + (A¥)ke < U,
N——
<u
overall Ay(e) < 1u, contradicting minimality of u. Hence u = u.

= u<v<u=u, [v=u]. Inductioncomplete. []
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minimax pair = saddle point
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Minimax theorem and Nash equilibrium

max min X 'Ay = min max X Ay
xeX yeY yeY xeX
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Minimax theorem and Nash equilibrium

max min X 'Ay = min max X Ay
xeX yeY yeY xeX

with max-min strategy x and min-max strategy y :

min XAy = Xx'Ay = max x'Ay
yeyY xexX
& VyeY, xeX xTAy > xTAy > xTAy

< (x,y)is a Nash equilibrium
(x and y are mutual best responses)
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Minimax theorem and Nash equilibrium

max min X 'Ay = min max X Ay
xeX yeY yeY xeX

with max-min strategy x and min-max strategy y :

min XAy = Xx'TAy = max x Ay
yeyY xexX
& VyeY, xeX xTAy > xTAy > xTAy

& (X, y) is a Nash equilibrium
(x and y are mutual best responses)
Exercise: prove that if (x, y) is a Nash equilibrium in the

zero-sum game (A, —A), then X is a max-min strategy
and y is a min-max strategy.
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Consequences for zero-sum games

Zero-sum game:

equilibrium strategy = max-min / min-max strategy

o equilibrium exists < |[maxmin = min max|

e strategies are optimal, independent of opponent
e unique equilibrium payoff / cost v = value of the game

e (x,¥), (X,y)equilbria = (X,y), (x,¥) equilibria
(exchangeability)

e X, x equilibrium strategy = sois x(1 — a) + X«
fora € [0,1] (convexity)
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