Geometry of Equilibria in Bimatrix Games

Bernhard von Stengel

reading material: Chapter 9 of "Game Theory Basics"

Plan

- recall best-response condition
- upper envelope with 2 and 3 goalposts
- labels in best-response diagrams
- equilibria = completely labeled strategy pairs
- the Lemke–Howson algorithm
- labeled polytopes
- complementary pivoting
 - handling degeneracy
 - efficient exact arithmetic

Some Reading Material

B. von Stengel (2021), *Game Theory Basics*. Cambridge University Press.

B. von Stengel (2021), Finding Nash equilibria of two-player games. arXiv:2102.04580.

L. S. Shapley (1974), A note on the Lemke-Howson algorithm. *Mathematical Programming Study 1: Pivoting and Extensions*, 175–189.

Bimatrix Games,

Best-Response Condition

Nash equilibria of bimatrix games

Nash equilibrium =

pair of strategies x, y with

- x best response to y and
- y best response to x.

Mixed equilibria

only pure best responses can have probability > 0

Best-response condition

Theorem Given: $m \times n$ bimatrix game (A, B).

Let **x** be a mixed strategy of player I and let **y** be a mixed strategy of player II. Then

x is a best response to y

 \Leftrightarrow for all pure strategies *i* of player I :

$$x_i > 0 \Rightarrow (Ay)_i = u = \max\{ (Ay)_k \mid 1 \le k \le m \}.$$

Best-response condition

Theorem Given: $m \times n$ bimatrix game (A, B).

Let **x** be a mixed strategy of player I and let **y** be a mixed strategy of player II. Then

x is a best response to y

 \Leftrightarrow for all pure strategies *i* of player I :

$$x_i > 0 \Rightarrow (Ay)_i = u = \max\{ (Ay)_k \mid 1 \le k \le m \}.$$

(x, y) is a mixed equilibrium

 \Leftrightarrow for all pure strategies *i* of player I :

$$x_i = 0$$
 or $(Ay)_i = u = \max\{ (Ay)_k \mid 1 \le k \le m \},$

for all pure strategies \boldsymbol{j} of player II :

$$\begin{array}{ll} y_j = 0 & \text{or} \\ (x^\top B)_j \ = \ v \ = \max\{ \ (x^\top B)_\ell \mid 1 \le \ell \le n \,\}. \end{array}$$

Alternative view

Equilibrium = completely labeled strategy pair

Equilibrium = completely labeled strategy pair

Equilibrium = completely labeled strategy pair

missing label 2

missing label (2)

missing label 2

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

finitely many "vertices"

for nondegenerate (generic) games:

- unique starting edge given missing label
- unique continuation
- \Rightarrow precludes "coming back" like here:

Odd number of Nash equilibria!

Nondegenerate bimatrix games

Given: $m \times n$ bimatrix game (A,B)

$$\begin{array}{l} X = \{ \ x \in \ R^m \ \mid \ x \ge 0, \ x_1 + \ldots + x_m = 1 \ \} \\ Y = \{ \ y \in \ R^n \ \mid \ y \ge 0, \ y_1 + \ldots + y_n \ = 1 \ \} \end{array}$$

$$supp(x) = \{ i | x_i > 0 \}$$

 $supp(y) = \{ j | y_j > 0 \}$

(A,B) nondegenerate $\iff \forall x \in X, y \in Y$:

 $|\{j \mid j \text{ best response to } x\}| \leq | \text{ supp}(x) |$,

 $|\{i \mid i \text{ best response to } y\}| \leq | \text{ supp}(y) |.$

Nondegeneracy via labels

 $m \times n$ bimatrix game (A,B) nondegenerate

 $\Leftrightarrow \quad \text{no } \mathbf{x} \in \mathsf{X} \text{ has more than } \mathbf{m} \text{ labels,} \\ \text{no } \mathbf{y} \in \mathsf{Y} \text{ has more than } \mathbf{n} \text{ labels.}$

- E.g. x with > m labels, s labels from { 1 , . . . , m } ,
- \Rightarrow > m-s labels from { m+1 , ..., m+n }
- \Leftrightarrow > |supp(x)| best responses to x.
- \Rightarrow degenerate.

Example of a degenerate game

Equilibrium components in a degenerate game

nondegenerate game:

degenerate game, same payoffs for player I:

Best-response diagrams for a 3 \times 3 game

Consider the $\mathbf{3} \times \mathbf{3}$ game

$$A = \begin{pmatrix} 0 & 3 & 0 \\ 1 & 0 & 1 \\ -3 & 4 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 & -2 \\ 2 & 0 & 3 \\ 2 & 1 & 0 \end{bmatrix}.$$

Subdivision of **Y** into best-response regions:

Upper envelope – with "row shift" of **B**

Upper envelope – with "row shift" of **B**

Best-response diagrams *X* and *Y* and Lemke-Howson

Diagrams from Shapley (1974)

٩đ	OoAcDxX	YyCzZ	
'n5	OoYy	XxZz	
იკ	OoXx	YyZz	
۶٩	οOaXx	yYcCdZ7	
	٥OyY	×XzZ	bAcBdDb
۶¢	oOxX	yYzZ	

Payoffs:

2	2	0	3	0	?
0	3	0	0	3	2
3	0	1	0	0	۱

from Robert Wilson, in Shapley (1974)

Lemke-Howson may only find **some** equilibria:

Key:

₽1 OoAxX	yYbZz
₽² OoCaDxX	yYcBdZz
P3 OoXx	YyZz
₽ ⁴ oOaXx	YyBzZ
مoCcAdXx دو	YyCbDzZ
₽° oOxX	γÝzΖ

Payoffs:

0	3	0	0	2	3
2	2	0	3	2	0
3	0	1	0	0	1

Running time of Lemke-Howson

The running time of Lemke-Howson may be **exponential** in the size of the game:

R. Savani and B. von Stengel (2004), Exponentially many steps for finding a Nash equilibrium in a bimatrix game. In: *Proc. 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004)*, 258–267.

R. Savani and B. von Stengel (2006), Hard-to-solve bimatrix games. *Econometrica* 74, 397–429.

R. Savani and B. von Stengel (2016), Unit vector games. *International Journal of Economic Theory* 12, 7–27.

Questions

- how to implement Lemke-Howson as an algorithm
 - use labeled polytopes
 - complementary pivoting
- handling degenerate games
- finding one vs. all Nash equilibria
 possibly exponentially many NE
 uniqueness is co-NP-complete
- running time of Lemke-Howson
 - worst-case: exponential
 - average case?
 - o smoothed analysis?

Labeled polytopes and completely labeled vertex pairs

Best-response polyhedra and polytopes

best-response polyhedra:

$$\overline{P} = \{ (x, v) \in X \times \mathbb{R} \mid B^{\top}x \leq 1v \}$$
$$\overline{Q} = \{ (y, u) \in Y \times \mathbb{R} \mid Ay \leq 1u \}$$

Best-response polyhedra and polytopes

best-response polyhedra:

$$\overline{P} = \{ (\mathbf{x}, \mathbf{v}) \in \mathbf{X} \times \mathbb{R} \mid \mathbf{B}^{\top} \mathbf{x} \le \mathbf{1} \mathbf{v} \}$$
$$\overline{\mathbf{Q}} = \{ (\mathbf{y}, \mathbf{u}) \in \mathbf{Y} \times \mathbb{R} \mid \mathbf{A} \mathbf{y} \le \mathbf{1} \mathbf{u} \}$$

best-response polytopes:

$$P = \{ x \in \mathbb{R}^m \mid x \ge 0, B^\top x \le 1 \}$$
$$Q = \{ y \in \mathbb{R}^n \mid Ay \le 1, y \ge 0 \}$$

obtained from \overline{P} , \overline{Q} via $x \mapsto x \frac{1}{v}$, $y \mapsto y \frac{1}{u}$ (requires u, v > 0, if needed via adding constants to A, B) re-normalized to X, Y via $x \mapsto x \frac{1}{1^T x}, y \mapsto y \frac{1}{1^T v}$

Labeled polytopes

$$P = \{ x \in \mathbb{R}^m \mid x \ge 0, B^\top x \le 1 \}$$
$$Q = \{ y \in \mathbb{R}^n \mid Ay \le 1, y \ge 0 \}$$

 $(x, y) \in P \times Q$ (re-normalized in $X \times Y$) equilibrium of (A, B) \Leftrightarrow

 $x \ge 0 \perp Ay \le 1$ (labels 1,..., m)

 $y \ge 0 \quad \perp \quad B^{\top} x \le 1 \quad (\text{labels } m+1, \dots, m+n)$

Labeled polytopes

$$P = \{ x \in \mathbb{R}^m \mid x \ge 0, B^\top x \le 1 \}$$
$$Q = \{ y \in \mathbb{R}^n \mid Ay \le 1, y \ge 0 \}$$

 $(x, y) \in P \times Q$ (re-normalized in $X \times Y$) equilibrium of (A, B) \Leftrightarrow

 $\begin{array}{ll} x \geq 0 & \perp & Ay \leq 1 & (\text{labels } 1, \dots, m) \\ y \geq 0 & \perp & B^{\top}x \leq 1 & (\text{labels } m+1, \dots, m+n) \end{array}$

artificial equilibrium (x, y) = (0, 0), not in $X \times Y$, not NE.

Only one labeled polytope

$$P = \{ x \in \mathbb{R}^m \mid x \ge 0, B^\top x \le 1 \}$$
$$Q = \{ y \in \mathbb{R}^n \mid Ay \le 1, y \ge 0 \}$$

$$\pmb{R} = \{ \pmb{z} \in \mathbb{R}^k \mid \pmb{z} \geq \pmb{0}, \quad \pmb{C} \pmb{z} \leq \pmb{1} \}$$

$$R = P \times Q, \qquad k = m + n,$$

$$C = \begin{pmatrix} 0 & A \\ B^{\top} & 0 \end{pmatrix} \in \mathbb{R}^{k \times k}, \qquad z = (x, y)$$

equilibrium $z \Leftrightarrow z \ge 0 \perp Cz \le 1$ (labels $1, \ldots, k$) artificial equilibrium z = 0, any other z = (x, y) with x re-normalized in X and y in Y is NE of (A, B)

Path of "almost completely labeled" edges $R = \{ z \in \mathbb{R}^k \mid z \ge 0, \ Cz \le 1 \}$

missing label ①:

Path of "almost completely labeled" edges $R = \{ z \in \mathbb{R}^k \mid z \ge 0, \ Cz \le 1 \}$

missing label (2) :

Path of "almost completely labeled" edges $R = \{ z \in \mathbb{R}^k \mid z \ge 0, \ Cz \le 1 \}$

missing label (3) :

Algebraic implementation by pivoting

 $z \ge 0 \perp Cz \le 1$ $\Leftrightarrow z \ge 0 \perp s \ge 0, \quad Cz + s = 1$

$$z \ge 0 \perp Cz \le 1$$

$$\Leftrightarrow z \ge 0 \perp s \ge 0, \quad Cz + s = 1$$

 $z \ge 0, s \ge 0 \quad \ell\text{-almost complementary (missing label } \ell)$ $\Leftrightarrow \quad Cz + s = 1, \quad \boxed{z_i \, s_i = 0} \quad \text{for } i = 1, \dots, k, \quad i \neq \ell$

 $z \ge 0 \perp Cz \le 1$ $\Leftrightarrow z \ge 0 \perp s \ge 0, \quad Cz + s = 1$

 $z \ge 0, s \ge 0 \quad \ell\text{-almost complementary (missing label } \ell)$ $\Leftrightarrow \quad Cz + s = 1, \quad \boxed{z_i \, s_i = 0} \quad \text{for } i = 1, \dots, k, \quad i \neq \ell$

complementary pivoting = algebraic traversal of ℓ -almost complementary edges of { $z \in \mathbb{R}^k \mid z \ge 0$, $Cz \le 1$ }

starting with z = 0, s = 1 - Cz.

 $z \ge 0 \perp Cz \le 1$ $\Leftrightarrow z \ge 0 \perp s \ge 0, \quad Cz + s = 1$

 $z \ge 0, s \ge 0 \quad \ell\text{-almost complementary (missing label } \ell)$ $\Leftrightarrow \quad Cz + s = 1, \quad \boxed{z_i \, s_i = 0} \quad \text{for } i = 1, \dots, k, \quad i \neq \ell$

complementary pivoting = algebraic traversal of ℓ -almost complementary edges of { $z \in \mathbb{R}^k \mid z \ge 0, \ Cz \le 1$ }

starting with z = 0, s = 1 - Cz.

Example:
$$C = \begin{bmatrix} 0 & 3 & 0 \\ 2 & 2 & 2 \\ 3 & 0 & 0 \end{bmatrix}$$

Almost complementary dictionaries

dictionary = any equivalent system to Cz + s = 1

basic variables expressed depending on nonbasic variables

- nonbasic variables set to **0** :
 - gives **basic solution** = polytope **vertex**,
 - nonbasic variables = binding inequalities = vertex labels
- starting dictionary: s = 1 Cz

Almost complementary dictionaries

dictionary = any equivalent system to Cz + s = 1

basic variables expressed depending on nonbasic variables

- nonbasic variables set to **0** :
 - gives basic solution = polytope vertex,
 - nonbasic variables = binding inequalities = vertex labels
- starting dictionary: s = 1 Cz

choose entering column = entering nonbasic variable z_{ℓ} identify the leaving row = leaving basic variable, here s_3

$$s_1 = 1 - 3z_2$$

 $s_2 = 1 - 2z_1 - 2z_2 - 2z_3$
 $s_3 = 1 - 3z_1$

Complementary variables

$$s_1 = 1 - 3z_2$$

 $s_2 = 1 - 2z_1 - 2z_2 - 2z_3$
 $s_3 = 1 - 3z_1$

 z_1 enters, s_3 leaves: $s_1 = 1 - 3z_2$ $s_2 = \frac{1}{3} + \frac{2}{3}s_3 - 2z_2 - 2z_3$ $z_1 = \frac{1}{3} - \frac{1}{3}s_3$

Complementary variables

$$s_1 = 1 - 3z_2$$

 $s_2 = 1 - 2z_1 - 2z_2 - 2z_3$
 $s_3 = 1 - 3z_1$

 z_1 enters, s_3 leaves: $s_1 = 1 - 3z_2$ $s_2 = \frac{1}{3} + \frac{2}{3}s_3 - 2z_2 - 2z_3$ $z_1 = \frac{1}{3} - \frac{1}{3}s_3$

$$s_1 = 1 - 3z_2$$

$$z_3 = \frac{1}{6} + \frac{1}{3}s_3 - z_2 - \frac{1}{2}s_2$$

$$z_1 = \frac{1}{3} - \frac{1}{3}s_3$$

complementary pivoting, continued

complementary pivoting, continued

 $z_1 = \frac{1}{6} + \frac{1}{2}s_1 - z_3 - \frac{1}{2}s_2$

3

Labeled polytopes and bimatrix games

Did we solve a game?

Yes!

^

 $z = (\frac{1}{6}, \frac{1}{2}, 0)^{\top}$ is normalized $\overline{z} = (\frac{1}{3}, \frac{2}{3}, 0)^{\top}$ and a (here unique) symmetric equilibrium $(\overline{z}, \overline{z})$ of the game (C, C^{\top}) with

3

$$C = \begin{bmatrix} 0 & 3 & 0 \\ 2 & 2 & 2 \\ 3 & 0 & 0 \end{bmatrix}, \text{ that is,}$$

$$\bar{z} \ge 0 \perp C\bar{z} \le 1u \text{ with payoff } u = 2 = \frac{1}{1^{\top}z}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 0 \\ 2 & 2 & 2 \\ 3 & 0 & 0 \end{bmatrix}$$

simple polytope in $\mathbb{R}^m \Leftrightarrow$ every vertex on only m facets **labeled** (simple) polytope in \mathbb{R}^m : every facet has one label in $\{1, \ldots, m\}$

completely labeled vertex = its facets have all labels 1, ..., m

simple polytope in $\mathbb{R}^m \iff$ every vertex on only m facets labeled (simple) polytope in \mathbb{R}^m : every facet has one label in $\{1, \ldots, m\}$

completely labeled vertex = its facets have all labels $1, \ldots, m$

Theorem The number of completely labeled vertices is **even**.

simple polytope in $\mathbb{R}^m \iff$ every vertex on only m facets labeled (simple) polytope in \mathbb{R}^m : every facet has one label in $\{1, \ldots, m\}$

completely labeled vertex = its facets have all labels $1, \ldots, m$

Theorem The number of completely labeled vertices is **even**.

simple polytope in $\mathbb{R}^m \iff$ every vertex on only m facets labeled (simple) polytope in \mathbb{R}^m : every facet has one label in $\{1, \ldots, m\}$

completely labeled vertex = its facets have all labels $1, \ldots, m$

Theorem The number of completely labeled vertices is **even**.

Unit vector games

Let $b_1, \ldots, b_n \in \mathbb{R}^m$, $B = [b_1 \cdots b_n]$ $\ell(1), \ldots, \ell(n) \in \{1, \ldots, m\}$ be labels $P = \{x \in \mathbb{R}^m \mid x \ge 0, B^\top x \le 1\}$

with labels of **P** for binding inequalities: label **i** : $x_i \ge 0$ $(1 \le i \le m)$ label $\ell(j)$: $b_j^\top x \le 1$ $(1 \le j \le n)$

Theorem $x \neq 0$ completely labeled vertex of $P \Leftrightarrow$ (*x*, *y*) Nash equilibrium of (*U*, *B*) where $U = [e_{\ell(1)} \cdots e_{\ell(n)}]$ $e_i = i$ th unit vector in \mathbb{R}^m

Summary

Nash equilibria of bimatrix games

are completely labeled vertices of facet-labeled polytopes P

(assuming there is one completely labeled vertex $\mathbf{x} = \mathbf{0}$ of \mathbf{P} whose incident facet inequalities can w.l.o.g. be written as $\mathbf{x} \ge \mathbf{0}$, which is not a NE but the artificial equilibrium).

For generic games (simple polytopes), the number of completely labeled vertices is **even**, and hence the number of NE is odd.

Evenness = Parity Argument, complexity class PPAD.

Degeneracy resolution

Integer pivoting

Degeneracy

In pivoting, **degeneracy** means at least one **zero** basic variable in a basic feasible solution

⇒ additional **labels** as binding inequalities (not just the nonbasic variables)

occurs when leaving variable not unique

Example: *z*₂ enters:

$$s_1 = 1 - 3z_2$$

 $z_1 = \frac{1}{3} + \frac{2}{3}s_2 - z_2$

Degeneracy

In pivoting, **degeneracy** means at least one **zero** basic variable in a basic feasible solution

⇒ additional **labels** as binding inequalities (not just the nonbasic variables)

occurs when leaving variable not unique

Example: *z*₂ enters:

$$s_1 = 1 - 3z_2$$

 $z_1 = \frac{1}{3} + \frac{2}{3}s_2 - z_2$

Apply to general system Ax = b, $x \ge 0$ written as $A_B x_B + A_N x_N = b$ with basic columns **B**, nonbasic columns **N**

Ax = b

perturb **b** to $\mathbf{b} + \vec{\varepsilon}_*$ with small $\varepsilon > \mathbf{0}$, $\vec{\varepsilon} = (\mathbf{1}, \varepsilon, \varepsilon^2, \dots \varepsilon^m)^\top$

perturb **b** to $\mathbf{b} + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots, \varepsilon^m)^\top$

perturb **b** to $\mathbf{b} + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots \varepsilon^m)^\top$

$$Ax = [b | I] \vec{\varepsilon}$$

$$A_B x_B + A_N x_N = [b | I] \vec{\varepsilon}$$

$$A_B x_B = [b | I] \vec{\varepsilon} - A_N x_N$$

$$x_B = A_B^{-1} [b | I] \vec{\varepsilon} - A_B^{-1} A_N x_N$$

$$x_B = [A_B^{-1} b | A_B^{-1}] \vec{\varepsilon} - A_B^{-1} A_N x_N$$

perturb **b** to $\mathbf{b} + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots, \varepsilon^m)^\top$

$$Ax = [b | I] \vec{\varepsilon}$$

$$A_B x_B + A_N x_N = [b | I] \vec{\varepsilon}$$

$$A_B x_B = [b | I] \vec{\varepsilon} - A_N x_N$$

$$x_B = A_B^{-1} [b | I] \vec{\varepsilon} - A_B^{-1} A_N x_N$$

$$x_B = [A_B^{-1} b | A_B^{-1}] \vec{\varepsilon} - A_B^{-1} A_N x_N$$

nondegeneracy $\Leftrightarrow x_B > 0$ for small $\varepsilon > 0 \Leftrightarrow [A_B^{-1}b | A_B^{-1}]$ **lexico-positive** (first nonzero element in each row is > 0).

perturb **b** to $\mathbf{b} + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots \varepsilon^m)^\top$

$$Ax = [b | I] \vec{\varepsilon}$$

$$A_B x_B + A_N x_N = [b | I] \vec{\varepsilon}$$

$$A_B x_B = [b | I] \vec{\varepsilon} - A_N x_N$$

$$x_B = A_B^{-1} [b | I] \vec{\varepsilon} - A_B^{-1} A_N x_N$$

$$x_B = [A_B^{-1} b | A_B^{-1}] \vec{\varepsilon} - A_B^{-1} A_N x_N$$

nondegeneracy $\Leftrightarrow x_B > 0$ for small $\varepsilon > 0 \Leftrightarrow [A_B^{-1}b | A_B^{-1}]$ **lexico-positive** (first nonzero element in each row is > 0).

Example:
$$\begin{bmatrix} 1 & -9 & 4 & 0 \\ 0 & 3 & -100 & 2 \\ 0 & 0 & 0 & 5 \end{bmatrix} \vec{\varepsilon} = \begin{bmatrix} 1 & -9\varepsilon + 4\varepsilon^2 \\ 3\varepsilon - 100\varepsilon^2 + 2\varepsilon^3 \\ 5\varepsilon^3 \end{bmatrix}$$

(basic columns in red)	z 1	Z 2	s 1	s ₂	RHS	
	4	3	1	0	1	
$\boldsymbol{z_1}$ enters, $\boldsymbol{s_2}$ leaves	7	2	0	1	1	

(basic columns in red)	Z 1	z 2	s 1	s ₂	RHS	
	4	3	1	0	1	× 7
$\boldsymbol{z_1}$ enters, $\boldsymbol{s_2}$ leaves	7	2	0	1	1	
	28	21	7	0	7	
	7	2	0	1	1	

(basic columns in red)	Z 1	Z 2	s 1	s 2	RHS	
	4	3	1	0	1	× 7
$\boldsymbol{z_1}$ enters, $\boldsymbol{s_2}$ leaves	7	2	0	1	1	
	28	21	7	0	7	
	7	2	0	1	1	
z ₂ enters, s ₁ leaves	0	13	7	-4	3	
	7	2	0	1	1	

(basic columns in red)	Z 1	Z 2	s 1	s 2	RHS	
	4	3	1	0	1	× 7
$\boldsymbol{z_1}$ enters, $\boldsymbol{s_2}$ leaves	7	2	0	1	1	
	28	21	7	0	7	
	7	2	0	1	1	
z_2 enters, s_1 leaves	0	13	7	-4	3	
	7	2	0	1	1	× 13
	0	13	7	-4	3	
	91	26	0	13	13	

(basic columns in red)	z 1	z 2	S 1	s 2	RHS	
	4	3	1	0	1	× 7
$\boldsymbol{z_1}$ enters, $\boldsymbol{s_2}$ leaves	7	2	0	1	1	
	28	21	7	0	7	
	7	2	0	1	1	
z_2 enters, s_1 leaves	0	13	7	-4	3	
	7	2	0	1	1	× 13
	0	13	7	-4	3	
	91	26	0	13	13	
	0	13	7	_4	3	
(numbers grow)	91	0	-14	21	7	

(basic columns in red)	z 1	Z 2	s ₁	s 2	RHS	
	4	3	1	0	1	× 7
$\boldsymbol{z_1}$ enters, $\boldsymbol{s_2}$ leaves	7	2	0	1	1	
	28	21	7	0	7	
	7	2	0	1	1	
z_2 enters, s_1 leaves	0	13	7	-4	3	
	7	2	0	1	1	× 13
	0	13	7	-4	3	
	91	26	0	13	13	
	0	13	7	-4	3	
(numbers grow)	91	0	-14	21	7	/ 7
	0	13	7	-4	3	
	13	0	-2	3	1	