Geometry of Equilibria in Bimatrix Games

Bernhard von Stengel

reading material: Chapter 9 of "Game Theory Basics"

Plan

- recall best-response condition
- upper envelope with 2 and 3 goalposts
- **labels** in best-response diagrams
- equilibria = completely labeled strategy pairs
- the Lemke–Howson algorithm
- labeled polytopes
- complementary pivoting
	- handling degeneracy
	- efficient exact arithmetic

Some Reading Material

B. von Stengel (2021), *Game Theory Basics.* Cambridge University Press.

B. von Stengel (2021), Finding Nash equilibria of two-player games. arXiv:2102.04580.

L. S. Shapley (1974), A note on the Lemke-Howson algorithm. *Mathematical Programming Study 1: Pivoting and Extensions*, 175–189.

Bimatrix Games,

Best-Response Condition

Nash equilibria of bimatrix games

Nash equilibrium =

pair of strategies x, y with

- x best response to y and
- y best response to x.

Mixed equilibria

only **pure best responses** can have probability > 0

Best-response condition

Theorem Given: $m \times n$ bimatrix game (A, B) .

Let x be a mixed strategy of player I and let *y* be a mixed strategy of player II. Then

x is a best response to *y*

⇔ for all pure strategies *i* of player I :

$$
x_i > 0 \Rightarrow (Ay)_i = u = max\{(Ay)_k | 1 \le k \le m\}.
$$

Best-response condition

Theorem Given: $m \times n$ bimatrix game (A, B) .

Let x be a mixed strategy of player I and let *y* be a mixed strategy of player II. Then

x is a best response to *y*

⇔ for all pure strategies *i* of player I :

$$
x_i > 0 \Rightarrow (Ay)_i = u = max\{(Ay)_k | 1 \le k \le m\}.
$$

(*x*, *y*) is a mixed equilibrium

⇔ for all pure strategies *i* of player I :

$$
x_i = 0
$$
 or $(Ay)_i = u = max\{(Ay)_k | 1 \le k \le m\},$

for all pure strategies *j* of player II :

$$
y_j = 0 \quad \text{or} \quad (x^\top B)_j = v = \max\{ (x^\top B)_\ell \mid 1 \leq \ell \leq n \}.
$$

payoffs to player II

Alternative view

payoffs to player II

Equilibrium = completely labeled strategy pair

Equilibrium = completely labeled strategy pair

Equilibrium = completely labeled strategy pair

missing label 2

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

finitely many "vertices"

for nondegenerate (generic) games:

- **unique** starting edge given missing label
- **unique** continuation
- precludes "coming back" like here:

start at Nash equilibrium

start at Nash equilibrium

Odd number of Nash equilibria!

Nondegenerate bimatrix games

Given: $m \times n$ bimatrix game (A, B)

$$
X = \{ x \in R^m \mid x \ge 0, x_1 + \ldots + x_m = 1 \}
$$

$$
Y = \{ y \in R^n \mid y \ge 0, y_1 + \ldots + y_n = 1 \}
$$

$$
supp(x) = \{ i \mid x_i > 0 \}
$$

$$
supp(y) = \{ j \mid y_j > 0 \}
$$

(A,B) **nondegenerate** ⇔ ∀ x ∈X, y ∈Y:

 $|\{j | j \}$ best response to $x \}$ $| \leq | \text{supp}(x) |$,

 $|\{i | i \text{ best response to } y\}| \leq |\text{supp}(y)|.$

Nondegeneracy via labels

m × n bimatrix game (A,B) **nondegenerate**

 \Leftrightarrow no $x \in X$ has more than m labels. no $y \in Y$ has more than n labels.

- E.g. x with $> m$ labels, s labels from $\{1, \ldots, m\}$,
- ⇒ > m−s labels from {m+1 , . . . , m+n }
- \Leftrightarrow > $|\text{supp}(x)|$ best responses to x.
- \Rightarrow degenerate.

Example of a degenerate game

Equilibrium components in a degenerate game

nondegenerate game:

degenerate game, same payoffs for player I:

Best-response diagrams for a 3 \times 3 game

Consider the 3×3 game

$$
A = \begin{bmatrix} 0 & 0 & 3 & 0 \\ 2 & 1 & 0 & 1 \\ 3 & -3 & 4 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 & -2 \\ 2 & 0 & 3 \\ 2 & 1 & 0 \end{bmatrix}.
$$

Subdivision of *Y* into best-response regions:

Upper envelope – with "row shift" of *B*

Upper envelope – with "row shift" of *B*

Best-response diagrams *X* **and** *Y* **and Lemke-Howson**

Diagrams from Shapley (1974)

Payoffs:

from Robert Wilson, in Shapley (1974)

Lemke-Howson may only find **some** equilibria:

Key:

Payoffs:

Running time of Lemke-Howson

The running time of Lemke-Howson may be **exponential** in the size of the game:

R. Savani and B. von Stengel (2004), Exponentially many steps for finding a Nash equilibrium in a bimatrix game. In: *Proc. 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004)*, 258–267.

R. Savani and B. von Stengel (2006), Hard-to-solve bimatrix games. *Econometrica* 74, 397–429.

R. Savani and B. von Stengel (2016), Unit vector games. *International Journal of Economic Theory* 12, 7–27.

Questions

- how to implement Lemke-Howson as an algorithm
	- **use labeled polytopes**
	- complementary pivoting
- handling degenerate games
- finding one vs. all Nash equilibria ◦ possibly exponentially many NE
	- uniqueness is co-NP-complete
- running time of Lemke-Howson
	- worst-case: exponential
	- average case?
	- smoothed analysis?

Labeled polytopes and completely labeled vertex pairs
Best-response polyhedra and polytopes best-response **polyhedra**:

$$
\overline{P} = \{ (x, v) \in X \times \mathbb{R} \mid B^{\top} x \leq 1v \}
$$

$$
\overline{Q} = \{ (y, u) \in Y \times \mathbb{R} \mid Ay \leq 1u \}
$$

Best-response polyhedra and polytopes best-response **polyhedra**:

$$
\overline{P} = \{ (x, v) \in X \times \mathbb{R} \mid B^{\top} x \leq 1v \}
$$

$$
\overline{Q} = \{ (y, u) \in Y \times \mathbb{R} \mid Ay \leq 1u \}
$$

best-response **polytopes**:

$$
P = \{ x \in \mathbb{R}^m \mid x \ge 0, B^{\top} x \le 1 \}
$$

$$
Q = \{ y \in \mathbb{R}^n \mid Ay \le 1, y \ge 0 \}
$$

obtained from \overline{P} , \overline{Q} via $\overline{X} \mapsto \overline{X}^{\frac{1}{\nu}}$ $\frac{1}{v}$, $y \mapsto y\frac{1}{u}$ *u* (requires $u, v > 0$, if needed via adding constants to A, B) re-normalized to X , Y via $X \mapsto X \frac{1}{1 + x}$ $\frac{1}{1+x}$, **y** \mapsto **y** $\frac{1}{1+x}$ **1**⊤*y*

Labeled polytopes

$$
P = \{ x \in \mathbb{R}^m \mid x \ge 0, B^{\top} x \le 1 \}
$$

$$
Q = \{ y \in \mathbb{R}^n \mid Ay \le 1, y \ge 0 \}
$$

 $(x, y) \in P \times Q$ (re-normalized in $X \times Y$) equilibrium of (A, B) ⇔

x > 0 ⊥ *Ay* < 1 (labels 1, ..., *m*)

y ≥ 0 ⊥ *B*^{$₁$} *x* ≤ 1 (labels *m* + 1, . . . , *m* + *n*)

Labeled polytopes

$$
P = \{ x \in \mathbb{R}^m \mid x \ge 0, B^{\top} x \le 1 \}
$$

$$
Q = \{ y \in \mathbb{R}^n \mid Ay \le 1, y \ge 0 \}
$$

 $(x, y) \in P \times Q$ (re-normalized in $X \times Y$) equilibrium of (A, B) ⇔

x > 0 ⊥ *Ay* < 1 (labels 1, ..., *m*) *y* ≥ 0 ⊥ *B*^{$₁$} *x* ≤ 1 (labels *m* + 1, . . . , *m* + *n*)

artificial equilibrium $(x, y) = (0, 0)$, not in $X \times Y$, not NE.

Only one labeled polytope

$$
P = \{ x \in \mathbb{R}^m \mid x \ge 0, B^{\top} x \le 1 \}
$$

$$
Q = \{ y \in \mathbb{R}^n \mid Ay \le 1, y \ge 0 \}
$$

$$
R = \{ z \in \mathbb{R}^k \mid z \geq 0, \quad Cz \leq 1 \}
$$

$$
R = P \times Q, \qquad k = m + n,
$$

$$
C = \begin{pmatrix} 0 & A \\ B^\top & 0 \end{pmatrix} \in \mathbb{R}^{k \times k}, \qquad z = (x, y)
$$

equilibrium $z \Leftrightarrow z > 0 \perp Cz < 1$ (labels $1, \ldots, k$) artificial equilibrium $z = 0$, any other $z = (x, y)$ with *x* re-normalized in *X* and *y* in *Y* is NE of (*A*, *B*)

Path of "almost completely labeled" edges

$$
R = \{ z \in \mathbb{R}^k \mid z \geq 0, \ Cz \leq 1 \}
$$

missing label ① :

Path of "almost completely labeled" edges

$$
R = \{ z \in \mathbb{R}^k \mid z \geq 0, \ Cz \leq 1 \}
$$

missing label 2 :

Path of "almost completely labeled" edges

$$
R = \{ z \in \mathbb{R}^k \mid z \geq 0, \ Cz \leq 1 \}
$$

missing label $\circled{3}$:

Algebraic implementation by pivoting

z ≥ **0** ⊥ *Cz* ≤ **1** \Leftrightarrow **z** ≥ **0** ⊥ **s** ≥ **0**, *Cz* **+ s** = 1

z ≥ **0** ⊥ *Cz* ≤ **1** \Leftrightarrow **z** ≥ **0** ⊥ **s** ≥ **0**, $|Cz + s = 1|$

 $z > 0$, $s > 0$ ℓ -almost complementary (missing label ℓ) \Leftrightarrow $Cz + s = 1$, $z_i s_i = 0$ for $i = 1, \ldots, k$, $i \neq \ell$

z ≥ **0** ⊥ *Cz* ≤ **1** \Leftrightarrow **z** > **0** ⊥ **s** > **0**, $|Cz + s = 1|$

 $z > 0$, $s > 0$ ℓ -almost complementary (missing label ℓ) \Leftrightarrow $Cz + s = 1$, $z_i s_i = 0$ for $i = 1, \ldots, k$, $i \neq \ell$

complementary pivoting = algebraic traversal of ℓ-almost complementary edges of $\{ z \in \mathbb{R}^k \mid z \geq 0, Cz \leq 1 \}$

starting with $z = 0$, $s = 1 - Cz$.

z ≥ **0** ⊥ *Cz* ≤ **1** \Leftrightarrow **z** > **0** ⊥ **s** > **0**, **Cz** + **s** = 1

 $z > 0$, $s > 0$ ℓ -almost complementary (missing label ℓ) \Leftrightarrow $Cz + s = 1$, $\boxed{z_i s_i = 0}$ for $i = 1, \ldots, k$, $i \neq \ell$

complementary pivoting = algebraic traversal of ℓ-almost complementary edges of $\{ z \in \mathbb{R}^k \mid z \geq 0, Cz \leq 1 \}$

starting with $z = 0$, $s = 1 - Cz$.

Example:
$$
C = \begin{bmatrix} 0 & 3 & 0 \\ 2 & 2 & 2 \\ 3 & 0 & 0 \end{bmatrix}
$$

Almost complementary dictionaries

dictionary = any equivalent system to $Cz + s = 1$

basic variables expressed depending on **nonbasic variables**

- nonbasic variables set to **0** :
	- gives **basic solution** = polytope **vertex**,
	- nonbasic variables = binding inequalities = vertex **labels**
- starting dictionary: *s* = **1** − *Cz*

Almost complementary dictionaries

dictionary = any equivalent system to $Cz + s = 1$

basic variables expressed depending on **nonbasic variables**

- nonbasic variables set to **0** :
	- gives **basic solution** = polytope **vertex**,
	- nonbasic variables = binding inequalities = vertex **labels**
- starting dictionary: *s* = **1** − *Cz*

choose **entering column** = entering nonbasic variable *z*^ℓ identify *the* **leaving row** = leaving basic variable, here s_3

$$
s_1 = 1 - 3z_2
$$

\n
$$
s_2 = 1 - 2z_1 - 2z_2 - 2z_3
$$

\n
$$
s_3 = 1 - 3z_1
$$

Complementary variables

$$
s_1 = 1 - 3z_2
$$

\n
$$
s_2 = 1 - 2z_1 - 2z_2 - 2z_3
$$

\n
$$
s_3 = 1 - 3z_1
$$

 z_1 enters, $\overline{s_3}$ leaves: $s_1 = 1$ − $3z_2$ $s_2 = \frac{1}{3} + \frac{2}{3}s_3 - 2z_2 - 2z_3$ $z_1 = \frac{1}{3} - \frac{1}{3} s_3$

Complementary variables

$$
s_1 = 1 - 3z_2
$$

\n
$$
s_2 = 1 - 2z_1 - 2z_2 - 2z_3
$$

\n
$$
s_3 = 1 - 3z_1
$$

\n
$$
z_1 \text{ enters, } s_3 \text{ leaves:}
$$

\n
$$
s_1 = 1 - 3z_2
$$

\n
$$
s_2 = \frac{1}{3} + \frac{2}{3} s_3 - 2z_2 - 2z_3
$$

\n
$$
z_1 = \frac{1}{3} - \frac{1}{3} s_3
$$

 $\overline{z_3}$ enters, s_2 leaves:

$$
s_1 = 1 - 3z_2
$$

\n
$$
z_3 = \frac{1}{6} + \frac{1}{3}s_3 - z_2 - \frac{1}{2}s_2
$$

\n
$$
z_1 = \frac{1}{3} - \frac{1}{3}s_3
$$

complementary pivoting, continued

 3λ ദ

2

 η

complementary pivoting, continued

Labeled polytopes and bimatrix games

Did we solve a game?

Yes!

 $z = (\frac{1}{6}, \frac{1}{2})$ $(\frac{1}{2}, 0)^{\top}$ is normalized $\overline{z} = (\frac{1}{3}, \frac{2}{3})$ $\frac{2}{3}$, **0**) $\overline{}$ and a (here unique) **symmetric equilibrium** (*z*, *z*) of the game (*C*, *C* ⊤) with

$$
C = \begin{bmatrix} 0 & 3 & 0 \\ 2 & 2 & 2 \\ 3 & 0 & 0 \end{bmatrix}, \text{ that is,}
$$

\n
$$
\overline{z} \ge 0 \perp C\overline{z} \le 1u \text{ with payoff } u = 2 = \frac{1}{1 + z}
$$

\n
$$
\begin{array}{c}\n\textcircled{1} & \textcircled{2} & \textcircled{3} \\
2 & 2 & 2 \\
\textcircled{3} & 3 & 0 & 0\n\end{array}
$$
\n
$$
\begin{array}{c}\n\textcircled{2} & \textcircled{2} & \textcircled{3} \\
\textcircled{3} & \textcircled{3}\n\end{array}
$$

simple polytope in R *^m* [⇔] every vertex on only *^m* facets **labeled** (simple) polytope in R *^m* : every facet has one label in {**1**, . . . , *m*}

completely labeled vertex = its facets have all labels **1**, . . . , *m*

simple polytope in R *^m* [⇔] every vertex on only *^m* facets **labeled** (simple) polytope in R *^m* : every facet has one label in {**1**, . . . , *m*} completely labeled vertex = its facets have all labels **1**, . . . , *m*

Theorem The number of completely labeled vertices is **even**.

simple polytope in R *^m* [⇔] every vertex on only *^m* facets **labeled** (simple) polytope in R *^m* : every facet has one label in {**1**, . . . , *m*}

completely labeled vertex = its facets have all labels **1**, . . . , *m*

Theorem The number of completely labeled vertices is **even**.

simple polytope in R *^m* [⇔] every vertex on only *^m* facets **labeled** (simple) polytope in R *^m* : every facet has one label in {**1**, . . . , *m*}

completely labeled vertex = its facets have all labels **1**, . . . , *m*

Theorem The number of completely labeled vertices is **even**.

Unit vector games

Let $b_1, \ldots, b_n \in \mathbb{R}^m$, $B = [b_1 \cdots b_n]$ $\ell(1), \ldots, \ell(n) \in \{1, \ldots, m\}$ be labels *P* = {*x* ∈ ℝ^{*m*} | *x* ≥ 0, *B*^T*x* ≤ 1}

with labels of *P* for binding inequalities: label *i* : $x_i > 0$ (1 $\lt i \lt m$) $|{\rm label} \ \ell({\boldsymbol j}) : \ \ {\boldsymbol b}_{\boldsymbol j}^{\top} {\boldsymbol x} \leq 1 \ \ \ \ \ \ (1 \leq {\boldsymbol j} \leq {\boldsymbol n})$

Theorem $x \neq 0$ completely labeled vertex of $P \Leftrightarrow$ (\mathbf{x}, \mathbf{y}) Nash equilibrium of (\mathbf{U}, \mathbf{B}) where $\mathbf{U} = [\mathbf{e}_{\ell(1)} \cdots \mathbf{e}_{\ell(n)}]$ *eⁱ* = *i*th unit vector in R *m*

Summary

Nash equilibria of bimatrix games

are completely labeled vertices of facet-labeled polytopes *P*

(assuming there is one completely labeled vertex $x = 0$ of P whose incident facet inequalities can w.l.o.g. be written as $x > 0$, which is not a NE but the artificial equilibrium).

For generic games (simple polytopes), the number of completely labeled vertices is **even**, and hence the number of NE is odd.

Evenness = Parity Argument, complexity class **PPAD**.

Degeneracy resolution

Integer pivoting

Degeneracy

In pivoting, **degeneracy** means at least one **zero** basic variable in a basic feasible solution

- ⇒ additional **labels** as binding inequalities (not just the nonbasic variables)
- occurs when **leaving variable not unique**

Example: z_2 enters:

$$
s_1 = 1 - 3z_2
$$

$$
z_1 = \frac{1}{3} + \frac{2}{3}s_2 - z_2
$$

Degeneracy

In pivoting, **degeneracy** means at least one **zero** basic variable in a basic feasible solution

⇒ additional **labels** as binding inequalities (not just the nonbasic variables)

occurs when **leaving variable not unique**

Example: z_2 enters:

$$
s_1 = 1 - 3z_2
$$

$$
z_1 = \frac{1}{3} + \frac{2}{3}s_2 - z_2
$$

Apply to general system $Ax = b$, $x > 0$ written as $A_B x_B + A_N x_N = b$ with basic columns *B*, nonbasic columns *N*

 $Ax =$ *b*

$$
Ax = b
$$

$$
A_B x_B + A_N x_N = b
$$

perturb *b* to $b + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots \varepsilon^m)^\top$

perturb *b* to $b + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots \varepsilon^m)^\top$

perturb *b* to $b + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots \varepsilon^m)^\top$

$$
Ax = [b | I] \vec{\varepsilon}
$$

\n
$$
A_B x_B + A_N x_N = [b | I] \vec{\varepsilon}
$$

\n
$$
A_B x_B = [b | I] \vec{\varepsilon} - A_N x_N
$$

\n
$$
x_B = A_B^{-1} [b | I] \vec{\varepsilon} - A_B^{-1} A_N x_N
$$

\n
$$
x_B = [A_B^{-1} b | A_B^{-1}] \vec{\varepsilon} - A_B^{-1} A_N x_N
$$

perturb *b* to $b + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots \varepsilon^m)^\top$

$$
Ax = [b|I] \vec{\varepsilon}
$$

\n
$$
A_B x_B + A_N x_N = [b|I] \vec{\varepsilon}
$$

\n
$$
A_B x_B = [b|I] \vec{\varepsilon} - A_N x_N
$$

\n
$$
x_B = A_B^{-1} [b|I] \vec{\varepsilon} - A_B^{-1} A_N x_N
$$

\n
$$
x_B = [A_B^{-1} b | A_B^{-1}] \vec{\varepsilon} - A_B^{-1} A_N x_N
$$

 $\mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} \end{bmatrix}$ **a** $\mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} \end{bmatrix}$ **a** $\mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} \end{bmatrix}$ **a** $\mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} \end{bmatrix$ **lexico-positive** (first nonzero element in each row is > 0).

perturb *b* to $b + \vec{\varepsilon}_*$ with small $\varepsilon > 0$, $\vec{\varepsilon} = (1, \varepsilon, \varepsilon^2, \dots \varepsilon^m)^\top$

$$
Ax = [b|I] \vec{\varepsilon}
$$

\n
$$
A_B x_B + A_N x_N = [b|I] \vec{\varepsilon}
$$

\n
$$
A_B x_B = [b|I] \vec{\varepsilon} - A_N x_N
$$

\n
$$
x_B = A_B^{-1} [b|I] \vec{\varepsilon} - A_B^{-1} A_N x_N
$$

\n
$$
x_B = [A_B^{-1} b | A_B^{-1}] \vec{\varepsilon} - A_B^{-1} A_N x_N
$$

 $\mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} \end{bmatrix}$ **a** $\mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} \end{bmatrix}$ **a** $\mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} \end{bmatrix}$ **a** $\mathbf{p} = \begin{bmatrix} \mathbf{p} & \mathbf{p} \\ \mathbf{p} & \mathbf{p} \end{bmatrix$ **lexico-positive** (first nonzero element in each row is > 0).

Example: $\sqrt{ }$ \vert **1** −**9 4 0 0 3** −**100 2 0 0 0 5** 1 $\left| \vec{\varepsilon} \right|$ $\sqrt{ }$ \vert **1** $-\theta \varepsilon + 4\varepsilon^2$ $3\varepsilon - 100\varepsilon^2 + 2\varepsilon^3$ **5**ε **3** T $\overline{}$

