
Geometry of Equilibria in Bimatrix Games

Bernhard von Stengel

reading material:
Chapter 9 of “Game Theory Basics”
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Plan

• recall best-response condition

• upper envelope with 2 and 3 goalposts

• labels in best-response diagrams

• equilibria = completely labeled strategy pairs

• the Lemke–Howson algorithm

• labeled polytopes

• complementary pivoting
◦ handling degeneracy
◦ efficient exact arithmetic
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Some Reading Material

B. von Stengel (2021), Game Theory Basics.
Cambridge University Press.

B. von Stengel (2021), Finding Nash equilibria
of two-player games. arXiv:2102.04580.

L. S. Shapley (1974), A note on the Lemke-Howson algorithm.
Mathematical Programming Study 1: Pivoting and Extensions,
175–189.
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Bimatrix Games,

Best-Response Condition
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Nash equilibria of bimatrix games

0   6   2   1
A = 2   5 B =   1   3

3   3    4   3

Nash equilibrium =

pair of strategies  x , y  with

x  best response to  y  and
y  best response to  x.
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Mixed equilibria

0   6   2   1
A = 2   5 B =   1   3

3   3    4   3

2/3
x = 1/3       xTB =  5/3  5/3

  0

   4
Ay =    4      yT =   1/3   2/3

   3
 

only pure best responses can have probability > 0

6 / 84



Best-response condition
Theorem Given: m × n bimatrix game (A,B) .

Let x be a mixed strategy of player I and
let y be a mixed strategy of player II. Then

x is a best response to y

⇔ for all pure strategies i of player I :

xi > 0 ⇒ (Ay)i = u = max{ (Ay)k | 1 ≤ k ≤ m }.

(x, y) is a mixed equilibrium

⇔ for all pure strategies i of player I :

xi = 0 or (Ay)i = u = max{ (Ay)k | 1 ≤ k ≤ m },

for all pure strategies j of player II :

yj = 0 or
(x⊤B)j = v = max{ (x⊤B)ℓ | 1 ≤ ℓ ≤ n }.
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Best responses to mixed strategy of player 2

2

4 5

1

3

player I
payoffs to

0,11,0

= A52
3 3

60
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best response polyhedron

Best responses to mixed strategy of player 2

2

4 5

1

3

player I
payoffs to

0,11,0

3
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3 3
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with facet labels
best response polyhedron

Best responses to mixed strategy of player 2

2

4 5

1

3

player I
payoffs to

5 4

0,11,0

3
2

1

= A52
3 3
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Best responses to mixed strategy of player 2

2

4 5

1

3

player I
payoffs to

5 4

5 4
3 2 1

3
2

1

= A52
3 3

60
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Best responses to mixed strategy of player 2

2

4 5

1

3

player I
payoffs to

5 4
3 2 1

= A52
3 3

60
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Best responses to mixed strategy of player 1

1
0
0

0
1
0

0
0
1

2

4 5

1

3

2 1
1 3
4 3

payoffs to
player II

= B
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Best responses to mixed strategy of player 1
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1
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4 5
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Best responses to mixed strategy of player 1

1
0
0

0
1
0

0
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Best responses to mixed strategy of player 1
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0
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Best responses to mixed strategy of player 1
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best response

with facet labels
polyhedron

Best responses to mixed strategy of player 1

1
0
0

0
1
0

0
0
1

2

4 5

1

3

2 1
1 3
4 3

payoffs to
player II

= B

5

4

1
2

3    (front)
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Alternative view
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Chop off Toblerone prism
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Chop off Toblerone prism
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Chop off Toblerone prism
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Chop off Toblerone prism
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Chop off Toblerone prism
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Best responses to mixed strategy of player 1
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Best responses to mixed strategy of player 1

2

3

14
5

2

4 5
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4 3
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Equilibrium = completely labeled strategy pair

4
5

3

3 2 1
45

2 1
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The Lemke-Howson algorithm
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The Lemke−Howson algorithm

4
5

3

3 2 1

12

5 4

39 / 84



The Lemke−Howson algorithm

4
5

3

3 2 1

12

5 4

40 / 84



The Lemke−Howson algorithm

artificial equilibrium0
0
0 0,0

4
5

3

3 2 1

12

5 4
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The Lemke−Howson algorithm

missing label 2

artificial equilibrium0
0
0 0,0

4
5

3

3 2 1

12

5 4

42 / 84



The Lemke−Howson algorithm

2missing label

0
0
0 0,0

4
5
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3 1
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5 4

2
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The Lemke−Howson algorithm

2found label

0
0
0 0,0

4
5

3

3 2 1

12

5 4

47 / 84



Why Lemke-Howson works

LH finds at least one Nash equilibrium because

•    finitely many "vertices"

for nondegenerate (generic) games:

•    unique starting edge given missing label

•    unique continuation

precludes "coming back" like here:
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start at Nash equilibrium

The Lemke−Howson algorithm

2missing label4
5

3

3 2 1

12

5 4
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start at Nash equilibrium

The Lemke−Howson algorithm

2missing label4
5

3

3 1

12

5 4

2
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start at Nash equilibrium

Odd number of Nash equilibria!

2found label4
5

3

3 2 1

12

5 4
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Nondegenerate bimatrix games

Given: m × n  bimatrix game  (A,B)

X = { x ∈ Rm  |  x ≥ 0,  x1 + . . . + xm = 1 }
Y = { y ∈ Rn   |  y ≥ 0,  y1 + . . . + yn  = 1 }

supp(x) = { i  |  xi > 0 }   
supp(y) = { j  |  yj > 0 }  

(A,B)  nondegenerate    ⇔   ∀ x ∈X,  y ∈Y: 

| { j | j best response to x } |  ≤  | supp(x) |,
| { i | i best response to y } |  ≤  | supp(y) |.
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Nondegeneracy via labels

m × n  bimatrix game  (A,B)  nondegenerate 
 

⇔ no x  X  has more than  m  labels,
no y  Y  has more than  n   labels.

E.g. x with  > m   labels,
s labels from { 1 , . . . , m } ,

⇒ > m−s  labels from { m+1 , . . . , m+n }
⇔ > |supp(x)| best responses to x.
⇒ degenerate.
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Example of a degenerate game

3

1

4 5

2

4 5

1

3

2

2 1
1 3
4

payoffs to
player II

= B
4
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Equilibrium components in a degenerate game
nondegenerate game:

4

5

3

2 1 3 2 1

45

degenerate game, same payoffs for player I:

5

3

2 1

4

3 2 1

45
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Best-response diagrams for a 3 × 3 game

Consider the 3 × 3 game

A =
⃝1
⃝2
⃝3




0 3 0
1 0 1
−3 4 5


, B =




⃝4 ⃝5 ⃝6
0 1 −2
2 0 3
2 1 0


.

Subdivision of Y into
best-response regions:

Y

⃝2 ⃝1 ⃝3

⃝3

⃝6

⃝5 ⃝4
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Upper envelope – with “row shift” of B

⃝4 ⃝5 ⃝6

B′ =




2 3 0
2 0 3
2 0 0




, B =




0 1 −2
2 0 3
2 0 0


, x⊤B′ = x⊤B + x1[2 2 2]

X

⃝3

⃝2 ⃝1

⃝5 ⃝6

⃝4

payoff to II

0

2

3

0

2

30

2
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Best-response diagrams X and Y and
Lemke-Howson

X̃

⃝3

⃝3

⃝2 ⃝1

0

⃝5 ⃝6

⃝4

0

Ỹ

⃝6

⃝6

⃝5 ⃝4

⃝2 ⃝1

⃝3
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Diagrams from Shapley (1974)
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from Robert Wilson, in Shapley (1974)

Lemke-Howson may only find some equilibria:

63 / 84



Running time of Lemke-Howson

The running time of Lemke-Howson may be exponential in the
size of the game:

R. Savani and B. von Stengel (2004), Exponentially many steps for
finding a Nash equilibrium in a bimatrix game. In: Proc. 45th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2004), 258–267.

R. Savani and B. von Stengel (2006), Hard-to-solve bimatrix
games. Econometrica 74, 397–429.

R. Savani and B. von Stengel (2016), Unit vector games.
International Journal of Economic Theory 12, 7–27.
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Questions

• how to implement Lemke-Howson as an algorithm
◦ use labeled polytopes
◦ complementary pivoting

• handling degenerate games

• finding one vs. all Nash equilibria
◦ possibly exponentially many NE
◦ uniqueness is co-NP-complete

• running time of Lemke-Howson
◦ worst-case: exponential
◦ average case?
◦ smoothed analysis?
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Labeled polytopes and

completely labeled vertex pairs
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Best-response polyhedra and polytopes
best-response polyhedra:

P = { (x, v) ∈ X × R | B⊤x ≤ 1v }
Q = { (y , u) ∈ Y × R | Ay ≤ 1u }

with facet labels
best response polyhedron

Best responses to mixed strategy of player 2

2

4 5

1

3

player I
payoffs to

5 4

0,11,0

3
2

1

= A52
3 3

60

67 / 84



Best-response polyhedra and polytopes
best-response polyhedra:

P = { (x, v) ∈ X × R | B⊤x ≤ 1v }
Q = { (y , u) ∈ Y × R | Ay ≤ 1u }

best-response polytopes:

P = { x ∈ Rm | x ≥ 0, B⊤x ≤ 1}
Q = { y ∈ Rn | Ay ≤ 1, y ≥ 0}

obtained from P, Q via x 7→ x 1
v , y 7→ y 1

u

(requires u, v > 0, if needed via adding constants to A,B )

re-normalized to X ,Y via x 7→ x 1
1⊤x , y 7→ y 1

1⊤y

67 / 84



Labeled polytopes

P = { x ∈ Rm | x ≥ 0, B⊤x ≤ 1}
Q = { y ∈ Rn | Ay ≤ 1, y ≥ 0}

(x, y) ∈ P × Q (re-normalized in X × Y ) equilibrium of (A,B)

⇔
x ≥ 0 ⊥ Ay ≤ 1 (labels 1, . . . ,m)

y ≥ 0 ⊥ B⊤x ≤ 1 (labels m + 1, . . . ,m + n)

artificial equilibrium (x, y) = (0, 0), not in X × Y , not NE.
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Only one labeled polytope

P = { x ∈ Rm | x ≥ 0, B⊤x ≤ 1}
Q = { y ∈ Rn | Ay ≤ 1, y ≥ 0}

R = { z ∈ Rk | z ≥ 0, Cz ≤ 1}

R = P × Q, k = m + n,

C =

(
0 A

B⊤ 0

)
∈ Rk×k , z = (x, y)

equilibrium z ⇔ z ≥ 0 ⊥ Cz ≤ 1 (labels 1, . . . , k )

artificial equilibrium z = 0, any other z = (x, y) with
x re-normalized in X and y in Y is NE of (A,B)
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Path of “almost completely labeled” edges

R = { z ∈ Rk | z ≥ 0, Cz ≤ 1}

2

3
11

3

2
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Path of “almost completely labeled” edges

R = { z ∈ Rk | z ≥ 0, Cz ≤ 1}
missing label ⃝1 :
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3
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Path of “almost completely labeled” edges

R = { z ∈ Rk | z ≥ 0, Cz ≤ 1}
missing label ⃝2 :
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Path of “almost completely labeled” edges

R = { z ∈ Rk | z ≥ 0, Cz ≤ 1}
missing label ⃝3 :

2

3
11

3

2
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Algebraic implementation

by pivoting
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Complementary pivoting
z ≥ 0 ⊥ Cz ≤ 1

⇔ z ≥ 0 ⊥ s ≥ 0, Cz + s = 1

z ≥ 0, s ≥ 0 ℓ-almost complementary (missing label ℓ)

⇔ Cz + s = 1, zi si = 0 for i = 1, . . . , k , i ̸= ℓ

complementary pivoting = algebraic traversal of ℓ-almost
complementary edges of { z ∈ Rk | z ≥ 0, Cz ≤ 1}
starting with z = 0, s = 1 − Cz.

Example: C =




0 3 0
2 2 2
3 0 0




1

2

3

3

2

1
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Almost complementary dictionaries
dictionary = any equivalent system to Cz + s = 1

basic variables expressed depending on nonbasic variables

• nonbasic variables set to 0 :
◦ gives basic solution = polytope vertex,
◦ nonbasic variables = binding inequalities = vertex labels

• starting dictionary: s = 1 − Cz

choose entering column = entering nonbasic variable zℓ
identify the leaving row = leaving basic variable, here s3

s1 = 1 − 3z2

s2 = 1 − 2z1 − 2z2 − 2z3

s3 = 1 − 3z1 1

2

3

3

2

1
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Complementary variables

s1 = 1 − 3z2

s2 = 1 − 2z1 − 2z2 − 2z3

s3 = 1 − 3z1

z1 enters, s3 leaves:

1

2

3

3

2

1s1 = 1 − 3z2

s2 = 1
3 + 2

3s3 − 2z2 − 2z3

z1 = 1
3 − 1

3s3

z3 enters, s2 leaves:

1

2

3

3

2

1

s1 = 1 − 3z2

z3 = 1
6 + 1

3s3 − z2 − 1
2s2

z1 = 1
3 − 1

3s3
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complementary pivoting, continued
. . . s2 left the basis, z2 enters:

s1 = 1 − 3z2

z3 = 1
6 + 1

3s3 − z2 − 1
2s2

z1 = 1
3 − 1

3s3
z3 leaves:

1

2

3

3

2

1

s1 = 1
2 − s3 + 3z3 + 3

2s2

z2 = 1
6 + 1

3s3 − z3 − 1
2s2

z1 = 1
3 − 1

3s3

s3 enters, s1 leaves, equilibrium found:

1

2

3

3

2

1

s3 = 1
2 − s1 + 3z3 + 3

2s2

z2 = 1
3 − 1

3s1

z1 = 1
6 + 1

3s1 − z3 − 1
2s2
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Labeled polytopes and bimatrix games

76 / 84



Did we solve a game?
Yes!

z = (1
6 ,

1
2 , 0)⊤ is normalized z = (1

3 ,
2
3 , 0)⊤ and a (here unique)

symmetric equilibrium (z, z) of the game (C,C⊤) with

C =




0 3 0
2 2 2
3 0 0


, that is,

z ≥ 0 ⊥ Cz ≤ 1u with payoff u = 2 = 1
1⊤z

1

0 3 0

0

2 2

3

2

0

1

2

3

2 3

2 1

3 1

2

3
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Arbitrary labeled polytopes
simple polytope in Rm ⇔ every vertex on only m facets

labeled (simple) polytope in Rm :
every facet has one label in {1, . . . ,m}
completely labeled vertex = its facets have all labels 1, . . . ,m

Theorem The number of completely labeled vertices is even.

78 / 84



Arbitrary labeled polytopes
simple polytope in Rm ⇔ every vertex on only m facets

labeled (simple) polytope in Rm :
every facet has one label in {1, . . . ,m}
completely labeled vertex = its facets have all labels 1, . . . ,m

Theorem The number of completely labeled vertices is even.

2

31

2

3

2

1

2

78 / 84



Arbitrary labeled polytopes
simple polytope in Rm ⇔ every vertex on only m facets

labeled (simple) polytope in Rm :
every facet has one label in {1, . . . ,m}
completely labeled vertex = its facets have all labels 1, . . . ,m

Theorem The number of completely labeled vertices is even.

2

31

2

3

2

1

2

78 / 84



Arbitrary labeled polytopes
simple polytope in Rm ⇔ every vertex on only m facets

labeled (simple) polytope in Rm :
every facet has one label in {1, . . . ,m}
completely labeled vertex = its facets have all labels 1, . . . ,m

Theorem The number of completely labeled vertices is even.

2

31

2

3

2

1

2

78 / 84



Unit vector games

Let b1, . . . , bn ∈ Rm , B = [b1 · · · bn]

ℓ(1), . . . , ℓ(n) ∈ {1, . . . ,m} be labels

P = {x ∈ Rm | x ≥ 0, B⊤x ≤ 1}

2

31

2

3

2

1

2

0

with labels of P for binding inequalities:

label i : xi ≥ 0 (1 ≤ i ≤ m)

label ℓ(j) : b⊤
j x ≤ 1 (1 ≤ j ≤ n)

Theorem x ̸= 0 completely labeled vertex of P ⇔
(x, y) Nash equilibrium of (U,B) where U = [eℓ(1) · · · eℓ(n)]

ei = i th unit vector in Rm
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Summary

Nash equilibria of bimatrix games

are completely labeled vertices of facet-labeled polytopes P

(assuming there is one completely labeled vertex x = 0 of P
whose incident facet inequalities can w.l.o.g. be written as x ≥ 0,
which is not a NE but the artificial equilibrium).

For generic games (simple polytopes), the number of completely
labeled vertices is even, and hence the number of NE is odd.

Evenness = Parity Argument, complexity class PPAD.

80 / 84



Degeneracy resolution

Integer pivoting
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Degeneracy

In pivoting, degeneracy means at least one zero basic variable in
a basic feasible solution

⇒ additional labels as binding inequalities (not just the nonbasic
variables)

occurs when leaving variable not unique

Example: z2 enters:

s1 = 1 − 3z2

z1 = 1
3 + 2

3s2 − z2

Apply to general system Ax = b, x ≥ 0 written as
ABxB + ANxN = b with basic columns B, nonbasic columns N
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Lexicographic degeneracy resolution

perturb b to b + ε⃗∗ with small ε > 0, ε⃗ = (1, ε, ε2, . . . εm)⊤

Ax =

[

b

| I ] ε⃗
ABxB + ANxN =

[

b

| I ] ε⃗

ABxB =

[

b

| I ] ε⃗

− ANxN

xB = A−1
B

[

b

| I ] ε⃗

− A−1
B ANxN

xB = [ A−1
B b | A−1

B ] ε⃗ − A−1
B ANxN

nondegeneracy ⇔ xB > 0 for small ε > 0 ⇔ [ A−1
B b | A−1

B ]
lexico-positive (first nonzero element in each row is > 0).

dictionary

Example:




1 −9 4 0
0 3 −100 2
0 0 0 5


 ε⃗ =




1 − 9ε + 4ε2

3ε − 100ε2 + 2ε3

5ε3
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Integer pivoting for Cz + s = 1

(basic columns in red) z1 z2 s1 s2 RHS

4 3 1 0 1

× 7

z1 enters, s2 leaves 7 2 0 1 1

28 21 7 0 7
7 2 0 1 1

z2 enters, s1 leaves 0 13 7 −4 3
7 2 0 1 1 × 13

0 13 7 −4 3
91 26 0 13 13

0 13 7 −4 3
(numbers grow) 91 0 −14 21 7 / 7

0 13 7 −4 3
13 0 −2 3 1
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