Geometry of Equilibria in Bimatrix Games

Bernhard von Stengel

reading material:
Chapter 9 of “Game Theory Basics”
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Plan

recall best-response condition

upper envelope with 2 and 3 goalposts
labels in best-response diagrams

equilibria = completely labeled strategy pairs
the Lemke—Howson algorithm

labeled polytopes

complementary pivoting
o handling degeneracy
o efficient exact arithmetic
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Some Reading Material

l GameTheory'

B. von Stengel (2021), Game Theory Basics. Basics

Cambridge University Press.

Bernhard von Stengel

B. von Stengel (2021), Finding Nash equilibria
of two-player games. arXiv:2102.04580.

L. S. Shapley (1974), A note on the Lemke-Howson algorithm.
Mathematical Programming Study 1: Pivoting and Extensions,
175-1809.
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Bimatrix Games,

Best-Response Condition
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Nash equilibria of bimatrix games

0 6 2 1
A=[2 5 B= 1 3
3 3

Nash equilibrium =
pair of strategies x,y with

X best response to y and
y best response to x.
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Mixed equilibria

0 6 2 1
A=|2 §5 B= |1 3
3 3 4 3
2/3
x= (1/3 XTB =|5/3 5/3
0
4
Ay =4 yT=11/3 2/3
3

only pure best responses can have probability > 0
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Best-response condition

Theorem Given: m x nbimatrix game (A, B) .

Let x be a mixed strategy of player I and
let y be a mixed strategy of player I1. Then

X is a best response to y
& for all pure strategies i of player I :
xi>0 = (Ay)i = u =max{(Ay)k |1 < k< m}.

7/84



Best-response condition

Theorem Given: m x nbimatrix game (A, B) .

Let x be a mixed strategy of player I and
let y be a mixed strategy of player I1. Then

X is a best response to y

& for all pure strategies i of player I :
xi>0 = (Ay)i = u =max{ (Ay)k |1 < k< m}.
(x, y) is a mixed equilibrium

& for all pure strategies i of player I :

xi=0 or (Ay)i = u =max{(Ay)k |1 <k <m},
for all pure strategies j of player II :

yj=0 or
(x™B)j = v =max{(x"B),|1<¢<n}
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2

@)

@
@
®

w N o

w a o
1l
>

payoffs to
player |

best response polyhedron

1,0 0,1

14/84



Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 2
00,
(1|0 6

(2)|2 5|=A
(3)|3 3

payoffs to
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16/84



Best responses to mixed strategy of player 2
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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O O =

Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1

(4)(5)
©, ®
2 (2 =B
Z (3
5 payoffs to
player Il
5 @ (front) best response
0 polyhedron
1 with facet labels
1 0
¢ 1
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Alternative view
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Chop off Toblerone prism
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Chop off Toblerone prism
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Chop off Toblerone prism
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Chop off Toblerone prism
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Chop off Toblerone prism
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1
@®)
(12 1

(2)|1 3|=8B
(3) 4 3

payoffs to
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Equilibrium = completely labeled strategy pair

35/84



Equilibrium = completely labeled strategy pair
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Equilibrium = completely labeled strategy pair

37/84



The Lemke-Howson algorithm
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The Lemke-Howson algorithm
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The Lemke-Howson algorithm
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The Lemke-Howson algorithm
0

0 artificial equilibrium
0 df\/L/D 0.0
() (@)
® @ @
©)
@
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The Lemke-Howson algorithm
0

0 artificial equilibrium
0 df\/L/D 0.0
() (@)
® @ @
@ missing label (2)
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The Lemke-Howson algorithm
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The Lemke-Howson algorithm
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The Lemke-Howson algorithm
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The Lemke-Howson algorithm
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missing label (2)
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The Lemke-Howson algorithm

0
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0

0,0
(5 /\@
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found label (2)
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Why Lemke-Howson works

LH finds at least one Nash equilibrium because
» finitely many "vertices"

for nondegenerate (generic) games:

e unique starting edge given missing label

e unigque continuation

= precludes "coming back" like here:
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The Lemke-Howson algorithm

start at Nash equilibrium =
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The Lemke-Howson algorithm
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The Lemke-Howson algorithm

start at Nash equilibrium =

® @
® @ O
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Odd number of Nash equilibria!

start at Nash equilibrium =

® @
®» @ ®

@ found label (2)
(&
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Nondegenerate bimatrix games

Given: m xn bimatrix game (A,B)

X={xORmM | x=20, xa+...+xm=1}
Y={yORn | y20, y1+...+yn =1}

supp(x) ={i | xi>0}
supp(y) ={j | yj>0}

(A,B) nondegenerate < [] x OX, y Oy:

| supp(x) |,
I

| {j|]bestresponse to x} |
| < |'supp(y) |-

<
| {i|ibestresponsetoy}| <
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Nondegeneracy via labels

m x n bimatrix game (A,B) nondegenerate

no x € X has more than m labels,
noy €Y has more than n labels.

E.g.

O

x with >m labels,
slabelsfrom{1,..., m},
>m-s labels from{m+1,..., m+n}

> |supp(x)| best responses to x.
degenerate.
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Example of a degenerate game

0O

(|2 1
(2)1 3|=8B

payoffs to
player Il
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Equilibrium components in a degenerate game
nondegenerate game:

@l@:@s® (@)

degenerate game, same payoffs for player I:

> 5 e @
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Best-response diagrams for a 3 x 3 game

Consider the 3 x 3 game

Subdivision of Y into
best-response regions:
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Upper envelope — with “row shift” of B
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Upper envelope — with “row shift” of B

OXOXO,
2 30 01 -2
B=|203,B=|20 3|, x"B=x"B+x422 2]

2 00 2 0 0

payoff to Il

A 5

3 C o> 3

2¢----- - 42
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Best-response diagrams X and Y and
Lemke-Howson
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Diagrams from Shapley (1974)

Key: Payoffs;

#! OoAcDxX YyCzZ

»? QoYy XxZz 2 20 30 ?
P3 CoXx YyZz

P4 00aXx yYcCdZ7 030 ° 32
ps oOyY xXzZ +«o bACBdDb ... 301 0 0 1
% o0xX yYzZ
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from Robert Wilson, in Shapley (1974)

Lemke-Howson may only find some equilibria:

Key: Payoffs:

£ QoAxX yYbZz

2 OoCaDxX yYcBdZz 030 023
P OoXx YyZz

P4 60aXx YyBzZ 2120 320
P2 oOcAdXx  YyCbDzZ 301 00 1

P¢ 60xX yYzZ
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Running time of Lemke-Howson

The running time of Lemke-Howson may be exponential in the
size of the game:

R. Savani and B. von Stengel (2004), Exponentially many steps for
finding a Nash equilibrium in a bimatrix game. In: Proc. 45th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2004), 258-267.

R. Savani and B. von Stengel (2006), Hard-to-solve bimatrix
games. Econometrica 74, 397—-429.

R. Savani and B. von Stengel (2016), Unit vector games.
International Journal of Economic Theory 12, 7-27.
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Questions

how to implement Lemke-Howson as an algorithm
o use labeled polytopes
o complementary pivoting

handling degenerate games

finding one vs. all Nash equilibria
o possibly exponentially many NE
o unigueness is co-NP-complete

running time of Lemke-Howson
o worst-case: exponential

o average case?

o smoothed analysis?
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Labeled polytopes and

completely labeled vertex pairs
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Best-response polyhedra and polytopes
best-response polyhedra:
P={(x,v) EXxR|BTx<1v}
Q={(y,ue YxR| Ay <1u}

@6

0 6
2 5|=A
3 3

® ®

©E)

payoffs to
player |

best response polyhedron
with facet labels
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Best-response polyhedra and polytopes
best-response polyhedra:
P={(x,v)eXxR|B'x <1v}
Q={(y,u)e YxR| Ay <1u}

best-response polytopes:
P={xeR"| x>0, B"'x <1}
Q={yeR" |Ay <1, y=>0}
obtained from P, Qvia x> x1, yw— yl
(requires u, v > 0, if needed via adding constants to A, B)
re-normalized to X, Y via x — x51—, y y&—y
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Labeled polytopes

P={xecR"| x>0, B'x <1}
Q={yeR" Ay <1, y2>0}

(x,y) € P x Q (re-normalized in X x Y) equilibrium of (A, B)
&

x>0 L Ay <1 (labels1,...,m)

y>0 L B'x<1 (labelsm+1,...,m+ n)
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Labeled polytopes

P={xeR"| x>0, BTx <1}
Q={yeR"[Ay <1, y=>0}

(x,y) € P x Q (re-normalized in X x Y) equilibrium of (A, B)
&

x>0 L Ay <1 (labels1,...,m)

y>0 L B'x<1 (labelsm+1,...,m+ n)

artificial equilibrium (x, y) = (0,0), notin X x Y, not NE.
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Only one labeled polytope

P={xeR"| x>0, B"x <1}
Q={yeR" Ay <1, y=>0}

R={zecRk| z>0, Cz<1}

R=PxQ, k = m+ n,

0 A
C=<BT 0>eR"X", z=(x,y)
equilbriumz < z>0 L Cz<1 (labels1,...,k)

artificial equilibrium z = 0, any other z = (x, y) with
x re-normalized in X and y in Y is NE of (A, B)
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Path of “almost completely labeled” edges

R={zeRK|z>0,Cz<1}

@

70/ 84



Path of “almost completely labeled” edges
R={zeRK|z>0,Cz<1}

missing label D :

@
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Path of “almost completely labeled” edges
R={zeRK|z>0,Cz<1}

missing label @ :

of >4
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Path of “almost completely labeled” edges
R={zeRK|z>0,Cz<1}

missing label @ :
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Algebraic implementation

by pivoting
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Complementary pivoting
z>0 L Cz< 1

& 220 L s20
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Complementary pivoting
z>0 L Cz< 1
& z>0 1L s>0, [Cz+s=

z>0,s >0 s-almost complementary (missing label £)

& Czts=1, fori=1,....k 1 £¢]
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Complementary pivoting
z>0 L Cz< 1
& z>0 1L s>0, [Cz+s=

z>0,s >0 s-almost complementary (missing label £)
& Czts=1, for i =1,....k [ i#¢]

complementary pivoting = algebraic traversal of £-almost
complementary edges of {z € Rk | z > 0, Cz < 1}

startingwithz =0, s=1-— Cz.
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Complementary pivoting
z>0 L Cz< 1
& z>0 1L s>0, [Cz+s=

z>0,s >0 s-almost complementary (missing label £)
& Czts=1, for i =1,....k [ i#¢]

complementary pivoting = algebraic traversal of £-almost
complementary edges of {z € Rk | z > 0, Cz < 1}

Pl

startingwithz =0, s=1-— Cz.

030
2 2 2

3 00

Example: C =
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Almost complementary | dictionaries
dictionary = any equivalent systemto Cz + s = 1

basic variables expressed depending on nonbasic variables

e nonbasic variables setto 0 :
o gives basic solution = polytope vertex,
o nonbasic variables = binding inequalities = vertex labels

o starting dictionary: s=1— Cz
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Almost complementary | dictionaries
dictionary = any equivalent systemto Cz + s = 1

basic variables expressed depending on nonbasic variables

e nonbasic variables setto 0 :
o gives basic solution = polytope vertex,
o nonbasic variables = binding inequalities = vertex labels

o starting dictionary: s=1— Cz
choose entering column = entering nonbasic variable z,
identify the leaving row = leaving basic variable, here s

s1=1 — 32

So=1—221 — 22y — 223 b

s3=1— 3z @
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Complementary variables

s1=1 — 32z
So=1—-221 — 2z, — 223
s3=1—-3z

z; enters, | s3] leaves:
s1 = -3z

82=§+§83—222—223

@

o
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Complementary variables

s1=1 — 32z
So=1—22zy — 220 — 223
s3=1—-3z
z; enters, | s3] leaves:
s1=1 -3z ® b

82=%+§83—222—223

1 1
Z1=§—§S3

i

@ enters, s, leaves:

s1=1 — 3z
Z3=g§+3S3— Z— 3S2 ® b

21 =

W= o=
|

Y

7]

W
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complementary pivoting, continued

.. @ left the basis, @ enters:

s1=1 — 3z
1,1 1
Z3=g+t383— 22— 382
1
3

Zalleaves: e @

1

S1=35— S3+3Zg+%$2
1 1 1
1 1

Z1 = 3 — 383
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complementary pivoting, continued

.. @ left the basis, @ enters:

s1=1 — 3z
1,1 1

Z3=g+t383— 22— 382
1_1

Z1 =§—§S3

23] leaves: 1 .

S1=3— S3+3z+ ;82
1,1 1

Z; =g+ 3S3— 23— 382
1_1

Z1 =§—§S3

@ enters, s¢ leaves, equilibrium found:

1
Ss=3— S1+3z+ ;s
1 1
22=§—§S1
1 1 1
21 =5 +t381— Z3— 382

b

7
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Labeled polytopes and bimatrix games
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Did we solve a game?
Yes!
z=(3,%,0)7 is normalized Z = (3, %,0) " and a (here unique)
symmetric equilibrium (Z, Z) of the game (C, CT) with

0 30
2 2 2], that is,
300
1

z>0 L Cz<1u with payoff u =2 = =

C=

@6

@0 3 o ® @
@2 2 2 @
@®|3 o0 o ©) ©
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Arbitrary labeled polytopes
simple polytope in R™ <« every vertex on only m facets

labeled (simple) polytope in R™ :
every facet has one label in {1,...,m}

completely labeled vertex = its facets have all labels 1,..., m
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Arbitrary labeled polytopes
simple polytope in R™ <« every vertex on only m facets

labeled (simple) polytope in R™ :
every facet has one label in {1,...,m}

completely labeled vertex = its facets have all labels 1,..., m

Theorem The number of completely labeled vertices is even.

78 /84
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Arbitrary labeled polytopes
simple polytope in R™ <« every vertex on only m facets

labeled (simple) polytope in R™ :
every facet has one label in {1,...,m}

completely labeled vertex = its facets have all labels 1,..., m

Theorem The number of completely labeled vertices is even.
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Unit vector games

Letb1,...,bn€Rm, B=[b1"'bn]

£(1),...,4(n) € {1,...,m} be labels ©)
P={xcR"|x>0, B Tx<1} (2

. T . @ @
with labels of P for binding inequalities: @ @
label i : xi>0 (1<i<m) ©

label £(j): bx<1 (1<j<n) 0

Theorem x # 0 completely labeled vertex of P <
(x, y) Nash equilibrium of (U, B) where U = [eg(1) - - - €(n)]
e;j = ith unit vector in R™
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Summary

Nash equilibria of bimatrix games
are completely labeled vertices of facet-labeled polytopes P

(assuming there is one completely labeled vertex x = 0 of P
whose incident facet inequalities can w.l.o.g. be written as x > 0,
which is not a NE but the artificial equilibrium).

For generic games (simple polytopes), the number of completely
labeled vertices is even, and hence the number of NE is odd.

Evenness = Parity Argument, complexity class PPAD.
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Degeneracy resolution

Integer pivoting
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Degeneracy

In pivoting, degeneracy means at least one zero basic variable in
a basic feasible solution

=- additional labels as binding inequalities (not just the nonbasic
variables)

occurs when leaving variable not unique
Example: z; enters:
s1 =1 — 3z

1,2
Zi=3+382— 22
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Degeneracy

In pivoting, degeneracy means at least one zero basic variable in
a basic feasible solution

=- additional labels as binding inequalities (not just the nonbasic
variables)

occurs when leaving variable not unique
Example: z; enters:
s1 =1 — 3z
1,2
Zi=3+382— 22

Apply to general system Ax = b, x > 0 written as
Apxg + Ayxy = b with basic columns B, nonbasic columns N
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Lexicographic degeneracy resolution

Ax = b
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Lexicographic degeneracy resolution

Ax
Apxg + AnXy =

I
S S
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Lexicographic degeneracy resolution

Ax = b
ApXxg + ANXy = b
ApXp = b — AnXy
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Lexicographic degeneracy resolution

Ax = b

ApXxg + ANXy = b

AgXg = b — AnXn
dictionary | XB = AE1 b — AE1ANXN
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Lexicographic degeneracy resolution

perturb b to b+ &, withsmalle >0, &= (1,e,€%,...eM7

Ax = b

ApXxg + ANXy = b

AgXg = b — AnXn
dictionary | XB = AE1 b — AE1ANXN
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Lexicographic degeneracy resolution

perturb b to b+ &, withsmalle >0, &= (1,e,€%,...eM7

Ax = [b|I]¢

Apxg + ANXy = [bll]§

ApXp = [b|Ilg — AnXyn
dictionary | Xg = AZ'[b|11e — AZ'Awxy
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Lexicographic degeneracy resolution

perturb b to b+ &, withsmalle >0, &= (1,e,€%,...eM7

Ax = [b|I]¢&

Apxg + ANXy = [bll]§

ABXB = [bll]g — ANXN
XB = AZ'[b|11e — AZ'Awxy

X5 = [Az'b| A ]e — AZ'Anxn
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Lexicographic degeneracy resolution

perturb b to b+ &, withsmalle >0, &= (1,e,€%,...eM7

Ax = [b|1]¢

Apxg + ANXy = [bll]§

ABXB = [bll]g — ANXN
XB = AZ'[b|11e — AZ'Awxy
X5 = [Az'b| A ]e — AZ'Anxn

nondegeneracy < xg > 0forsmalle >0 < [Ag'b|Ag"]
lexico-positive (first nonzero element in each row is > 0).
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Lexicographic degeneracy resolution

perturb b to b+ &, withsmalle >0, &= (1,e,€%,...eM7

Ax = [b|1]¢

Apxg + ANXy = [bll]§

ABXB = [bll]g — ANXN
XB = AZ'[b|11e — AZ'Awxy
X5 = [Az'b| A ]e — AZ'Anxn

nondegeneracy < xg > 0forsmalle >0 < [Ag'b|Ag"]
lexico-positive (first nonzero element in each row is > 0).

1-9 40 1 — 9 + 4
Example: |0 3 —-1002|¢ = 3 — 1002 + 263
0 o0 05 5¢3
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Integer pivoting for Cz + s = 1

(basic columnsinred) 2z 2z s1 S» RHS

4 3 1 0 1
2, enters, s, leaves 2 o 1 1
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Integer pivoting for Cz + s = 1

(basic columnsinred) 2z 2z s1 S» RHS

4 3 1 0 1 X 7
2, enters, s, leaves 2 o 1 1
28 21 7 0 7
7 2 0 1 1
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Integer pivoting for Cz + s = 1

(basic columnsinred) 2z 2z s1 S» RHS

4 3 1 0o 1 X7
2z, enters, s» leaves 2 0 1
28 21 7 0 7
7 2 0o 1 1
2, enters, s leaves 0 IE[ 7 —4 3
7 2 0o 1 1
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Integer pivoting for Cz + s = 1

(basic columnsinred) 2z 2z s1 S» RHS
4 3 1 o 1 x 7
2, enters, s, leaves 2 o 1 1
28 21 7 0 7
7 2 0 1 1
2, enters, s leaves 0 IE[ 7 —4 3
7 2 o 1 1 x 13
0 13 7 -4 3
91 26 0 13 13
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Integer pivoting for Cz + s = 1

(basic columnsinred) 2z 2z s1 S» RHS
4 3 1 o 1 x 7
2, enters, s, leaves 2 o 1 1
28 21 7 0 7
7 2 0 1 1
2, enters, s leaves 0 IE[ 7 —4 3
7 2 o 1 1 x 13
0 13 7 -4 3
91 26 0 13 13
0 13 7 -4 3
(numbers grow) 91 0 —14 219 7
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Integer pivoting for Cz + s = 1

(basic columnsinred) 2z 2z s1 S» RHS
4 3 1 o 1 x 7
2, enters, s, leaves 2 o 1 1
28 21 7 0 7
7 2 0 1 1
2, enters, s leaves 0 IE[ 7 —4 3
7 2 o 1 1 x 13
0 13 7 -4 3
91 26 0 13 13
0 13 7 -4 3
(numbers grow) 91 o —14 29 7 /7
0 13 7 -4 3
i3 0 -2 3 1
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